

Emmanuel Udoh
Indiana Institute of Technology, USA

Cloud, Grid and High
Performance Computing:
Emerging Applications

Cloud, grid and high performance computing: emerging applications / Emmanuel Udoh, editor.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book offers new and established perspectives on architectures, services and the resulting impact of
emerging computing technologies, including investigation of practical and theoretical issues in the related fields of grid,
cloud, and high performance computing”--Provided by publisher.
 ISBN 978-1-60960-603-9 (hardcover) -- ISBN 978-1-60960-604-6 (ebook) 1. Cloud computing. 2. Computational grids
(Computer systems) 3. Software architecture. 4. Computer software--Development. I. Udoh, Emmanuel, 1960-
 QA76.585.C586 2011
 004.67’8--dc22
 2011013282

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Senior Editorial Director: Kristin Klinger
Editorial Director: Lindsay Johnston
Director of Book Publications: Julia Mosemann
Acquisitions Editor: Erika Carter
Development Editor: Hannah Abelbeck
Production Editor: Sean Woznicki
Typesetters: Michael Brehm, Keith Glazewski, Milan Vracarich, Jr.
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
in (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Table of Contents

Preface ... xvi

Section 1
Introduction

Chapter 1
Supercomputers in Grids ... 1

Michael M. Resch, University of Stuttgart, Germany
Edgar Gabriel, University of Houston, USA

Chapter 2
Porting HPC Applications to Grids and Clouds .. 10

Wolfgang Gentzsch, Independent HPC, Grid, and Cloud Consultant, Germany

Chapter 3
Grid-Enabling Applications with JGRIM ... 39

Cristian Mateos, ISISTAN - UNCPBA, Argentina
Alejandro Zunino, ISISTAN - UNCPBA, Argentina
Marcelo Campo, ISISTAN - UNCPBA, Argentina

Section 2
Scheduling

Chapter 4
Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid 58

Kuo-Chan Huang, National Taichung University of Education, Taiwan
Po-Chi Shih, National Tsing Hua University, Taiwan
Yeh-Ching Chung, National Tsing Hua University, Taiwan

Chapter 5
Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour
Descriptions .. 72

Attila Ulbert, Eötvös Loránd University, Hungary
László Csaba Lőrincz, Eötvös Loránd University, Hungary
Tamás Kozsik, Eötvös Loránd University, Hungary
Zoltán Horváth, Eötvös Loránd University, Hungary

Chapter 6
A Security Prioritized Computational Grid Scheduling Model: An Analysis 90

Rekha Kashyap, Jawaharlal Nehru University, India
Deo Prakash Vidyarthi, Jawaharlal Nehru University, India

Chapter 7
A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid 101

Zahid Raza, Jawaharlal Nehru University, India
Deo Prakash Vidyarthi, Jawaharlal Nehru University, India

Section 3
Security

Chapter 8
A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage
Control in Grids .. 118
 Wolfgang Hommel, Leibniz Supercomputing Centre, Germany

Chapter 9
Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing 135

Hong Wang, Tohoku University, Japan
Yoshitomo Murata, Tohoku University, Japan
Hiroyuki Takizawa, Tohoku University, Japan
Hiroaki Kobayashi, Tohoku University, Japan

Chapter 10
Publication and Protection of Sensitive Site Information in a Grid Infrastructure 155

Shreyas Cholia, Lawrence Berkeley National Laboratory, USA
R. Jefferson Porter, Lawrence Berkeley National Laboratory, USA

Chapter 11
Federated PKI Authentication in Computing Grids: Past, Present, and Future 165

Massimiliano Pala, Dartmouth College, USA
Shreyas Cholia, Lawrence Berkeley National Laboratory, USA
Scott A. Rea, DigiCert Inc., USA
Sean W. Smith, Dartmouth College, USA

Chapter 12
Identifying Secure Mobile Grid Use Cases .. 180

David G. Rosado, University of Castilla-La Mancha, Spain
Eduardo Fernández-Medina, University of Castilla-La Mancha, Spain
Javier López, University of Málaga, Spain
Mario Piattini, University of Castilla-La Mancha, Spain

Chapter 13
Trusted Data Management for Grid-Based Medical Applications .. 208

Guido J. van ‘t Noordende, University of Amsterdam, The Netherlands
Silvia D. Olabarriaga, Academic Medical Center - Amsterdam, The Netherlands
Matthijs R. Koot, University of Amsterdam, The Netherlands
Cees T.A.M. de Laat, University of Amsterdam, The Netherlands

Section 4
Applications

Chapter 14
Large-Scale Co-Phylogenetic Analysis on the Grid ... 222

Heinz Stockinger, Swiss Institute of Bioinformatics, Switzerland
Alexander F. Auch, University of Tübingen, Germany
Markus Göker, University of Tübingen, Germany
Jan Meier-Kolthoff, University of Tübingen, Germany
Alexandros Stamatakis, Ludwig-Maximilians-University Munich, Germany

Chapter 15
Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism 238

Philip Chan, Monash University, Australia
David Abramson, Monash University, Australia

Chapter 16
Self-Configuration and Administration of Wireless Grids .. 255

Ashish Agarwal, Carnegie Mellon University, USA
Amar Gupta, University of Arizona, USA

Chapter 17
Push-Based Prefetching in Remote Memory Sharing System .. 269

Rui Chu, National University of Defense Technology, China
Nong Xiao, National University of Defense Technology, China
Xicheng Lu, National University of Defense Technology, China

Chapter 18
Distributed Dynamic Load Balancing in P2P Grid Systems .. 284

You-Fu Yu, National Taichung University, Taiwan, ROC
Po-Jung Huang, National Taichung University, Taiwan, ROC
Kuan-Chou Lai, National Taichung University, Taiwan, ROC

Chapter 19
An Ontology-Based P2P Network for Semantic Search ... 299

Tao Gu, University of Southern Denmark, Denmark
Daqing Zhang, Institut Telecom SudParis, France
Hung Keng Pung, National University of Singapore, Singapore

Chapter 20
FH-MAC: A Multi-Channel Hybrid MAC Protocol for Wireless Mesh Networks 313

Djamel Tandjaoui, Center of Research on Scientific and Technical Information, Algeria
Messaoud Doudou, University of Science and Technology Houari Boumediène, Algeria
Imed Romdhani, Napier University School of Computing, UK

Chapter 21
A Decentralized Directory Service for Peer-to-Peer-Based Telephony .. 330

Fabian Stäber, Siemens Corporate Technology, Germany
Gerald Kunzmann, Technische Universität München, Germany
Jörg P. Müller, Clausthal University of Technology, Germany

Compilation of References ... 345

About the Contributors .. 374

Index ... 385

Preface ... xvi

Section 1
Introduction

Chapter 1
Supercomputers in Grids ... 1

Michael M. Resch, University of Stuttgart, Germany
Edgar Gabriel, University of Houston, USA

This article describes the state of the art in using supercomputers in Grids. It focuses on various ap-
proaches in Grid computing that either aim to replace supercomputing or integrate supercomputers in
existing Grid environments. We further point out the limitations to Grid approaches when it comes to
supercomputing. We also point out the potential of supercomputers in Grids for economic usage. For
this, we describe a public-private partnership in which this approach has been employed for more than
10 years. By giving such an overview we aim at better understanding the role of supercomputers and
Grids and their interaction.

Chapter 2
Porting HPC Applications to Grids and Clouds .. 10

Wolfgang Gentzsch, Independent HPC, Grid, and Cloud Consultant, Germany

A Grid enables remote, secure access to a set of distributed, networked computing and data resources.
Clouds are a natural complement to Grids towards the provisioning of IT as a service. To “Grid-enable”
applications, users have to cope with: complexity of Grid infrastructure; heterogeneous compute and
data nodes; wide spectrum of Grid middleware tools and services; the e-science application architectures,
algorithms and programs. For clouds, on the other hand, users don’t have many possibilities to adjust
their application to an underlying cloud architecture, because of its transparency to the user. Therefore,
the aim of this chapter is to guide users through the important stages of implementing HPC applica-
tions on Grid and cloud infrastructures, together with a discussion of important challenges and their
potential solutions. As a case study for Grids, we present the Distributed European Infrastructure for
Supercomputing Applications (DEISA) and describe the DEISA Extreme Computing Initiative (DECI)

Detailed Table of Contents

for porting and running scientific grand challenge applications on the DEISA Grid. For clouds, we pres-
ent several case studies of HPC applications running on Amazon’s Elastic Compute Cloud EC2 and its
recent Cluster Compute Instances for HPC. This chapter concludes with the author’s top ten rules of
building sustainable Grid and cloud e-infrastructures.

Chapter 3
Grid-Enabling Applications with JGRIM ... 39

Cristian Mateos, ISISTAN - UNCPBA, Argentina
Alejandro Zunino, ISISTAN - UNCPBA, Argentina
Marcelo Campo, ISISTAN - UNCPBA, Argentina

The development of massively distributed applications with enormous demands for computing power,
memory, storage and bandwidth is now possible with the Grid. Despite these advances, building Grid
applications is still very difficult. We present JGRIM, an approach to easily gridify Java applications by
separating functional and Grid concerns in the application code, and report evaluations of its benefits
with respect to related approaches. The results indicate that JGRIM simplifies the process of porting
applications to the Grid, and the Grid code obtained from this process performs in a very competitive
way compared to the code resulting from using similar tools.

Section 2
Scheduling

Chapter 4
Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid 58

Kuo-Chan Huang, National Taichung University of Education, Taiwan
Po-Chi Shih, National Tsing Hua University, Taiwan
Yeh-Ching Chung, National Tsing Hua University, Taiwan

In a computational Grid environment, a common practice is to try to allocate an entire parallel job onto
a single participating site. Sometimes a parallel job, upon its submission, cannot fit in any single site due
to the occupation of some resources by running jobs. How the job scheduler handles such situations is
an important issue which has the potential to further improve the utilization of Grid resources, as well
as the performance of parallel jobs. This paper adopts moldable job allocation policies to deal with such
situations in a heterogeneous computational Grid environment. The proposed policies are evaluated
through a series of simulations using real workload traces. The moldable job allocation policies are also
compared to the multi-site co-allocation policy, which is another approach usually used to deal with the
resource fragmentation issue. The results indicate that the proposed moldable job allocation policies can
further improve the system performance of a heterogeneous computational Grid significantly.

Chapter 5
Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour
Descriptions .. 72

Attila Ulbert, Eötvös Loránd University, Hungary
László Csaba Lőrincz, Eötvös Loránd University, Hungary
Tamás Kozsik, Eötvös Loránd University, Hungary
Zoltán Horváth, Eötvös Loránd University, Hungary

The execution of data intensive Grid applications raises several questions regarding job scheduling, data
migration, and replication. This paper presents new scheduling algorithms using more sophisticated
job behaviour descriptions that allow estimating job completion times more precisely thus improving
scheduling decisions. Three approaches of providing input to the decision procedure are discussed: a)
single job description, b) multiple job descriptions, and c) multiple job descriptions with mutation. The
proposed Grid middleware components (1) monitor the execution of jobs and gather resource access
information, (2) analyse the compiled information and generate a description of the behaviour of the job,
(3) refine the already existing job description, and (4) use the refined behaviour description to schedule
the submitted jobs.

Chapter 6
A Security Prioritized Computational Grid Scheduling Model: An Analysis 90

Rekha Kashyap, Jawaharlal Nehru University, India
Deo Prakash Vidyarthi, Jawaharlal Nehru University, India

Grid supports heterogeneities of resources in terms of security and computational power. Applications
with stringent security requirement introduce challenging concerns when executed on the grid resources.
Though grid scheduler considers the computational heterogeneity while making scheduling decisions,
little is done to address their security heterogeneity. This work proposes a security aware computational
grid scheduling model, which schedules the tasks taking into account both kinds of heterogeneities. The
approach is known as Security Prioritized MinMin (SPMinMin). Comparing it with one of the widely
used grid scheduling algorithm MinMin (secured) shows that SPMinMin performs better and sometimes
behaves similar to MinMin under all possible situations in terms of makespan and system utilization.

Chapter 7
A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid 101

Zahid Raza, Jawaharlal Nehru University, India
Deo Prakash Vidyarthi, Jawaharlal Nehru University, India

Grid is a parallel and distributed computing network system comprising of heterogeneous computing
resources spread over multiple administrative domains that offers high throughput computing. Since the
Grid operates at a large scale, there is always a possibility of failure ranging from hardware to software.
The penalty paid of these failures may be on a very large scale. System needs to be tolerant to various
possible failures which, in spite of many precautions, are bound to happen. Replication is a strategy
often used to introduce fault tolerance in the system to ensure successful execution of the job, even when
some of the computational resources fail. Though replication incurs a heavy cost, a selective degree of

replication can offer a good compromise between the performance and the cost. This chapter proposes a
co-scheduler that can be integrated with main scheduler for the execution of the jobs submitted to com-
putational Grid. The main scheduler may have any performance optimization criteria; the integration of
co-scheduler will be an added advantage towards fault tolerance. The chapter evaluates the performance
of the co-scheduler with the main scheduler designed to minimize the turnaround time of a modular job
by introducing module replication to counter the effects of node failures in a Grid. Simulation study
reveals that the model works well under various conditions resulting in a graceful degradation of the
scheduler’s performance with improving the overall reliability offered to the job.

Section 3
Security

Chapter 8
A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage
Control in Grids .. 118
 Wolfgang Hommel, Leibniz Supercomputing Centre, German

IT service providers are obliged to prevent the misuse of their customers’ and users’ personally identifi-
able information. However, the preservation of user privacy is a challenging key issue in the management
of IT services, especially when organizational borders are crossed. This challenge also exists in Grids,
where so far, only few of the advantages in research areas such as privacy enhancing technologies and
federated identity management have been adopted. In this chapter, we first summarize an analysis of
the differences between Grids and the previously dominant model of inter-organizational collaboration.
Based on requirements derived thereof, we specify a security framework that demonstrates how well-
established policy-based privacy management architectures can be extended to provide the required
Grid-specific functionality. We also discuss the necessary steps for integration into existing service
provider and service access point infrastructures. Special emphasis is put on privacy policies that can
be configured by users themselves, and distinguishing between the initial data access phase and the later
data usage control phase. We also discuss the challenges of practically applying the required changes to
real-world infrastructures, including delegated administration, monitoring, and auditing.

Chapter 9
Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing 135

Hong Wang, Tohoku University, Japan
Yoshitomo Murata, Tohoku University, Japan
Hiroyuki Takizawa, Tohoku University, Japan
Hiroaki Kobayashi, Tohoku University, Japan

On the volunteer computing platforms, inter-task dependency leads to serious performance degradation
for failed task re-execution because of volatile peers. This paper discusses a performance-oriented task
dispatch policy based on the failure probability estimation. The tasks with the highest failure probabili-
ties are selected for dispatch when multiple task enquiries come to the dispatcher. The estimated failure
probability is used to find the optimized task assignment that minimizes the overall failure probability

of these tasks. This performance-oriented task dispatch policy is evaluated with two real world trace
data sets on a simulator. Evaluation results demonstrate the effectiveness of this policy.

Chapter 10
Publication and Protection of Sensitive Site Information in a Grid Infrastructure 155

Shreyas Cholia, Lawrence Berkeley National Laboratory, USA
R. Jefferson Porter, Lawrence Berkeley National Laboratory, USA

In order to create a successful grid infrastructure, sites and resource providers must be able to publish
information about their underlying resources and services. This information enables users and virtual
organizations to make intelligent decisions about resource selection and scheduling, and facilitates ac-
counting and troubleshooting services within the grid. However, such an outbound stream may include
data deemed sensitive by a resource-providing site, exposing potential security vulnerabilities or private
user information. This study analyzes the various vectors of information being published from sites to
grid infrastructures. In particular, it examines the data being published and collected in the Open Science
Grid, including resource selection, monitoring, accounting, troubleshooting, logging and site verifica-
tion data. We analyze the risks and potential threat models posed by the publication and collection of
such data. We also offer some recommendations and best practices for sites and grid infrastructures to
manage and protect sensitive data.

Chapter 11
Federated PKI Authentication in Computing Grids: Past, Present, and Future 165

Massimiliano Pala, Dartmouth College, USA
Shreyas Cholia, Lawrence Berkeley National Laboratory, USA
Scott A. Rea, DigiCert Inc., USA
Sean W. Smith, Dartmouth College, USA

One of the most successful working examples of virtual organizations, computational Grids need au-
thentication mechanisms that inter-operate across domain boundaries. Public Key Infrastructures (PKIs)
provide sufficient flexibility to allow resource managers to securely grant access to their systems in such
distributed environments. However, as PKIs grow and services are added to enhance both security and
usability, users and applications must struggle to discover available resources-particularly when the
Certification Authority (CA) is alien to the relying party. This chapter presents a successful story about
how to overcome these limitations by deploying the PKI Resource Query Protocol (PRQP) into the grid
security architecture. We also discuss the future of Grid authentication by introducing the Public Key
System (PKS) and its key features to support federated identities.

Chapter 12
Identifying Secure Mobile Grid Use Cases .. 180

David G. Rosado, University of Castilla-La Mancha, Spain
Eduardo Fernández-Medina, University of Castilla-La Mancha, Spain
Javier López, University of Málaga, Spain
Mario Piattini, University of Castilla-La Mancha, Spain

Mobile Grid includes the characteristics of the Grid systems together with the peculiarities of Mobile
Computing, with the additional feature of supporting mobile users and resources in a seamless, trans-
parent, secure, and efficient way. Security of these systems, due to their distributed and open nature, is
considered a topic of great interest. We are elaborating a process of development to build secure mobile
Grid systems considering security on all life cycles. In this chapter, we present the practical results ap-
plying our development process to a real case, specifically we apply the part of security requirements
analysis to obtain and identify security requirements of a specific application following a set of tasks
defined for helping us in the definition, identification, and specification of the security requirements on our
case study. The process will help us to build a secure Grid application in a systematic and iterative way.

Chapter 13
Trusted Data Management for Grid-Based Medical Applications .. 208

Guido J. van ‘t Noordende, University of Amsterdam, The Netherlands
Silvia D. Olabarriaga, Academic Medical Center - Amsterdam, The Netherlands
Matthijs R. Koot, University of Amsterdam, The Netherlands
Cees T.A.M. de Laat, University of Amsterdam, The Netherlands

Existing Grid technology has been foremost designed with performance and scalability in mind. When
using Grid infrastructure for medical applications, privacy and security considerations become paramount.
Privacy aspects require a re-thinking of the design and implementation of common Grid middleware
components. This chapter describes a novel security framework for handling privacy sensitive infor-
mation on the Grid, and describes the privacy and security considerations which impacted its design.

Section 4
Applications

Chapter 14
Large-Scale Co-Phylogenetic Analysis on the Grid ... 222

Heinz Stockinger, Swiss Institute of Bioinformatics, Switzerland
Alexander F. Auch, University of Tübingen, Germany
Markus Göker, University of Tübingen, Germany
Jan Meier-Kolthoff, University of Tübingen, Germany

 Alexandros Stamatakis, Ludwig-Maximilians-University Munich, Germany

Phylogenetic data analysis represents an extremely compute-intensive area of Bioinformatics and thus
requires high-performance technologies. Another compute- and memory-intensive problem is that of
host-parasite co-phylogenetic analysis: given two phylogenetic trees, one for the hosts (e.g., mammals)
and one for their respective parasites (e.g., lice) the question arises whether host and parasite trees are
more similar to each other than expected by chance alone. CopyCat is an easy-to-use tool that allows
biologists to conduct such co-phylogenetic studies within an elaborate statistical framework based on
the highly optimized sequential and parallel AxParafit program. We have developed enhanced versions
of these tools that efficiently exploit a Grid environment and therefore facilitate large-scale data analy-
ses. Furthermore, we developed a freely accessible client tool that provides co-phylogenetic analysis

capabilities. Since the computational bulk of the problem is embarrassingly parallel, it fits well to a
computational Grid and reduces the response time of large scale analyses.

Chapter 15
Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism 238

Philip Chan, Monash University, Australia
David Abramson, Monash University, Australia

Wide-area distributed systems offer new opportunities for executing large-scale scientific applications.
On these systems, communication mechanisms have to deal with dynamic resource availability and the
potential for resource and network failures. Connectivity losses can affect the execution of workflow
applications, which require reliable data transport between components. We present the design and
implementation of π-channels, an asynchronous and fault-tolerant pipe mechanism suitable for coupling
workflow components. Fault-tolerant communication is made possible by persistence, through adaptive
caching of pipe segments while providing direct data streaming. We present the distributed algorithm
for implementing: (a) caching of pipe data segments; (b) asynchronous read operation; and (c) com-
munication state transfer to handle dynamic process joins and leaves.

Chapter 16
Self-Configuration and Administration of Wireless Grids .. 255

Ashish Agarwal, Carnegie Mellon University, USA
Amar Gupta, University of Arizona, USA

A Wireless Grid is an augmentation of a wired grid that facilitates the exchange of information and
the interaction between heterogeneous wireless devices. While similar to the wired grid in terms of its
distributed nature, the requirement for standards and protocols, and the need for adequate Quality of
Service; a Wireless Grid has to deal with the added complexities of the limited power of the mobile
devices, the limited bandwidth, and the increased dynamic nature of the interactions involved. This
complexity becomes important in designing the services for mobile computing. A grid topology and
naming service is proposed which can allow self-configuration and self-administration of various pos-
sible wireless grid layouts.

Chapter 17
Push-Based Prefetching in Remote Memory Sharing System .. 269

Rui Chu, National University of Defense Technology, China
Nong Xiao, National University of Defense Technology, China
Xicheng Lu, National University of Defense Technology, China

Remote memory sharing systems aim at the goal of improving overall performance using distributed
computing nodes with surplus memory capacity. To exploit the memory resources connected by the
high-speed network, the user nodes, which are short of memory, can obtain extra space provision. The
performance of remote memory sharing is constrained with the expensive network communication cost.
In order to hide the latency of remote memory access and improve the performance, we proposed the
push-based prefetching to enable the memory providers to push the potential useful pages to the user

nodes. For each provider, it employs sequential pattern mining techniques, which adapts to the charac-
teristics of memory page access sequences, on locating useful memory pages for prefetching. We have
verified the effectiveness of the proposed method through trace-driven simulations.

Chapter 18
Distributed Dynamic Load Balancing in P2P Grid Systems .. 284

You-Fu Yu, National Taichung University, Taiwan, ROC
Po-Jung Huang, National Taichung University, Taiwan, ROC
Kuan-Chou Lai, National Taichung University, Taiwan, ROC

P2P Grids could solve large-scale scientific problems by using geographically distributed heterogeneous
resources. However, a number of major technical obstacles must be overcome before this potential can
be realized. One critical problem to improve the effective utilization of P2P Grids is the efficient load
balancing. This chapter addresses the above-mentioned problem by using a distributed load balancing
policy. In this chapter, we propose a P2P communication mechanism, which is built to deliver varied
information across heterogeneous Grid systems. Basing on this P2P communication mechanism, we
develop a load balancing policy for improving the utilization of distributed computing resources. We also
develop a P2P resource monitoring system to capture the dynamic resource information for the decision
making of load balancing. Moreover, experimental results show that the proposed load balancing policy
indeed improves the utilization and achieves effective load balancing.

Chapter 19
An Ontology-Based P2P Network for Semantic Search ... 299

Tao Gu, University of Southern Denmark, Denmark
Daqing Zhang, Institut Telecom SudParis, France
Hung Keng Pung, National University of Singapore, Singapore

This article presents an ontology-based peer-to-peer network that facilitates efficient search for data in
wide-area networks. Data with the same semantics are grouped together into one-dimensional semantic
ring space in the upper-tier network. This is achieved by applying an ontology-based semantic clustering
technique and dedicating part of node identifiers to correspond to their data semantics. In the lower-tier
network, peers in each semantic cluster are organized as Chord identifier space. Thus, all the nodes in
the same semantic cluster know which node is responsible for storing context data triples they are look-
ing for, and context queries can be efficiently routed to those nodes. Through the simulation studies, the
authors demonstrate the effectiveness of our proposed scheme.

Chapter 20
FH-MAC: A Multi-Channel Hybrid MAC Protocol for Wireless Mesh Networks 313

Djamel Tandjaoui, Center of Research on Scientific and Technical Information, Algeria
Messaoud Doudou, University of Science and Technology Houari Boumediène, Algeria
Imed Romdhani, Napier University School of Computing, UK

In this article, the authors propose a new hybrid MAC protocol named H-MAC for wireless mesh
networks. This protocol combines CSMA and TDMA schemes according to the contention level. In

addition, it exploits channel diversity and provides a medium access control method that ensures the
QoS requirements. Using ns-2 simulator, we have implemented and compared H-MAC with other MAC
protocol used in Wireless Network. The results showed that H-MAC performs better compared to Z-
MAC, IEEE 802.11 and LCM-MAC.

Chapter 21
A Decentralized Directory Service for Peer-to-Peer-Based Telephony .. 330

Fabian Stäber, Siemens Corporate Technology, Germany
Gerald Kunzmann, Technische Universität München, Germany
Jörg P. Müller, Clausthal University of Technology, Germany

IP telephony has long been one of the most widely used applications of the peer-to-peer paradigm.
Hardware phones with built-in peer-to-peer stacks are used to enable IP telephony in closed networks
at large company sites, while the wide adoption of smart phones provides the infrastructure for software
applications enabling ubiquitous Internet-scale IP-telephony. Decentralized peer-to-peer systems fit well
as the underlying infrastructure for IP-telephony, as they provide the scalability for a large number of
participants, and are able to handle the limited storage and bandwidth capabilities on the clients. We
studied a commercial peer-to-peer-based decentralized communication platform supporting video com-
munication, voice communication, instant messaging, et cetera. One of the requirements of the communi-
cation platform is the implementation of a user directory, allowing users to search for other participants.
In this chapter, we present the Extended Prefix Hash Tree algorithm that enables the implementation
of a user directory on top of the peer-to-peer communication platform in a fully decentralized way. We
evaluate the performance of the algorithm with a real-world phone book. The results can be transferred
to other scenarios where support for range queries is needed in combination with the decentralization,
self-organization, and resilience of an underlying peer-to-peer infrastructure.

Compilation of References ... 345

About the Contributors .. 374

Index ... 385

xvi

Preface

Cloud computing has emerged as the natural successor of the different strands of distributed systems -
concurrent, parallel, distributed, and Grid computing. Like a killer application, cloud computing is
causing governments and the enterprise world to embrace distributed systems with renewed interest. In
evolutionary terms, clouds herald the third wave of Information Technology, in which virtualized re-
sources (platform, infrastructure, software) are provided as a service over the Internet. This economic
front of cloud computing, whereby users are charged based on their usage of computational resources
and storage, is driving its current adoption and the creation of opportunities for new service providers.
As can be gleaned from press releases, the US government has registered strong interest in the overall
development of cloud technology for the betterment of the economy.

The transformation enabled by cloud computing follows the utility pricing model (subscription/me-
tered approach) in which services are commoditized as practiced in electricity; water, telephony and gas
industries. This approach follows a global vision in which users plug their computing devices into the
Internet and tap into as much processing power as needed. Essentially, a customer (individual or organi-
zation) gets computing power and storage, not from his/her computer, but over the Internet on demand.

Cloud technology comes in different flavors: public, private, and hybrid clouds. Public clouds are
provided remotely to users from third-party controlled data centers, as opposed to private clouds that
are more of virtualization and service-oriented architecture hosted in the traditional settings by corpora-
tions. It is obvious that the economies of scale of large data centers (vendors like Google) offer public
clouds an economic edge over private clouds. However, security issues are a major source of concerns
about public clouds, as organizations will not distribute resources randomly on the Internet, especially
their prized databases, without a measure of certainty or safety assurance. In this vein, private clouds
will persist until public clouds mature and garner corporate trust.

The embrace of cloud computing is impacting the adoption of Grid technology. The perceived use-
fulness of Grid computing is not in question, but other factors weigh heavily against its adoption such
as complexity and maintenance as well as the competition from clouds. However, the Grid might not
be totally relegated to the background as it could complement research in the development of cloud
middleware (Udoh, 2010). In that sense, this book considers and foresees other distributed systems not
necessarily standing alone as entities as before, but largely subordinate and providing research stuff to
support and complement the increasingly appealing cloud technology.

The new advances in cloud computing will greatly impact IT services, resulting in improved com-
putational and storage resources as well as service delivery. To keep educators, students, researchers,
and professionals abreast of advances in the cloud, Grid, and high performance computing, this book
series Cloud, Grid, and High Performance Computing: Emerging Applications will provide coverage

 xvii

of topical issues in the discipline. It will shed light on concepts, protocols, applications, methods, and
tools in this emerging and disruptive technology. The book series is organized in four distinct sections,
covering wide-ranging topics: (1) Introduction (2) Scheduling (3) Security and (4) Applications.

Section 1, Introduction, provides an overview of supercomputing and the porting of applications to
Grid and cloud environments. Cloud, Grid and high performance computing are firmly dependent on
the information and communication infrastructure. The different types of cloud computing - software-
as-a-service (SaaS), platform-as-a-service (PaaS), infrastructure-as-a-service (IaaS), and the data centers
exploit commodity servers and supercomputers to serve the current needs of on-demand computing. The
chapter Supercomputers in Grids by Michael M. Resch and Edgar Gabriel, focuses on the integration
and limitations of supercomputers in Grid and distributed environments. It emphasizes the understanding
and interaction of supercomputers as well as its economic potential as demonstrated in a public-private
partnership project. As a matter of fact, with the emergence of cloud computing, the need for super-
computers in data centers cannot be overstated. In a similar vein, Porting HPC Applications to Grids
and Clouds by Wolfgang Gentzsch guides users through the important stages of porting applications to
Grids and clouds as well as the challenges and solutions. Porting and running scientific grand challenge
applications on the DEISA Grid demonstrated this approach. This chapter equally gave an overview of
future prospects of building sustainable Grid and cloud applications. In another chapter, Grid-Enabling
Applications with JGRIM, researchers Cristian Mateos, Alejandro Zunino, and Marcelo Campo recog-
nize the difficulties in building Grid applications. To simplify the development of Grid applications, the
researchers developed JGRIM, which easily Gridifies Java applications by separating functional and
Grid concerns in the application code. JGRIM simplifies the process of porting applications to the Grid,
and is competitive with similar tools in the market.

Section 2, Scheduling, is a central component in the implementation of Grid and cloud technology.
Efficient scheduling is a complex and an attractive research area, as priorities and load balancing have to
be managed. Sometimes, fitting jobs to a single site may not be feasible in Grid and cloud environments,
requiring the scheduler to improve allocation of parallel jobs for efficiency. In Moldable Job Allocation
for Handling Resource Fragmentation in Computational Grid, Huang, Shih, and Chung exploited the
moldable property of parallel jobs in formulating adaptive processor allocation policies for job schedul-
ing in Grid environment. In a series of simulations, the authors demonstrated how the proposed poli-
cies significantly improved scheduling performance in heterogeneous computational Grid. In another
chapter, Speculative Scheduling of Parameter Sweep Applications Using Job Behavior Descriptions,
Ulbert, Lőrincz, Kozsik, and Horváth demonstrated how to estimate job completion times that could ease
decisions in job scheduling, data migration, and replication. The authors discussed three approaches of
using complex job descriptions for single and multiple jobs. The new scheduling algorithms are more
precise in estimating job completion times.

Furthermore, some applications with stringent security requirements pose major challenges in com-
putational Grid and cloud environments. To address security requirements, in A Security Prioritized
Computational Grid Scheduling Model: An Analysis, Rekha Kashyap and Deo Prakash Vidyarthi proposed
a security aware computational scheduling model that modified an existing Grid scheduling algorithm.
The proposed Security Prioritized MinMin showed an improved performance in terms of makespan and
system utilization. Taking a completely different bearing in scheduling, Zahid Raza and Deo Prakash
Vidyarthi in the chapter A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid,
developed a biological approach that incorporates genetic algorithm (GA). This natural selection and
evolution method optimizes scheduling in computational Grid by minimizing turnaround time. The

xviii

developed model, which compared favorably to existing models, was used to simulate and evaluate
clusters to obtain the one with minimum turnaround time for job scheduling. As the cloud environments
expand to the corporate world, improvements in GA methods could find use in some search problems.

Section 3, Security, is one of the major hurdles cloud technology must overcome before any wide-
spread adoption by organizations. Cloud vendors must meet the transparency test and risk assessment
in information security and recovery. Falling short of these requirements might leave cloud computing
frozen in private clouds. Preserving user privacy and managing customer information, especially person-
ally identifiable information, are central issues in the management of IT services. Wolfgang Hommel, in
the chapter A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control,
discusses how recent advances in privacy enhancing technologies and federated identity management
can be incorporated in Grid environments. The chapter demonstrates how existing policy-based privacy
management architectures could be extended to provide Grid-specific functionality and integrated into
existing infrastructures (demonstrated in an XACML-based privacy management system).

In Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing, Wang,
Murata, Takizawa, and Kobayashi examined the security features that could enable Grid systems to
exploit the massive computing power of volunteer computing systems. The authors proposed the use of
cell processor as a platform that could use hardware security features. To test the performance of such a
processor, a secure, parallelized, K-Means clustering algorithm for a cell was evaluated on a secure system
simulator. The findings point to possible optimization for secure data mining in the Grid environments.

To further provide security in Grid and cloud environments, Shreyas Cholia and R. Jefferson Porter
discussed how to close the loopholes in the provisioning of resources and services in Publication and
Protection of Sensitive Site Information in a Grid Infrastructure. The authors analyzed the various vec-
tors of information being published from sites to Grid infrastructures, especially in the Open Science
Grid, including resource selection, monitoring, accounting, troubleshooting, logging, and site verification
data. Best practices and recommendations were offered to protect sensitive data that could be published
in Grid infrastructures.

Authentication mechanisms are common security features in cloud and Grid environments, where
programs inter-operate across domain boundaries. Public key infrastructures (PKIs) provide means to
securely grant access to systems in distributed environments, but as PKIs grow, systems become over-
taxed to discover available resources especially when certification authority is foreign to the prevailing
environment. Massimiliano Pala, Shreyas Cholia, Scott A. Rea, and Sean W. Smith proposed, in Feder-
ated PKI Authentication in Computing Grids: Past, Present, and Future a new authentication model
that incorporates PKI resource query protocol into the Grid security infrastructure that will as well find
utility in the cloud environments. Mobile Grid systems and its security are a major source of concern,
due to its distributed and open nature. Rosado, Fernández-Medina, López, and Piattini present a case
study of the application of a secured methodology to a real mobile system in Identifying Secure Mobile
Grid Use Cases.

Furthermore, Noordende, Olabarriaga, Koot, and de Laat developed a trusted data storage infrastructure
for Grid-based medical applications. In Trusted Data Management for Grid-Based Medical Applications,
while taking cognizance of privacy and security aspects, they redesigned the implementation of common
Grid middleware components, which could impact the implementation of cloud applications as well.

Section 4, Applications, are increasingly deployed in the Grid and cloud environments. The archi-
tecture of Grid and cloud applications is different from the conventional application models and, thus
requires a fundamental shift in implementation approaches. Cloud applications are even more unique as

 xix

they eliminate installation, maintenance, deployment, management, and support. These cloud applications
are considered Software as a Service (SaaS) applications. Grid applications are forerunners to clouds and
are still common in scientific computing. A biological application was introduced by Heinz Stockinger
and co-workers in a chapter titled Large-Scale Co-Phylogenetic Analysis on the Grid. Phylogenetic data
analysis is known to be compute-intensive and suitable for high performance computing. The authors
improved upon an existing sequential and parallel AxParafit program, by producing an efficient tool that
facilitates large-scale data analysis. A free client tool is available for co-phylogenetic analysis.

In chapter Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism by
Philip Chan and David Abramson, the researchers described distributed algorithm for implementing
dynamic resource availability in an asynchronous pipe mechanism that couples workflow components.
Here, fault-tolerant communication was made possible by persistence through adaptive caching of pipe
segments while providing direct data streaming. Ashish Agarwal and Amar Gupta in another chapter,
Self-Configuration and Administration of Wireless Grids, described the peculiarities of wireless Grids
such as the complexities of the limited power of the mobile devices, the limited bandwidth, standards
and protocols, quality of service, and the increasingly dynamic nature of the interactions involved. To
meet these peculiarities, the researcher proposed a Grid topology and naming service that self-configures
and self-administers various possible wireless Grid layouts. In computational Grid and cloud resource
provisioning, memory usage may sometimes be overtaxed. Although RAM Grid can be constrained
sometimes, it provides remote memory for the user nodes that are short of memory. Researchers Rui
Chu, Nong Xiao, and Xicheng Lu, in the chapter Push-Based Prefetching in Remote Memory Sharing
System, propose the push-based prefetching to enable the memory providers to push the potential useful
pages to the user nodes. With the help of sequential pattern mining techniques, it is expected that useful
memory pages for prefetching can be located. The authors verified the effectiveness of the proposed
method through trace-driven simulations.

In chapters Distributed Dynamic Load Balancing in P2P Grid Systems by Yu, Huang, and Lai and An
Ontology-Based P2P Network for Semantic Search by Gu, Zhang, and Pung, the researchers explored
the potentials and obstacles confronting P2P Grids. Lai, Wu, and Lin described the effective utilization
of P2P Grids in efficient scheduling of jobs by examining a P2P communication model. The model aided
job migration technology across heterogeneous systems and improved the usage of distributed comput-
ing resources. On the other hand, Gu, Zhang, and Pung dwelt on facilitating efficient search for data in
distributed systems using an ontology-based peer-to-peer network. Here, the researchers grouped together
data with the same semantics into one-dimensional semantic ring space in the upper-tier network. In the
lower-tier network, peers in each semantic cluster were organized as chord identifier space. The authors
demonstrated the effectiveness of the proposed scheme through simulation experiment.

In this final section, there are other chapters that capture the research trends in the realm of high
performance computing. In a high performance computing undertaking, researchers Djamel Tandjaoui,
Messaoud Doudou, and Imed Romdhani proposed a new hybrid MAC protocol, named H-MAC, for
wireless mesh networks. The protocol exploits channel diversity and a medium access control method
in ensuring the quality of service requirement. Using ns-2 simulator, the researchers implemented and
compared H-MAC with other MAC protocol used in Wireless Network and found that H-MAC performs
better compared to Z-MAC, IEEE 802.11 and LCM-MAC.

IP telephony has emerged as the most widely used peer-to-peer-based application. Although success
has been recorded in decentralized communication, providing a scalable peer-to-peer-based distributed
directory for searching user entries still poses a major challenge. In a chapter titled A Decentralized

xx

Directory Service for Peer-to-Peer-Based Telephony, researchers - Fabian Stäber, Gerald Kunzmann,
and Jörg P. Müller, proposed the Extended Prefix Hash Tree algorithm that can be used to implement
an indexing infrastructure supporting range queries on top of DHTs.

In conclusion, cloud technology is the latest iteration of information and communications technology
driving global business competitiveness and economic growth. Although relegated to the background,
research in Grid technology fuels and complements activities in cloud computing, especially in the
middleware technology. In that vein, this book series is a contribution to the growth of cloud technology
and global economy, and indeed the information age.

Emmanuel Udoh
Indiana Institute of Technology, USA

Section 1
Introduction

1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-60960-603-9.ch001

INTRODUCTION

Supercomputers have become widely used in
academic research (Nagel, Kröner and Resch,
2007) and industrial development over the past
years. Architectures of these systems have varied
over time. For a long time special purpose systems
have dominated the market. This has changed
recently. Supercomputing today is dominated by
standard components.

A quick look at the list of fastest computers
worldwide (TOP500, 2008) shows that clusters

built from such standard components have become
the architecture of choice. This is highlighted by
the fact that the fraction of clusters in the list has
increased from about 2% in 2000 to about 73%
in 2006. The key driving factor is the availability
of competitive processor technology in the mass
market on the one hand and a growing aware-
ness of this potential in the user community on
the other hand.

These trends have allowed using the same
technology from the level of desktop systems to
departmental systems and up to high end super-
computers. Simulation has hence been brought

Michael M. Resch
University of Stuttgart, Germany

Edgar Gabriel
University of Houston, USA

Supercomputers in Grids

ABSTRACT

This article describes the state of the art in using supercomputers in Grids. It focuses on various ap-
proaches in Grid computing that either aim to replace supercomputing or integrate supercomputers in
existing Grid environments. We further point out the limitations to Grid approaches when it comes to
supercomputing. We also point out the potential of supercomputers in Grids for economic usage. For
this, we describe a public-private partnership in which this approach has been employed for more than
10 years. By giving such an overview we aim at better understanding the role of supercomputers and
Grids and their interaction.

2

Supercomputers in Grids

deep into the development process of academia
and industrial companies.

The introduction of standard hardware com-
ponents was accompanied by a similar trend in
software. With Linux there is a standard operating
system available today. It is also able to span the
wide range from desktop systems to supercomput-
ers. Although we still see different architectural
approaches using standard hardware components,
and although Linux has to be adapted to these
various architectural variations, supercomputing
today is dominated by an unprecedented stan-
dardization process.

Standardization of supercomputer components
is mainly a side effect of an accelerated standard-
ization process in information technology. As a
consequence of this standardization process we
have seen a closer integration of IT components
over the last years at every level. In supercom-
puting, the Grid concept (Foster and Kesselman,
1998) best reflects this trend. First experiments
coupling supercomputers were introduced by
Smarr and Catlett (1992) fairly early – at that time
still being called metacomputing. DeFanti et al.
(1996) showed further impressive metacomput-
ing results in the I-WAY project. Excellent results
were achieved by experiments of the Japan Atomic
Energy Agency (Imamura et al., 2000). Resch
et al. (1999) carried out the first transatlantic
metacomputing experiments. After initial efforts
to standardize the Grid concept, it was finally
formalized by Foster et al. (2001).

The promise of the Grid was twofold. Grids
allow the coupling of computational and other
IT resources to make any resource and any level
of performance available to any user worldwide
at anytime. On the other hand, the Grid allows
easy access and use of supercomputers and thus
reduces the costs for supercomputing simulations.

DEFINITIONS

When we talk about supercomputing we typically
consider it as defined by the TOP500 list (TOP500,
2008). This list, however, mainly summarizes
the fastest systems in terms of some predefined
benchmarks. A clear definition of supercomputers
is not given. For this article we define the purpose
of supercomputing as follows:

• We want to use the fastest system available
to get insight that we could not get with
slower systems. The emphasis is on getting
insight rather than on achieving a certain
level of speed.

Any system (hardware and software combined)
that helps to achieve this goal and fulfils the criteria
given is considered to be a supercomputer. The
definition itself implies that supercomputing and
simulations are a third pillar of scientific research
and development, complementing empirical and
theoretical approaches.

Often, simulation complements experiments.
To a growing extent, however, supercomputing
has reached a point where it can provide insight
that cannot even be achieved using experimental
facilities. Some of the fields where this happens
are climate research, particle physics or astrophys-
ics. Supercomputing in these fields becomes a key
technology if not the only possible one to achieve
further breakthroughs.

There is also no official scientific definition for
the Grid as the focus of the concept has changed
over the years. Initially, supercomputing was the
main target of the concept. Foster & Kesselman
(1998) write:

A computational grid is a hardware and software
infrastructure that provides dependable, consis-
tent, pervasive, and inexpensive access to high-end
computational capabilities.

3

Supercomputers in Grids

This definition is very close to the concept
of metacomputing coupling supercomputers to
increase the level of performance. The Grid was
intended to replace the local supercomputer. Soon,
however it became clear that the Grid concept
could and should be extended and Foster, Kessel-
man & Tuecke (2001) describe the Grid as

… flexible, secure, coordinated resource sharing
among dynamic collections of individuals, institu-
tions, and resources.

This is a much wider definition of the concept
which goes way beyond the narrow problem of
supercomputing. For the purpose of this article we
use this second definition. We keep in mind though
that the Grid started out as a concept to comple-
ment the existing supercomputing architectures.

GRIDS AND SUPERCOMPUTERS

Today the main building blocks to create a real
scientific Grid are mainly in place. High speed
wide area networks provide the necessary com-
munication performance. Security procedures
have been established which meet the limited
requirements of scientists. Data management
issues have been addressed to handle the large
amount of data created e.g. in the high energy
physics community (LHC, 2008). As of today,
virtually every industrially developed nation has
created its own national Grid infrastructure with
trans-national Grids rapidly evolving (DEISA,
2008; PRAGMA-Grid 2008).

From the point of view of supercomputing, the
question arises which role Grids can play in high
performance computing simulation. Some aspects
are briefly discussed in the following.

Grids Do Support Supercomputing

The idea of the Grid is mainly an idea of coordina-
tion and consolidation. These aspects have been
widely ignored by the supercomputing community
for a long time. A supercomputer was – and still is
today – a one of a kind system. It is only available
to a small number of users. Its mode of operation
can be compared to the exclusive usage of an
experimental facility. Typically, a supercomputer
has no free resources. The user typically has to
wait to use a supercomputer system – not the
other way round.

Access to a supercomputer is hence not seen to
be a standard service and no specific measures are
taken to provide supercomputing at a comparable
level of service as is done for other IT-services.

The Grid has, however, changed our view
of supercomputers. From stand-alone systems,
they have turned into “large nodes” of a mesh
of resources. Although they are still unique in
their potential to solve large problems the Grid
has integrated them now into an ecosystem in
which they play an important role. Being part of
such a larger IT-landscape supercomputers have
started to benefit substantially from lower level
systems technology. This is in a sense a change
of paradigm since so far supercomputers have
typically been ahead of smaller systems in terms
of complexity and level of technology. The flow
of innovation – that traditionally was directed
from supercomputers towards PCs – has at least
partially been reversed.

The current situation can be described as
follows: Supercomputers have been integrated
into an ecosystem of IT-services. The quality of
service for users has been improved. Aspects like
security, accounting and data management have
been brought in by the Grid community and the
supercomputing community has picked them up.
The notable exceptions are dedicated large scale
system in classified installations. It remains to
be seen whether these can remain in splendid
isolation without losing contact with the techno-

4

Supercomputers in Grids

logical drivers of the main stream IT-technology
development.

Grids Cannot Replace
Supercomputers

Sometimes the Grid is considered to be a replace-
ment for supercomputers. The reasoning behind
this idea is that the Grid provides such a massive
amount of CPU cycles that any problem can eas-
ily be solved “on the Grid”. The basic concept
for such reasoning is the premise that a given
problem can be described in terms of required
CPU cycles needed. On the other hand, any given
Grid configuration can be described in terms of
CPU cycles provided. If one can match compute
demand and compute supply, the problem is as-
sumed to be solved.

This is, however, a deeply flawed view of
supercomputing. The purpose of a supercomputer
is to provide the necessary speed of calculation to
solve a complex problem in an acceptable time.
Only when being able to focus a huge resource
on a single problem can we achieve this goal. So,
two aspects are important here.

The size of a problem: We know of a number
of problems that we call large which can actually
be split into several small problems. For such em-
barrassingly parallel problems the Grid typically
is a very good solution. A number of approaches
have been developed among which Berkeley Open
Infrastructure for Network Computing (BOINC
2008) and the World Community Grid (2008) are
the most interesting ones. Both provide access
to distributed resources for problems that can be
split into very small junks of work. These small
problems are sent out to a mass of computers
(virtually every PC can be used). Doing this,
the systems are able to tap into the Petaflops of
performance available across the globe in an ac-
cumulation of small computers. However, there
are other large scale problems that cannot be split
into independent smaller parts. These truly large
scale problems (high resolution CFD, high resolu-

tion complex scenario crash,) by nature cannot be
made embarrassingly parallel and any distributed
Grid solution has so far failed on them.

The time to solution: Most of the large scale
problems mentioned above actually can run on
smaller systems. However, on such smaller sys-
tems their solution may take weeks or even months.
For any practical purpose such simulations would
make little sense. The Grid is hence unable to
provide scientists with a tool for these simulation
experiments if it aims to replace supercomputers
by a large amount of distributed systems.

THE ROLE OF
SUPERCOMPUTERS IN GRIDS

The Grid has often been compared to the power grid
(Chetty and Buyya, 2002). It actually is useful to
look at the power grid as an analogy for any Grid
to be set up. Power Grids are characterized by:

• A core of view production facilities pro-
viding a differing level of performance
much higher than the need of any single
user. Small facilities complement the over-
all power Grid.

• A very large number of users that typically
require a very small level of performance
compared to the production capacity of the
providers.

• A standardized way of bringing suppliers
and users together.

• A loosely coordinated operation of suppli-
ers across large geographic areas.

• Breakdowns of the overall system if coor-
dination is too loose or if single points of
failure are hit.

• Special arrangements for users requiring a
very high level of performance on a per-
manent basis. These are typically large
scale production facilities like aluminum
production.

5

Supercomputers in Grids

When comparing the power grid to the compute
Grid we notice a number of differences that have
to be considered.

• Electrical power production can be
changed at request (depending on the level
of usage) with a maximum level of power
defined. Depending on the type of power
plant the performance may be increased to
maximum or decreased to zero within min-
utes to days. Compute power, on the other
hand, is always produced regardless of its
usage. We speak of idle processors.

• Resources for electrical power production
can be stored and used later. Even electric-
ity that is produced can be stored for later
usage by transferring it to hydro power
plants’ storage systems or using hydrogen
storage devices. Compute power can never
be stored.

• The lifetime of an electrical power plant
is measured in tens of years. Powering up
and powering down such plants can eco-
nomically make sense. The lifetime of a
supercomputer is more like three to five
years. In order to make sense economi-
cally a supercomputer has to run 7x24 for
this short period of life. Given the increase
in speed of standard computer components
this situation will not change over the next
years.

When we analyze the analogy between the com-
pute Grid and the power Grid carefully we find:

• A number of concepts that make sense in
a large scale power Grid do not work in
compute Grids.

• The economy of supercomputing differs
substantially from the economy of the
power Grid.

• Supercomputers are similar to large scale
suppliers in the power grid as they provide
a high level of performance.

• Supercomputer users are like special pur-
pose users in the power grid that need
a permanent supply of a high level of
performance.

From this, we can conclude that supercomput-
ers have to be part of a cyber-infrastructure. They
have to be seen as large scale instruments that are
available to a small number of users with large
scale problems. In that sense supercomputers are
special nodes in any compute Grid.

In the following we describe a prototype Grid
that was developed over long time. It is charac-
terized by:

• Integration of a small set of supercomput-
ers and high-end compute-servers

• Dual use by academia and industry
• A commercial approach to supercomputing

A PUBLIC-PRIVATE
SUPERCOMPUTING-
GRID PARTNERSHIP

The University of Stuttgart is a technically oriented
university with one of the leading mechanical en-
gineering departments in Germany. The university
has created a strong long term relationship with
various companies in the region of Stuttgart. The
most important ones are Daimler, Porsche and
Bosch. The computing center of the university
has hence been working closely with these com-
panies since the early days of high performance
computing in Stuttgart.

The computing center had been running HPC
systems for some 15 years when in the late 1980s
it decided to collaborate directly with Porsche
in HPC operations. The collaboration resulted
in shared investment in vector supercomputers
for several years. Furthermore, the collaboration
helped to improve the understanding of both
sides and helped to position high performance
computing as a key technology in academia and

6

Supercomputers in Grids

industry. The experiment was successful and was
continued for about 10 years.

First attempts of the computing center to at-
tract also usage from Daimler initially failed.
This changed when in 1995 both the CEO of
Daimler and the prime minister of the state of
Baden-Württemberg gave their support for a col-
laboration of Daimler and the computing center
at the University of Stuttgart in the field of high
performance computing. The cooperation was
realized as a public-private partnership. In 1995,
hww was established with hww being an acronym
for Höchstleistungsrechner für Wissenschaft und
Wirtschaft (HPC for academia and industry)

The initial share holders of hww were:

• Daimler Benz had concentrated all its IT
activities in a subsidiary called debis. So
debis became the official share holder of
hww holding 40% of the company.

• Porsche took a minority share of 10% of
the company mainly making sure to con-
tinue the partnership with the University of
Stuttgart and its computing center.

• The University of Stuttgart took a share
of 25% and was represented by the High
Performance Computing Center Stuttgart
(HLRS).

• The State of Baden-Württemberg took
a share of 25% being represented by the
Ministry of Finance and the Ministry of
Science.

The purpose of hww was not only to bring
together academia and industry in using high
performance computers, but to harvest some of the
benefits of such collaboration. The key advantages
were expected to be:

• Leverage of market power: Combining
the purchasing power of industry and aca-
demia should help to achieve better price/
performance for all partners both for pur-
chase price and maintenance costs.

• Sharing of operational costs: Creating a
group of operational experts should help to
bring down the staff cost for running sys-
tems. This should be mainly achieved by
combining the expertise of a small group
of people and by being able to handle vaca-
tion time and sick leave much easier than
before.

• Optimize system usage: Industrial usage
typically comes in bursts when certain
stages in the product development cycle
require a lot of simulations. Industry then
has a need for immediate availability of
resources. In academia most simulations
are part of long term research and systems
are typically filled continuously. The intent
was to find a model to intertwine the two
modes for the benefit of both sides.

Prerequisites and Problems

A number of issues had to be resolved in order to
make hww operational. The most pressing ones
were: Security related issues: This included the
whole complex of trust and reliability from the
point of view of industrial users. While for aca-
demic users data protection and availability of
resources are of less concern, it is vital for industry
that its most sensitive data are protected and no
information leaks to other users. Such information
may even include things as the number and size of
jobs run by a competitor. Furthermore, permanent
availability of resources is a must in order to meet
internal and external deadlines. While academic
users might accept a failure of resources once in
a while, industry requires reliable systems.

Data and communication: This includes the
question of connectivity and handling input
and output data. Typically network connectivity
between academia and industry is poor. Most
research networks are not open for industry. Most
industries are worried about using public networks
for security reasons. Accounting mechanisms for
research networks are often missing. So, even to

7

Supercomputers in Grids

connect to a public institution may be difficult for
industry. The amount of data to be transferred is
another big issue as the size of output data can get
prohibitively high. Both issues were addressed by
increasing speed of networks and were helped by
a tendency of German and local research networks
opening up to commercial users.

Economic issues: One of the key problems
was the establishment of costs for the usage of
various resources. Until then no sound pricing
mechanism for the usage of HPC system had been
established either at the academic or industrial
partners. Therefore, the partners had to agree on
a mechanism to find prices for all resources that
are relevant for the usage of computers.

Legal and tax issues: The collaboration of
academia and industry was a challenge for lawyers
on both sides. The legal issues had to be resolved
and the handling of taxes had to be established in
order to make the company operational.

After sorting out all these issues, the company
was brought to life and its modes of operation had
to be established.

Mode of Operation

In order to help achieve its goals, a lean organi-
zation for hww was chosen. The company itself
does not have any staff. It is run by two part time
directors. Hww was responsible for operation of
systems, security, and accounting of system us-
age. In order to do this, work was outsourced to
the partners of hww.

A pricing mechanism has been established
that guarantees that any service of hww is sold to
share holders of hww at cost price minimizing the
overhead costs to the absolutely necessary. Costs
and prices are negotiated for a one year period
based on the requirements and available services
of all partners. This requires an annual planning
process for all services and resources offered by
the partners through hww. The partners specifi-
cally have to balance supply and demand every

year and have to adapt their acquisition strategy
to the needs of hww.

Hww is controlled by an advisory board
that meets regularly (typically 3 times a year).
The board approves the budget of hww and dis-
cusses future service requirements of the overall
company. The partners of hww have agreed that
industrial services are provided by industry only
while academic services are provided by academic
partners only.

The Public-Private Grid

Over the life time of hww, a Grid infrastructure
was set up that today consist of the following key
components:

• A national German supercomputer facility,
a number of large clusters and a number of
shared memory systems.

• File system providing short and long term
data storage facilities.

• Network connectivity for the main partners
at the highest speed available.

• A software and security concept that meets
the requirements of industrial users with-
out restraining access for academic users.

The cyber-infrastructure created through the
cooperation in hww is currently used by scientists
from all over Germany and Europe and engineers
in several large but also small and medium sized
enterprises. Furthermore, the concept has been
integrated into the German national D-Grid project
and the state-wide Baden-Württemberg Grid. It
thus provides a key backbone facility for simula-
tion in academia and industry.

DISCUSSION OF RESULTS

We now have a 13 years experience with the
hww concept. The company has undergone some
changes over the years. The main changes are:

8

Supercomputers in Grids

• Change of partners: When Daimler sold
debis, the shares of an automotive com-
pany were handed over to an IT company.
The new partner T-Systems further diver-
sified its activities creating a subsidiary
(called T-Systems SfR) together with the
German Aerospace Center. T-Systems SfR
took 10% of the 40% share of T-Systems.
On the public side, two other universities
were included with the four public partners
holding 12.5% each.

• Change of operational model: Initially
systems were operated by hww which out-
sourced task to T-Systems and HLRS at the
beginning. Gradually, a new model was
used. Systems are operated by the owners
of the systems following the rules and reg-
ulations of hww. The public-private part-
nership gradually moves from being an op-
erating company towards being a provider
of a platform for the exchange of services
and resources for academia and industry.

These organizational changes had an impact on
the operation of hww. Having replaced an end user
(Daimler) by a re-seller hww focused more on the
re-selling of CPU cycles. This was emphasized by
public centers operating systems themselves and
only providing hww with CPU time. The increase
in number of partners, on the other hand, made it
more difficult to find consensus.

Overall, however, the results of 13 years of
hww are positive. With respect to the expected
benefits and advantages both of hww and its Grid
like model the followings are noticeable:

The cost issue: Costs for HPC can potentially
be reduced for academia if industry pays for us-
age of systems. Overall, hww was positive for
its partners in this respect over the last 13 years.
Additional funding was brought in through selling
CPU time but also because hardware vendors had
an interest to have their systems used by industry
through hww. At the same time, however, industry
takes away CPU cycles from academia increasing

the competition for scarce resources. The other
financial argument is a synergistic effect that ac-
tually allowed achieving lower prices whenever
academia and industry merged their market power
through hww to buy larger systems together.

Improved resource usage: The improved us-
age of resources during vacation time quickly
is optimistic at best as companies – at least in
Europe - tend to schedule their vacation time in
accordance with public education vacations. As
a result, industrial users are on vacation when
scientists are on vacation. Hence, a better resource
usage by anti-cyclic industrial usage turns out to
be not achievable. Some argue that by reducing
prices during vacation time for industry one might
encourage more industrial usage when resources
are available. However, here one has to compare
costs: the costs for CPU time are in the range
of thousands of Euro that could potentially be
saved. On the other side, companies would have
to adapt their working schedules to the vacation
time of researchers and would have to make sure
that their staff – very often with small children -
would have to stay at home. Evidence shows that
this is not happening

The analysis shows that financially the dual
use of high performance computers in a Grid can
be interesting. Furthermore, a closer collaboration
between industry and research in high performance
computing has helped to increase the awareness
for the problems on both sides. Researchers
understand what the real issues in simulation in
industry are. Industrial designers understand how
they can make good use of academic resources
even though they have to pay for them.

CONCLUSION

Supercomputers can work as big nodes in Grid
environments. Their users benefit from the soft-
ware developed in general purpose Grids. Industry
and academia can successfully share such Grids.

9

Supercomputers in Grids

REFERENCES

BOINC - Berkeley Open Infrastructure for Net-
work Computing. (2008). http://boinc.berkeley.
edu/ (1.5.2008)

Chetty, M., & Buyya, R. (2002). Weaving Com-
putational Grids: How Analogous Are They with
Electrical Grids? [CiSE]. Computing in Science
& Engineering, 4(4), 61–71. doi:10.1109/MC-
ISE.2002.1014981

DeFanti, T., Foster, I., Papka, M. E., Stevens, R.,
& Kuhfuss, T. (1996). Overview of the I-WAY:
Wide Area Visual Supercomputing . International
Journal of Super-computing Applications, 10,
123–131. doi:10.1177/109434209601000201

DEISA project. (2008). http://www.deisa.org/
(1.5.2008)

Foster, I., & Kesselman, C. (1998). The Grid –
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann.

Foster, I., Kesselman, C., & Tuecke, S. (2001).
The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. The International Journal
of Supercomputer Applications, 15(3), 200–222.
doi:10.1177/109434200101500302

Imamura, T., Tsujita, Y., Koide, H., & Takemiya,
H. (2000). An Architecture of Stampi: MPI Library
on a Cluster of Parallel Computers . In Dongarra,
J., Kacsuk, P., & Podhorszki, N. (Eds.), Recent
Advances in Parallel Virtual Machine and Mes-
sage Passing Interface (pp. 200–207). Springer.
doi:10.1007/3-540-45255-9_29

LHC – Large Hadron Collider Project. (2008).
http://lhc.web.cern.ch/lhc/

Nagel, W. E., Kröner, D. B., & Resch, M. M.
(2007). High Performance Computing in Science
and Engineering 07. Berlin, Heidelberg, New
York: Springer.

PRAGMA-Grid. (2008). http://www.pragma-grid.
net/ (1.5.2008)

Resch, M., Rantzau, D., & Stoy, R. (1999). Meta-
computing Experience in a Transatlantic Wide
Area Application Test bed. Future Generation
Computer Systems, 5(15), 807–816. doi:10.1016/
S0167-739X(99)00028-X

Smarr, L., & Catlett, C. E. (1992). Metacomput-
ing. Communications of the ACM, 35(6), 44–52.
doi:10.1145/129888.129890

TOP500 List. (2008). http://www.top500.org/
(1.5.2008).

World Community Grid. (2008). http://www.
worldcommunitygrid.org/ (1.5.2008).

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1,
Issue 1, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 1-9, copyright 2009 by IGI Publishing (an imprint of IGI Global).

10

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

Wolfgang Gentzsch
Independent HPC, Grid, and Cloud Consultant, Germany

Porting HPC Applications
to Grids and Clouds

ABSTRACT

A Grid enables remote, secure access to a set of distributed, networked computing and data resources.
Clouds are a natural complement to Grids towards the provisioning of IT as a service. To “Grid-enable”
applications, users have to cope with: complexity of Grid infrastructure; heterogeneous compute and
data nodes; wide spectrum of Grid middleware tools and services; the e-science application architec-
tures, algorithms and programs. For clouds, on the other hand, users don’t have many possibilities to
adjust their application to an underlying cloud architecture, because of its transparency to the user.
Therefore, the aim of this chapter is to guide users through the important stages of implementing HPC
applications on Grid and cloud infrastructures, together with a discussion of important challenges and
their potential solutions. As a case study for Grids, we present the Distributed European Infrastructure
for Supercomputing Applications (DEISA) and describe the DEISA Extreme Computing Initiative (DECI)
for porting and running scientific grand challenge applications on the DEISA Grid. For clouds, we pres-
ent several case studies of HPC applications running on Amazon’s Elastic Compute Cloud EC2 and its
recent Cluster Compute Instances for HPC. This chapter concludes with the author’s top ten rules of
building sustainable Grid and cloud e-infrastructures.

DOI: 10.4018/978-1-60960-603-9.ch002

11

Porting HPC Applications to Grids and Clouds

INTRODUCTION

Over the last 40 years, the history of computing
is deeply marked of the affliction of the applica-
tion developers who continuously are porting and
optimizing their applications codes to the latest
and greatest computing architectures and environ-
ments. After the von-Neumann mainframe came
the vector computer, then the shared-memory
parallel computer, the distributed-memory par-
allel computer, the very-long-instruction word
computer, the workstation cluster, the meta-
computer, and the Grid (never fear, it continues,
with SOA, Cloud, Virtualization, Many-core, and
so on). There is no easy solution to this, and the
real solution would be a separation of concerns
between discipline-specific content and domain-
independent software and hardware infrastructure.
However, this often comes along with a loss of
performance stemming from the overhead of the
infrastructure layers. Recently, users and devel-
opers face another wave of complex computing
infrastructures: the Grid.

Let’s start with answering the question: What
is a Grid? Back in 1998, Ian Foster and Carl
Kesselman (1998) attempted the following defi-
nition: “A computational Grid is a hardware and
software infrastructure that provides dependable,
consistent, pervasive, and inexpensive access to
high-end computational capabilities.” In a sub-
sequent article (Foster, 2002), “The Anatomy of
the Grid,” Ian Foster, Carl Kesselman, and Steve
Tuecke changed this definition to include social
and policy issues, stating that Grid computing is
concerned with “coordinated resource sharing and
problem solving in dynamic, multi-institutional
virtual organizations.” The key concept is the
ability to negotiate resource-sharing arrangements
among a set of participating parties (providers
and consumers) and then to use the resulting
resource pool for some purpose. This definition
seemed very ambitious, and as history has proven,
many of the Grid projects with a focus on these
ambitious objectives did not lead to a sustainable

Grid production environment. The simpler the
Grid infrastructure, and the easier to use, and the
sharper its focus, the bigger is its chance for suc-
cess. And it is for a good reason (which we will
explain in the following) that currently Clouds
are becoming more and more popular (Amazon,
2007 and 2010).

Over the last ten years, hundreds of applica-
tions in science, industry and enterprises have
been ported to Grid infrastructures, mostly pro-
totypes in the early definition of Foster & Kes-
selman (1998). Each application is unique in that
it solves a specific problem, based on modeling,
for example, a specific phenomenon in nature
(physics, chemistry, biology, etc.), presented as
a mathematical formula together with appropri-
ate initial and boundary conditions, represented
by its discrete analogue using sophisticated nu-
merical methods, translated into a programming
language computers can understand, adjusted to
the underlying computer architecture, embedded
in a workflow, and accessible remotely by the user
through a secure, transparent and application-
specific portal. In just these very few words, this
summarizes the wide spectrum and complexity we
face in problem solving on Grid infrastructures.

The user (and especially the developer) faces
several layers of complexity when porting applica-
tions to a computing environment, especially to
a compute or data Grid of distributed networked
nodes ranging from desktops to supercomputers.
These nodes, usually, consist of several to many
loosely or tightly coupled processors and, more and
more, these processors contain few to many cores.
To run efficiently on such systems, applications
have to be adjusted to the different layers, taking
into account different levels of granularity, from
fine-grain structures deploying multi-core archi-
tectures at processor level to the coarse granularity
found in application workflows representing for
example multi-physics applications. Not enough,
the user has to take into account the specific re-
quirements of the grid, coming from the different
components of the Grid services architecture, such

12

Porting HPC Applications to Grids and Clouds

as security, resource management, information
services, and data management.

Obviously, in this article, it seems impossible
to present and discuss the complete spectrum of
applications and their adaptation and implementa-
tion on grids. Therefore, we restrict ourselves in the
following to briefly describe the different applica-
tion classes, present a checklist (or classification)
with respect to grouping applications according
to their appropriate grid-enabling strategy. Also,
for lack of space, here, we are not able to include
a discussion of mental, social, or legal aspects
which sometimes might be the knock-out criteria
for running applications on a grid. Other show-
stoppers such as sensitive data, security concerns,
licensing issues, and intellectual property, were
discussed in some detail in Gentzsch (2007a).

In the following, we will consider the main
three areas of impact on porting applications to
grids: infrastructure issues, data management is-
sues, and application architecture issues. These
issues can have an impact on effort and success
of porting, on the resulting performance of the
Grid application, and on the user-friendly access
to the resources, the Grid services, the applica-
tion, the data, and the final processing results,
among others.

APPLICATIONS AND THE
GRID INFRASTRUCTURE

As mentioned before, the successful porting of an
application to a Grid environment highly depends
on the underlying distributed resource infrastruc-
ture. The main services components offered by a
Grid infrastructure are security, resource manage-
ment, information services, and data management.
Bart Jacob et al. suggest that each of these com-
ponents can affect the application architecture, its
design, deployment, and performance. Therefore,
the user has to go through the process of matching
the application (structure and requirements) with
those components of the Grid infrastructure, as

described here, closely following the description
in Jacob at al. (2003).

Applications and Security

The security functions within the Grid archi-
tecture are responsible for the authentication
and authorization of the user, and for the secure
communication between the Grid resources. For-
tunately, these functions are an inherent part of
most Grid infrastructures and don’t usually affect
the applications themselves, supposed the user
(and thus the user’s application) is authorized to
use the required resources. Also, security from
an application point of view might be taken into
account in the case that sensitive data is passed to
a resource to be processed by a job and is written
to the local disk in a non-encrypted format, and
other users or applications might have access to
that data.

Applications and Resource
Management

The resource management component provides the
facilities to allocate a job to a particular resource,
provides a means to track the status of the job while
it is running and its completion information, and
provides the capability to cancel a job or other-
wise manage it. In conjunction with Monitoring
and Discovery Service (described below) the ap-
plication must ensure that the appropriate target
resource(s) are used. This requires that the applica-
tion accurately specifies the required environment
(operating system, processor, speed, memory, and
so on). The more the application developer can
do to eliminate specific dependencies, the better
the chance that an available resource can be found
and that the job will complete. If an application
includes multiple jobs, the user must understand
(and maybe reduce) their interdependencies.
Otherwise, logic has to be built to handle items
such as inter-process communication, sharing of
data, and concurrent job submissions. Finally, the

13

Porting HPC Applications to Grids and Clouds

job management provides mechanisms to query
the status of the job as well as perform opera-
tions such as canceling the job. The application
may need to utilize these capabilities to provide
feedback to the user or to clean up or free up
resources when required. For instance, if one job
within an application fails, other jobs that may be
dependent on it may need to be cancelled before
needlessly consuming resources that could be
used by other jobs.

Applications and Resource
Information Services

An important part of the process of grid-enabling
an application is to identify the appropriate (if not
optimal) resources needed to run the application,
i.e. to submit the respective job to. The service
which maintains and provides the knowledge
about the Grid resources is the Grid Information
Service (GIS), also known as the Monitoring and
Discovery Service (e.g. MDS in Globus (Jacob,
2003). MDS provides access to static and dynamic
information of resources. Basically, it contains the
following components:

• Grid Resource Information Service
(GRIS), the repository of local resource
information derived from information
providers.

• Grid Index Information Service (GIIS),
the repository that contains indexes of re-
source information registered by the GRIS
and other GIISs.

• Information providers, translate the prop-
erties and status of local resources to the
format defined in the schema and configu-
ration files.

• MDS client which initially performs a
search for information about resources in
the Grid environment.

Resource information is obtained by the infor-
mation provider and it is passed to GRIS. GRIS

registers its local information with the GIIS, which
can optionally also register with another GIIS, and
so on. MDS clients can query the resource infor-
mation directly from GRIS (for local resources)
and/or a GIIS (for grid-wide resources).

It is important to fully understand the require-
ments for a specific job so that the MDS query can
be correctly formatted to return resources that are
appropriate. The user has to ensure that the proper
information is in MDS. There is a large amount
of data about the resources within the Grid that is
available by default within the MDS. However,
if the application requires special resources or
information that is not there by default, the user
may need to write her own information providers
and add the appropriate fields to the schema. This
may allow the application or broker to query for the
existence of the particular resource/requirement.

Applications and Data Management

Data management is concerned with collectively
maximizing the use of the limited storage space,
networking bandwidth, and computing resources.
Within the application, data requirements have
been built in which determine, how data will
be move around the infrastructure or otherwise
accessed in a secure and efficient manner. Stan-
dardizing on a set of Grid protocols will allow
to communicate between any data source that is
available within the software design. Especially
data intensive applications often have a federated
database to create a virtual data store or other
options including Storage Area Networks, net-
work file systems, and dedicated storage serv-
ers. Middleware like the Globus Toolkit provide
GridFTP and Global Access to Secondary Storage
data transfer utilities in the Grid environment.
The GridFTP facility (extending the FTP File
Transfer Protocol) provides secure and reliable
data transfer between Grid hosts.

Developers and users face a few important data
management issues that need to be considered in
application design and implementation. For large

14

Porting HPC Applications to Grids and Clouds

datasets, for example, it is not practical and may be
impossible to move the data to the system where
the job will actually run. Using data replication
or otherwise copying a subset of the entire dataset
to the target system may provide a solution. If
the Grid resources are geographically distributed
with limited network connection speeds, design
considerations around slow or limited data access
must be taken into account. Security, reliability,
and performance become an issue when moving
data across the Internet. When the data access may
be slow or prevented one has to build the required
logic to handle this situation. To assure that the
data is available at the appropriate location by the
time the job requires it, the user should schedule
the data transfer in advance. One should also be
aware of the number and size of any concurrent
transfers to or from any one resource at the same
time.

Beside the above described main requirements
for applications for running efficiently on a Grid
infrastructure, there are a few more issues which
are discussed in Jacob (2003), such as schedul-
ing, load balancing, Grid broker, inter-process
communication, and portals for easy access, and
non-functional requirements such as performance,
reliability, topology aspects, and consideration of
mixed platform environments.

The Simple API for Grid
Applications (SAGA)

Among the many efforts in the Grid community
to develop tools and standards which simplify the
porting of applications to Grids by enabling the ap-
plication to make easy use of the Grid middleware
services as described above, one of the more pre-
dominant ones is SAGA, a high-level Application
Programmers Interface (API), or programming
abstraction, defined by the Open Grid Forum
(OGF, 2008), an international committee that
coordinates standardization of Grid middleware
and architectures. SAGA intends to simplify the
development of grid-enabled applications, even

for scientists without any background in computer
science or Grid computing. Historically, SAGA
was influenced by the work on the GAT Grid
Application Toolkit, a C-based API developed
in the EU-funded project GridLab (GAT, 2005).
The purpose of SAGA is two-fold:

1. Provide a simple API that can be used with
much less effort compared to the interfaces
of existing Grid middleware.

2. Provide a standardized, portable, common
interface for the various Grid middleware
systems.

According to Goodale (2008) SAGA facilitates
rapid prototyping of new Grid applications by al-
lowing developers a means to concisely state very
complex goals using a minimum amount of code.

SAGA provides a simple, POSIX-style API to
the most common Grid functions at a sufficiently
high-level of abstraction so as to be able to be
independent of the diverse and dynamic Grid
environments. The SAGA specification defines
interfaces for the most common grid-programming
functions grouped as a set of functional packages.
Version 1.0 (Goodale, 2008) defines the follow-
ing packages:

• File package - provides methods for access-
ing local and remote file systems, browsing
directories, moving, copying, and deleting
files, setting access permissions, as well as
zero-copy reading and writing

• Replica package - provides methods for
replica management such as browsing
logical file systems, moving, copying, de-
leting logical entries, adding and removing
physical files from a logical file entry, and
search logical files based on attribute sets.

• Job package - provides methods for de-
scribing, submitting, monitoring, and
controlling local and remote jobs. Many
parts of this package were derived from
the largely adopted DRMAA Distributed

15

Porting HPC Applications to Grids and Clouds

Resource Management Application API
specification, an OGF standard.

• Stream package - provides methods for
authenticated local and remote socket con-
nections with hooks to support authoriza-
tion and encryption schemes.

• RPC package - is an implementation of the
OGF GridRPC API definition and provides
methods for unified remote procedure calls.

The two critical aspects of SAGA are its sim-
plicity of use and the fact that it is well on the road
to becoming a community standard. It is important
to note, that these two properties are provide the
added value of using SAGA for Grid application
development. Simplicity arises from being able
to limit the scope to only the most common and
important grid-functionality required by applica-
tions. There a major advantages arising from its
simplicity and imminent standardization. Stan-
dardization represents the fact that the interface is
derived from a wide-range of applications using
a collaborative approach and the output of which
is endorsed by the broader community.

More information about the SAGA C++
Reference Implementation (developed at the
Center for Computation and Technology at the
Louisiana State University) and various aspects of
Grid enabling toolkits is available on the SAGA
implementation home page (SAGA, 2006). It also
provides additional information with regard to
different aspects of Grid enabling toolkits.

GRID APPLICATIONS AND DATA

Any e-science application at its core has to deal
with data, from input data (e.g. in the form of output
data from sensors, or as initial or boundary data),
to processing data and storing of intermediate
results, to producing final results (e.g. data used
for visualization). Data has a strong influence
on many aspects of the design and deployment
of an application and determines whether a Grid

application can be successfully ported to the grid.
Therefore, in the following, we present a brief
overview of the main data management related
aspects, tasks and issues which might affect the
process of grid-enabling an application, such as
data types and size, shared data access, temporary
data spaces, network bandwidth, time-sensitive
data, location of data, data volume and scalability,
encrypted data, shared file systems, databases,
replication, and caching. For a more in-depth dis-
cussion of data management related tasks, issues,
and techniques, we refer to Bart Jacob’s tutorial on
application enabling with Globus (Jacob, 2003).

Shared Data Access

Sharing data access can occur with concurrent jobs
and other processes within the network.

Access to data input and the data output of
the jobs can be of various kinds. During the plan-
ning and design of the Grid application, potential
restrictions on the access of databases, files, or
other data stores for either read or write have to
be considered. The installed policies need to be
observed and sufficient access rights have to be
granted to the jobs. Concerning the availability of
data in shared resources, it must be assured that at
run-time of the individual jobs the required data
sources are available in the appropriate form and
at the expected service level. Potential data access
conflicts need to be identified up front and planned
for. Individual jobs should not try to update the
same record at the same time, nor dead lock each
other. Care has to be taken for situations of con-
current access and resolution policies imposed.

The use of federated databases may be use-
ful in data Grids where jobs must handle large
amounts of data in various different data stores,
you. They offer a single interface to the applica-
tion and are capable of accessing data in large
heterogeneous environments. Federated database
systems contain information about location (node,
database, table, record) and access methods (SQL,
VSAM, privately defined methods) of connected

16

Porting HPC Applications to Grids and Clouds

data sources. Therefore, a simplified interface to
the user (a Grid job or other client) requires that
the essential information for a request should not
include the data source, but rather use a discovery
service to determine the relevant data source and
access method.

Data Topology

Issues about the size of the data, network band-
width, and time sensitivity of data determine the
location of data for a Grid application. The total
amount of data within the Grid application may
exceed the amount of data input and output of
the Grid application, as there can be a series of
sub-jobs that produce data for other sub-jobs.
For permanent storage the Grid user needs to be
able to locate where the required storage space is
available in the grid. Other temporary data sets
that may need to be copied from or to the client
also need to be considered.

The amount of data that has to be transported
over the network is restricted by available band-
width. Less bandwidth requires careful planning of
the data traffic among the distributed components
of a Grid application at runtime. Compression and
decompression techniques are useful to reduce the
data amount to be transported over the network.
But in turn, it raises the issue of consistent tech-
niques on all involved nodes. This may exclude
the utilization of scavenging for a grid, if there
are no agreed standards universally available.

Another issue in this context is time-sensitive
data. Some data may have a certain lifetime,
meaning its values are only valid during a defined
time period. The jobs in a Grid application have
to reflect this in order to operate with valid data
when executing. Especially when using data
caching or other replication techniques, it has to
be assured that the data used by the jobs is up-
to-date, at any given point in time. The order of
data processing by the individual jobs, especially
the production of input data for subsequent jobs,
has to be carefully observed.

Depending on the job, the authors Jacob at al.
(2003) recommend to consider the following data-
related questions which refer to input as well as
output data of the jobs within the Grid application:

• Is it reasonable that each job or set of jobs
accesses the data via the network?

• Does it make sense to transport a job or set
of jobs to the data location?

• Is there any data access server (for exam-
ple, implemented as a federated database)
that allows access by a job locally or re-
motely via the network?

• Are there time constraints for data trans-
port over the network, for example, to
avoid busy hours and transport the data
to the jobs in a batch job during off-peak
hours?

• Is there a caching system available on the
network to be exploited for serving the
same data to several consuming jobs?

• Is the data only available in a unique loca-
tion for access, or are there replicas that are
closer to the executable within the grid?

Data Volume

The ability for a Grid job to access the data it needs
will affect the performance of the application.
When the data involved is either a large amount
of data or a subset of a very large data set, then
moving the data set to the execution node is not
always feasible. Some of the considerations as to
what is feasible include the volume of the data
to be handled, the bandwidth of the network, and
logical interdependences on the data between
multiple jobs.

Data volume issues: In a Grid application,
transparent access to its input and output data is
required. In most cases the relevant data is per-
manently located on remote locations and the jobs
are likely to process local copies. This access to
the data results in a network cost and it must be
carefully quantified. Data volume and network

17

Porting HPC Applications to Grids and Clouds

bandwidth play an important role in determining
the scalability of a Grid application.

Data splitting and separation: Data topology
considerations may require the splitting, extrac-
tion, or replication of data from data sources
involved. There are two general approaches that
are suitable for higher scalability in a Grid ap-
plication: Independent tasks per job and a static
input file for all jobs. In the case of independent
tasks, the application can be split into several jobs
that are able to work independently on a disjoint
subset of the input data. Each job produces its own
output data and the gathering of all of the results
of the jobs provides the output result by itself.
The scalability of such a solution depends on the
time required to transfer input data, and on the
processing time to prepare input data and generate
the final data result. In this case the input data may
be transported to the individual nodes on which
its corresponding job is to be run. Preloading of
the data might be possible depending on other
criteria like timeliness of data or amount of the
separated data subsets in relation to the network
bandwidth. In the case of static input files, each
job repeatedly works on the same static input data,
but with different parameters, over a long period
of time. The job can work on the same static input
data several times but with different parameters,
for which it generates differing results. A major
improvement for the performance of the Grid
application may be derived by transferring the
input data ahead of time as close as possible to
the compute nodes.

Other cases of data separation: More unfa-
vorable cases may appear when jobs have depen-
dencies on each other. The application flow may be
carefully checked in order to determine the level of
parallelism to be reached. The number of jobs that
can be run simultaneously without dependences
is important in this context. For independent jobs,
there needs to be synchronization mechanisms in
place to handle the concurrent access to the data.

Synchronizing access to one output file:
Here all jobs work with common input data and

generate their output to be stored in a common
data store. The output data generation implies that
software is needed to provide synchronization
between the jobs. Another way to process this
case is to let each job generate individual output
files, and then to run a post-processing program
to merge all these output files into the final result.
A similar case is that each job has its individual
input data set, which it can consume. All jobs then
produce output data to be stored in a common data
set. Like described above, the synchronization of
the output for the final result can be done through
software designed for the task.

Hence, thorough evaluation of the input and
output data for jobs in the Grid application is
needed to properly handle it. Also, one should
weigh the available data tools, such as federated
databases, a data joiner, and related products and
technologies, in case the Grid application is highly
data oriented or the data shows a complex structure.

PORTING AND PROGRAMMING
GRID APPLICATIONS

Besides taking into account the underlying Grid
resources and the application’s data handling, as
discussed in the previous two paragraphs, another
challenge is the porting of the application program
itself. In this context, developers and users are
facing mainly two different approaches when
implementing their application on a grid. Either
they port an existing application code on a set of
distributed Grid resources. Often, in the past, the
application previously has been developed and
optimized with a specific computer architecture in
mind, for example, mainframes or servers, single-
or multiple-CPU vector computers, shared- or
distributed-memory parallel computers, or loosely
coupled distributed systems like workstation
clusters, for example. Or developers start from
scratch and design and develop a new application
program with the Grid in mind, often such that the
application architecture respectively its inherent

18

Porting HPC Applications to Grids and Clouds

numerical algorithms are optimally mapped onto
the best-suited (set of) resources in a grid.

In both scenarios, the effort of implementing an
application can be huge. Therefore, it is important
to perform a careful analysis beforehand on: the
user requirements for running the application on
a Grid (e.g. cost, time); on application type (e.g.
compute or data intensive); application architec-
ture and algorithms (e.g. explicit, or implicit) and
application components and how they interact (e.g.
loosely or tightly coupled, or workflows); what is
the best way to map the application onto a grid;
and which is the best suited Grid architecture to
run the application in an optimally performing
way. Therefore, in the following, we summarize
the most popular strategies for porting an exist-
ing application to a grid, and for designing and
developing a new Grid application.

Many scientific papers and books deal with
the issues of designing, programming, and porting
Grid applications, and it is difficult to recommend
the best suited among them. Here, we mainly
follow the books from Ian Foster and Carl Kes-
selman (1999 & 2004), the IBM Redbook (Jacob,
2003), the SURA Grid Technology Cookbook
(SURA, 2007), several research papers on pro-
gramming models and environments, e.g. Soh
(2006), Badia (2003), Karonis (2002), Seymour
(2002), Buyya (2000), Venugopal (2004), Luther
(2005), Altintas (2004), and Frey (2005), and our
own experience at Sun Microsystems and MCNC
(Gentzsch, 2004), RENCI (Gentzsch, 2007), D-
Grid (Gentzsch, 2008, and Neuroth, 2007), and
currently in DEISA-2 (Lederer, 2008).

Grid Programming Models
and Environments

Our own experience in porting applications to
distributed resource environments is very similar
to the one from Soh et al. (2006) who present a
useful discussion on Grid programming models
and environments which we briefly summarize
in the following. In their paper, they start with

differentiating application porting into resource
composition and program composition. Resource
composition, i.e. matching the application to the
Grid resources needed, has already been discussed
in paragraphs 2 and 3 above.

Concerning program composition, there is
a wide spectrum of strategies of distributing an
application onto the available Grid resources.
This spectrum ranges from the ideal situation of
simply distributing a list of, say, n parameters
together with n identical copies of that applica-
tion program onto the grid, to the other end of the
spectrum where one has to compose or parallelize
the program into chunks or components that can
be distributed to the Grid resources for execu-
tion. In the latter case, Soh (2006) differentiates
between implicit parallelism, where programs
are automatically parallelized by the environ-
ment, and explicit parallelism which requires
the programmer to be responsible for most of
the parallelization effort such as task decomposi-
tion, mapping tasks to processors and inter-task
communication. However, implicit approaches
often lead to non-scalable parallel performance,
while explicit approaches often are complex and
work- and time-consuming. In the following we
summarize and update the approaches and methods
discussed in detail in Soh (2006):

Superscalar (or STARSs), sequential ap-
plications composed of tasks are automatically
converted into parallel applications where the
tasks are executed in different parallel resources.
The parallelization takes into account the existing
data dependences

between the tasks, building a dependence
graph. The runtime takes care of the task sched-
uling and data handling between the different
resources, and takes into account the locality of
the data between other aspects. There are several
implementations available, like GRID Superscalar
(GRIDSs) for computational Grids (Badia, 2003),
which is also used in production at the MareNo-
strum supercomputer at the BSC in Barcelona; or
Cell Superscalar (CellSs) for the Cell processor

19

Porting HPC Applications to Grids and Clouds

(Perez, 2007) and SMP Superscalar (SMPSs)
for homogeneous multicores or shared memory
machines.

Explicit Communication, such as Message
Passing and Remote Procedure Call (RPC). A
messages passing example is MPICH-G2 (Karo-
nis, 2002), a grid-enabled implementation of the
Message Passing Interface (MPI) which defines
standard functions for communication between
processes and groups of processes, extended by
the Globus Toolkit. An RPC example is GridRPC,
an API for Grids (Seymour, 2002), which offers
a convenient, high-level abstraction whereby
many interactions with a Grid environment can
be hidden.

Bag of Tasks, which can be easily distributed
on Grid resources. An example is the Nimrod-G
Broker (Buyya, 2000) which is a grid-aware ver-
sion of Nimrod, a specialized parametric model-
ing system. Nimrod uses a simple declarative
parametric modeling language and automates the
task of formulating, running, monitoring, and ag-
gregating results. Another example is the Gridbus
Broker (Venugopal, 2004) that permits users access
to heterogeneous Grid resources transparently.

Distributed Objects, as in ProActive (2005),
a Java based library that provides an API for the
creation, execution and management of distributed
active objects. Proactive is composed of only
standard Java classes and requires no changes to
the Java Virtual Machine (JVM) allowing Grid
applications to be developed using standard Java
code.

Distributed Threads, for example Alchemi
(Luther, 2005), a Microsoft .NET Grid comput-
ing framework, consisting of service-oriented
middleware and an application program interface
(API). Alchemi features a simple and familiar
multithreaded programming model.

Grid Workflows. Many Workflow Environ-
ments have been developed in recent years for
grids, such as Triana, Taverna, Simdat, P-Grade,
and Kepler. Kepler, for example, is a scientific
workflow management system along with a set

of Application Program Interfaces (APIs) for
heterogeneous hierarchical modeling (Altintas,
2004). Kepler provides a modular, activity oriented
programming environment, with an intuitive GUI
to build complex scientific workflows.

Grid Services. An example is the Open Grid
Services Architecture (OGSA), (Frey, 2005),
which is an ongoing project that aims to enable
interoperability between heterogeneous resources
by aligning Grid technologies with established
Web service technology. The concept of a Grid
service is introduced as a Web service that pro-
vides a set of well defined interfaces that follow
specific conventions. These Grid services can
be composed into more sophisticated services to
meet the needs of users.

GRID-ENABLING APPLICATION
PROGRAMS AND NUMERICAL
ALGORITHMS

In many cases, restructuring (grid-enabling, de-
composing, parallelizing) the core algorithm(s)
within a single application program doesn’t make
sense, especially in the case of a more powerful
higher-level grid-enabling strategy. For example,
in the case of parameter jobs (see below), many
identical copies of the application program
together with different data-sets can easily be
distributed onto many Grid nodes, or where the
application program components can be mapped
onto a workflow, or where applications (granu-
larity, run time, special dimension, etc.) simply
are too small to efficiently run on a grid, and the
Grid latencies and management overhead become
too dominant. In other cases, however, where
e.g. just one very long run has to be performed,
grid-enabling the application program itself can
lead to dramatic performance improvements and,
thus, time savings. In an effort to better guide the
reader through this complex field, in the follow-
ing, we will briefly present a few popular appli-
cation codes and their algorithmic structure and

20

Porting HPC Applications to Grids and Clouds

provide recommendations for some meaningful
grid-enabling strategies.

General Approach. First, we have to make
sure that we gain an important benefit form run-
ning our application on a grid. And we should start
asking a few more general questions, top-down.
Has this code been developed in-house, or is it
a third-party code, developed elsewhere? Will I
submit many jobs (as e.g. in a parameter study),
or is the overall application structure a workflow,
or is it a single monolithic application code? In
case of the latter, are the core algorithms within
the application program of explicit or of implicit
nature? In many cases, grid-enabling those kinds
of applications can be based on experience made in
the past with parallelizing them for the moderately
or massively parallel systems, see e.g. Fox et al.
(1994) and Dongarra et al. (2003).

In-house Codes. In case of an application
code developed in-house, the source code of this
application is often still available, and ideally the
code developers are still around. Then, we have
the possibility to analyze the structure of the code,
its components (subroutines), dependencies, data
handling, core algorithms, etc. With older codes,
sometimes, this analysis has already been done
before, especially for the vector and parallel com-
puter architectures of the 1980ies and 1990ies.
Indeed, some of this knowledge can be re-used
now for the grid-enabling process, and often only
minor adjustments are needed to port such a code
to the grid.

Third-Party Codes licensed from so-called
Independent Software Vendors (ISVs) cannot
be grid-enabled without the support from these
ISVs. Therefore, in this case, we recommend to
contact the ISV. In case the ISV receives similar
requests from other customers as well, there might
be a real chance that the ISV will either provide a
grid-enabled code or completely change its sales
strategy and sell its software as a service, or de-
velops its own application portal to provide access
to the application and the computing resources.

But, obviously, this requires patience and is thus
not a solution if you are under a time constraint.

Parameter Jobs. In science and engineering,
often, the application has to run many times: same
code, different data. Only a few parameters have
to be modified for each individual job, and at the
end of the many job runs, the results are analyzed
with statistical or stochastic methods, to find a
certain optimum. For example, during the design of
a new car model, many crash simulations have to
be performed, with the aim to find the best-suited
material and geometry for a specific part of the
wire-frame model of the car.

Application Workflows. It is very common
in so-called Problem Solving Environments
that the application program consists of a set of
components or modules which interact with each
other. This can be modeled in Grid workflow
environments which support the design and the
execution of the workflow representing the ap-
plication program. Usually, these Grid workflow
environments contain a middleware layer which
maps the application modules onto the different
resources in the grid. Many Workflow Environ-
ments have been developed in recent years for
grids, such as Triana (2003), Taverna (2008), Sim-
dat (2008), P-Grade (2003), and Kepler (Altintas,
2004). One application which is well suited for
such a workflow is climate simulation. Today’s
climate codes consist of modules for simulating
the weather on the continent with mesoscale
meteorology models, and include other modules
for taking into account the influence from ocean
and ocean currents, snow and ice, sea ice, wind,
clouds and precipitation, solar and terrestrial
radiation, absorption, emission, and reflection,
land surface processes, volcanic gases and par-
ticles, and human influences. Interactions happen
between all these components, e.g. air-ocean,
air-ice, ice-ocean, ocean-land, etc. resulting in a
quite complex workflow which can be mapped
onto the underlying Grid infrastructure.

Highly Parallel Applications. Amdahl’s Law
states that the scalar portion of a parallel program

21

Porting HPC Applications to Grids and Clouds

becomes a dominant factor as processor number
increases, leading to a loss in application scal-
ability with growing number of processors. Gus-
tafson (1988) proved that this holds only for fixed
problem size, and that in practice, with increasing
number of processors, the user increases problem
size as well, always trying to solve the largest
possible problem on any given number of CPUs.
Gustafson demonstrated this on a 1028-proces-
sor parallel system, for several applications. For
example, he was able to achieve a speed-up factor
of over 1000 for a Computational Fluid Dynam-
ics application with 1028 parallel processes on
the 1028-processor system. Porting these highly
parallel applications to a grid, however, has shown
that many of them degrade in performance simply
because overhead of communication for message-
passing operations (e.g. send and receive) drops
from a few microseconds on a tightly-coupled
parallel system to a few milliseconds on a (loosely-
coupled) workstation cluster or grid. In this case,
therefore, we recommend to implement a coarse-
grain Domain Decomposition approach, i.e. to
dynamically partition the overall computational
domain into sub-domains (each consisting of as
many parallel processes, volumes, finite elements,
as possible), such that each sub-domain com-
pletely fits onto the available processors of the
corresponding parallel system in the grid. Thus,
only moderate performance degradation from the
reduced number of inter-system communication
can be expected. A prerequisite for this to work
successfully is that the subset of selected parallel
systems is of homogeneous nature, i.e. architecture
and operating system of these parallel systems
should be identical. One Grid infrastructure which
offers this feature is the Distributed European
Infrastructure for Supercomputing Applications
(DEISA, 2010), which (among others) provides
a homogeneous cluster of parallel AIX machines
distributed over several of the 11 European su-
percomputing centers which are part of DEISA
(see also Section 5 in this Chapter).

Moderately Parallel Applications. These
applications, which have been parallelized in the
past, often using Message Passing MPI library
functions for the inter-process communication on
workstation clusters or on small parallel systems,
are well-suited for parallel systems with perhaps
a few dozen to a few hundreds of processors,
but they won’t scale easily to a large number of
parallel processes (and processors). Reasons are a
significant scalar portion of the code which can’t
run in parallel and/or the relatively high ratio of
inter-process communication to computation,
resulting in relatively high idle times of the CPUs
waiting fore the data. Many commercial codes
fall in this category, for example finite-element
codes such as Abaqus, Nastran, or Pamcrash.
Here we recommend to check if the main goal is
to analyze many similar scenarios with one and
the same code but on different data sets, and run
as many codes in parallel as possible, on as many
moderately parallel sub-systems as possible (this
could be virtualized sub-systems on one large
supercomputer, for example).

Explicit versus Implicit Algorithms. Dis-
crete Analogues of systems of partial differential
equations, stemming from numerical methods
such as finite difference, finite volume, or finite
element discretizations, often result in large sets
of explicit or implicit algebraic equations for the
unknown discrete variables (e.g. velocity vectors,
pressure, temperature). The explicit methods
are usually slower (in convergence to the exact
solution vector of the algebraic system) than the
implicit ones but they are also inherently parallel,
because there is no dependence of the solution
variables among each other, and therefore there
are no recursive algorithms. In case of the more
accurate implicit methods, however, solution
variables are highly inter-dependent leading to
recursive sparse-matrix systems of algebraic equa-
tions which cannot easily split (parallelized) into
smaller systems. Again, here, we recommend to
introduce a Domain Decomposition approach as
described in the above section on Highly Parallel

22

Porting HPC Applications to Grids and Clouds

Algorithms, and solve an implicit sparse-matrix
system within each domain, and bundle sets of
‘neighboring’ domains into super-sets to submit
to the (homogeneous) grid.

Domain Decomposition. This has been dis-
cussed in the paragraphs on Highly Parallel Appli-
cations and on Explicit versus Implicit Algorithms.

Job Mix. Last but not lease, one of the most
trivial but most widely used scenarios often found
in university and research computer centers is
the general job mix, stemming from hundreds or
thousands of daily users, with hundreds or even
thousands of different applications, with varying
requirements for computer architecture, data han-
dling, memory and disc space, timing, priority, etc.
This scenario is ideal for a Grid which is managed
by an intelligent Distributed Resource Manager
(DRM), for example GridWay (2008) for a global
grid, Sun Grid Engine Enterprise Edition (Chaubal,
2003) for an enterprise grid, or the open source
Grid Engine (2001) for a departmental Grid or a
simple cluster. These DRMs are able to equally
balance the overall job load across the distributed
resource environment and submit the jobs always
to the best suited and least loaded resources. This
can result in overall resource utilization of 90%
and higher.

Applications and Grid Portals

Grid portals are an important part of the process
of grid-enabling, composing, manipulating, run-
ning, and monitoring applications. After all the
lower layers of the grid-enabling process have
been performed (described in the previous para-
graphs), often, the user is still exposed to the many
details of the Grid services and even has to take
care of configuring, composing, provisioning,
etc. the application and the services “by hand”.
This however can be drastically simplified and
mostly hidden from the user through a Grid por-
tal, which is a Web-based portal able to expose
Grid services and resources through a browser to
allow users remote, ubiquitous, transparent and

secure access to Grid services (computers, storage,
data, applications, etc). The main goal of a Grid
portal is to hide the details and complexity of the
underlying Grid infrastructure from the user in
order to improve usability and utilization of the
grid, greatly simplifying the use of grid-enabled
applications through a user-friendly interface.

Grid portals have become popular in research
and the industry communities. Using Grid portals,
computational and data-intensive applications
such as genomics, financial modeling, crash
test analysis, oil and gas exploration, and many
more, can be provided over the Web as tradi-
tional services. Examples of existing scientific
application portals are the GEONGrid (2008)
and CHRONOS (2004) portals that provide a
platform for the Earth Science community to study
and understand the complex dynamics of Earth
systems; the NEESGrid project (2008) focuses on
earthquake engineering research; the BIRN portal
(2008) targets biomedical informatics researchers;
and the MyGrid portal (2008) provides access to
bioinformatics tools running on a back-end Grid
infrastructure. As it turns out, scientific portals
are usually being developed inside specific re-
search projects. As a result they are specialized
for specific applications and services satisfying
project requirements for that particular research
application area.

In order to rapidly build customized Grid
portals in a flexible and modular way, several
more generic toolkits and frameworks have been
developed. These frameworks are designed to
meet the diverse needs and usage models arising
from both research and industry. One of these
frameworks is EnginFrame, which simplifies
development of highly functional Grid portals
exposing computing services that run on a broad
range of different computational Grid systems.
EnginFrame (Beltrame, 2006) has been adopted
by many industrial companies, and by organiza-
tions in research and education.

23

Porting HPC Applications to Grids and Clouds

Example: The EnginFrame
Portal Environment

EnginFrame (2008) is a Web-based portal technol-
ogy that enables the access and the exploitation of
grid-enabled applications and infrastructures. It al-
lows organizations to provide application-oriented
computing and data services to both users (via Web
browsers) and in-house or ISV applications (via
SOAP/WSDL based Web services), thus hiding the
complexity of the underlying Grid infrastructure.
Within a company or department, an enterprise
portal aggregates and consolidates the services
and exposes them to the users, through the Web.
EnginFrame can be integrated as Web applica-
tion in a J2EE standard application server or as a
portlet in a JSR168 compliant portlet container.

As a Grid portal framework, EnginFrame offers
a wide range of functionalities to IT developers
facing the task to provide application-oriented
services to the end users. EnginFrame’s plug-in
mechanism allows to easily and dynamically
extend its set of functionalities and services. A
plug-in is a self-contained software bundle that
encapsulates XML Extensible Markup Language
service descriptions, custom layout or XSL Ex-
tensible Stylesheet Language and the scripts or
executables involved with the services actions. A
flexible authentication delegation offers a wide
set of pre-configured authentication mechanisms:
OS/NIS/PAM, LDAP, Microsoft Active Directory,
MyProxy, Globus, etc. It can also be extended
throughout the plug-in mechanism.

Besides authentication, EnginFrame provides
an authorization framework that allows to define
groups of users and Access Control Lists (ACLs),
and to bind ACLs to resources, services, service
parameters and service results. The Web interface
of the services provided by the portal can be au-
thorized and thus tailored to the specific users’
roles and access rights.

EnginFrame supports a wide variety of
compute Grid middleware like LSF, PBS, Sun
Grid Engine, Globus, gLite and others. An XML

virtualization layer invokes specific middleware
commands and translates results, jobs and Grid
resource descriptions into a portable XML for-
mat called GridML that abstracts from the actual
underlying Grid technology. For the GridML, as
for the service description XML, the framework
provides pre-built XSLs to translate GridML into
HTML. EnginFrame data management allows for
browsing and handling data on the client side or
remotely archived in the Grid and then to host a
service working environment in file system areas
called spoolers.

The EnginFrame architecture is structured into
three tiers, Client, Resource, Server. The Client
Tier normally consists of the user’s Web browser
and provides an easy-to-use interface based on
established Web standards like XHTML and Ja-
vaScript, and it is independent from the specific
software and hardware environment used by the
end user. When needed, the client tier also provides
integration with desktop virtualization technolo-
gies like Citrix Metaframe (ICA), VNC, X, and
Nomachine NX. The Resource Tier consists of
one or more Agents deployed on the back-end
Grid infrastructure whose role is to control and
provide distributed access to the actual computing
resources. The Server Tier consists of a server
component that provides resource brokering to
manage resource activities in the back-end.

The EnginFrame server authenticates and au-
thorizes incoming requests from the Web, and asks
an Agent to execute the required actions. Agents
can perform different kind of actions that range
from the execution of a simple command on the
underlying Operating System, to the submission
of a job to the grid. The results of the executed
action are gathered by the Agent and sent back to
the Server which applies post processing trans-
formations, filters the output according to ACLs
and transforms the results into a suitable format
according to the nature of the client: HTML for
Web browsers and XML in a SOAP message for
Web services client applications.

24

Porting HPC Applications to Grids and Clouds

GRID CASE STUDY: HPC ON THE
DEISA E-INFRASTRUCTURE

As one example, in the following, we will briefly
discuss the DEISA Distributed European In-
frastructure for Supercomputing Applications.
A more detailed description can be found in
(Gentzsch, 2010, 2011). DEISA is different
from many other Grid initiatives which aim at
building a general purpose Grid infrastructure
and therefore have to cope with many (almost)
insurmountable barriers such as complexity, re-
source sharing, crossing administrative (and even
national) domains, handling IP and legal issues,
dealing with sensitive data, working on interoper-
ability, and facing the issue to expose every little
detail of the underlying infrastructure services
to the Grid application user. DEISA avoids most
of these barriers by staying very focused: The
main focus of DEISA is to provide the European
supercomputer user with a flexible, dynamic, user-
friendly supercomputing ecosystem (one could say
Supercomputing Cloud, see next paragraph) for
easy handling, submitting, and monitoring long-
running jobs on the best-suited and least-loaded
supercomputer(s) in Europe, trying to avoid the
just mentioned barriers. In addition, DEISA of-
fers application-enabling support. For a similar
European funded initiative especially focusing
on enterprise applications, we refer the reader to
the BEinGRID project (2008), which consists of
18 so-called business experiments each dealing
with a pilot application that addresses a concrete
business case, and is represented by an end-user,
a service provider, and a Grid service integrator.
Experiments come from key business sectors such
as multimedia, financial, engineering, chemistry,
gaming, environmental science, and logistics and
so on, based on different Grid middleware solu-
tions, see (BEinGRID, 2008).

The DEISA Project

DEISA is the Distributed European Initiative for
Supercomputing Applications, funded by the EU
in Framework Programme 6 (DEISA1, 2004 –
2008) and Framework Programme 7 (DEISA2,
2008 – 2011). The DEISA Consortium consists
of 11 partners, MPG-RZG (Germany, consor-
tium lead), BSC (Spain), CINECA (Italy), CSC
(Finland), ECMWF (UK), EPCC (UK), FZJ
(Germany), HLRS (Germany), IDRIS (France),
LRZ (Germany), and SARA (Netherlands). Fur-
ther centers were integrated as associate partners:
CEA-CCRT (France), CSCS (Switzerland), and
KTH (Sweden).

DEISA developed and supports a distrib-
uted high performance computing infrastructure
and a collaborative environment for capability
computing and data management. The resulting
infrastructure enables the operation of a power-
ful supercomputing Grid built on top of national
supercomputing services, facilitating Europe’s
ability to undertake world-leading computational
science research. DEISA is instrumental for ad-
vancing computational sciences in scientific and
industrial disciplines within Europe and is paving
the way towards the deployment of a cooperative
European HPC ecosystem. The existing infrastruc-
ture is based on the coupling of eleven leading
national supercomputing centers, using dedicated
network interconnections (currently 10 GBs) of
GÉANT2 and the NRENs.

DEISA2 developed activities and services
relevant for applications enabling, operation, and
technologies, as these are indispensable for the
effective support of computational sciences in the
area of supercomputing. The service provisioning
model has been extended from one that supports
a single project (in DEISA1) to one supporting
Virtual European Communities (now in DEISA2).
Collaborative activities are carried out with
European and other international initiatives. Of
strategic importance is the cooperation with the
PRACE (2008) initiative which is preparing for

25

Porting HPC Applications to Grids and Clouds

the installation of a limited number of leadership-
class Tier-0 supercomputers in Europe.

The DEISA Infrastructure Services

The essential services to operate the infrastructure
and support its efficient usage are organized in
three Service Activities: Operations, Technolo-
gies, and Applications:

Operations refer to operating the infrastructure
including all existing services, adopting approved
new services from the Technologies Activity,
and advancing the operation of the DEISA HPC
infrastructure to a turnkey solution for the future
European HPC ecosystem by improving the op-
erational model and integrating new sites.

Technologies cover monitoring of technolo-
gies in use in the project, identifying and select-
ing technologies of relevance for the project,
evaluating technologies for pre-production de-
ployment, and planning and designing specific
sub-infrastructures to upgrade existing services
or deliver new ones based on approved technolo-
gies. User-friendly access to the DEISA Super-
computing Grid is provided by DEISA Services
for Heterogeneous management Layer (DESHL,
2008) and the UNiforme Interface for COmputing
Resources (UNICORE, 2008).

Applications cover the areas ‘applications
enabling’ and ‘extreme computing projects’,
‘environment and user related application sup-
port’, and ‘benchmarking’. Applications enabling
focuses on enhancing scientific applications
from the DEISA Extreme Computing Initiative
(DECI), Virtual Communities and EU projects.
Environment and user related application support
addresses the maintenance and improvement of the
DEISA application environment and interfaces,
and DEISA-wide user support in the applications
area. Benchmarking refers to the provision and
maintenance of a European Benchmark Suite for
supercomputers.

In DEISA2, two Joint Research Activities
(JRA) complement the portfolio of service ac-

tivities. JRA1 (Integrated DEISA Development
Environment) aims at an integrated environment
for scientific application development, based on
a software infrastructure for tools integration,
which provides a common user interface across
multiple computing platforms. JRA2 (Enhancing
Scalability) aims at the enabling of supercomputer
applications for the efficient exploitation of current
and future supercomputers, to cope with a produc-
tion infrastructure characterized by an aggressive
parallelism on heterogeneous HPC architectures
at a European scale.

DECI: DEISA Extreme
Computing Initiative for
Supercomputing Applications

The DEISA Extreme Computing Initiative
(DECI, 2010) has been launched in May 2005
by the DEISA Consortium, as a way to enhance
its impact on science and technology. The main
purpose of this initiative is to enable a number
of “grand challenge” applications in all areas of
science and technology. These leading, ground
breaking applications must deal with complex,
demanding and innovative simulations that would
not be possible without the DEISA infrastructure,
and which benefit from the exceptional resources
provided by the Consortium. The DEISA applica-
tions are expected to have requirements that cannot
be fulfilled by the national HPC services alone.

In DEISA2, the single-project oriented activi-
ties (DECI) are qualitatively extended towards
persistent support of Virtual Science Communities.
This extended initiative benefits from and builds
on the experiences of the DEISA scientific Joint
Research Activities where selected computing
needs of various scientific communities and a
pilot industry partner were addressed. Examples of
structured science communities with which close
relationships are established are EFDA and the
European climate community. DEISA2 provides a
computational platform for them, offering integra-

26

Porting HPC Applications to Grids and Clouds

tion via distributed services and web applications,
as well as managing data repositories.

Applications Adapted to the
DEISA Grid Infrastructure

In the following, we describe examples of appli-
cation profiles and use cases that are well-suited
for the DEISA supercomputing grid, and that
can benefit from the computational resources
made available by the DECI Extreme Comput-
ing Initiative.

International collaboration involving sci-
entific teams that access the nodes of the AIX
super-cluster in different countries, can benefit
from a common data repository and a unique,
integrated programming and production environ-
ment (via common global file systems). Imagine,
for example, that team A in France and team B in
Germany dispose of allocated resources at IDRIS
in Paris and FZJ in Juelich, respectively. They can
benefit from a shared directory in the distributed
super-cluster, and for all practical purposes it looks
as if they were accessing a single supercomputer.

Extreme computing demands of a chal-
lenging project requiring a dominant fraction of
a single supercomputer. Rather than spreading a
huge, tightly coupled parallel application on two
or more supercomputers, DEISA can organize
the management of its distributed resource pool
such that it is possible to allocate a substantial
fraction of a single supercomputer to this project
which is obviously more efficient that splitting
the application and distributing it over several
supercomputers.

Workflow applications involving at least
two different HPC platforms. Workflow applica-
tions are simulations where several independent
codes act successively on a stream of data, the
output of one code being the input of the next
one in the chain. Often, this chain of computa-
tions is more efficient if each code runs on the
best-suited HPC platform (e.g. scalar, vector, or
parallel supercomputers) where it develops the

best performance. Support of these applications
via UNICORE (2008) which allows treating the
whole simulation chain as a single job is one of
the strengths of the DEISA Grid.

Coupled applications involving more than
one platform. In some cases, it does make sense
to spread a complex application over several
computing platforms. This is the case of multi-
physics, multi-scale application codes involving
several computing modules each dealing with
one particular physical phenomenon, and which
only need to exchange a moderate amount of data
in real time.

HPC APPLICATIONS IN THE CLOUD

With increasing demand for higher performance,
efficiency, productivity, agility, and lower cost,
since several years, Information Communica-
tion Technologies, ICT, are dramatically chang-
ing from static silos with manually managing
resources and applications, towards dynamic
virtual environments with automated and shared
services, i.e. from silo-oriented to service-oriented
architectures.

With sciences and businesses turning global
and competitive, applications, products and
services becoming more complex, and research
and development teams being distributed, ICT
is in transition again. Global challenges require
global approaches: on the horizon, so-called vir-
tual organizations and partner Grids will provide
the necessary communication and collaboration
platform, with Grid portals for secure access to
resources, applications, data, and collaboratories.

One component which will certainly foster this
next-generation scenario is Cloud Computing,
as recently offered by companies like Amazon
(2007 and 2010) Elastic Cloud Computing EC2,
IBM (2008), Google (2008) App Engine and
Google Group (2010), SGI (Cyclone, 2010),
and many more. Clouds will become important
dynamic components of research and enterprise

27

Porting HPC Applications to Grids and Clouds

infrastructures, adding a new ‘external’ dimension
of ‘elasticity’ to them by enhancing their ‘home’
resource capacity whenever needed, on demand.
Existing businesses will use them for their peak
demands and for new projects, service providers
will host their applications on them and provide
Software as a Service, start-ups will integrate them
in their offerings without the need to buy resources
upfront, and setting up new social networks (Web
2.0 communities) will become very easy.

Cloud-enabling applications will follow simi-
lar strategies as with grid-enabling, as discussed in
the previous paragraphs. Similarly challenging as
with grids, though, are the cultural, mental, legal,
and political aspects in the Cloud context. Build-
ing trust and reputation among the users and the
providers will help in many scenarios. But it is
currently difficult to imagine that users may easily
entrust their corporate core assets and sensitive
data to Cloud service providers. Today (in Janu-
ary 2011) the status of HPC Clouds seems to be
similar to the status of Grids in the early 2000s:
a few standard and well-suited HPC application
scenarios run on Clouds, but many of the more
complex and demanding HPC applications in re-
search and enterprises will face barriers on Clouds
which still have to be removed. For example,
barriers may arise in the following context:

• The process of retrieving data from one
cloud and move them into another cloud,
and back to your desktop system, in a reli-
able and secure way.

• The fulfilment of (e.g. government) re-
quirements for security, privacy, data pro-
tection, and the archiving risks associated
with the cloud.

• The compliance with existing legal and
regulatory frameworks and current policies
(established far before the digital age) that
impose antiquated (and sometimes even
conflicting) rules about how to correctly
deal with information and knowledge.

• The process of setting up a service level
agreement.

• Migrating your applications from their ex-
isting environments into the cloud.

And for that matter…

• Do we all agree on the same security re-
quirements; do we need a checklist, or do
we need a federated security framework?

• Do our existing identity, access manage-
ment, audit and monitoring strategies still
hold for the clouds?

• What cloud deployment model would you
have to choose: private, public, hybrid, or
federated cloud?

• How much does the virtualization layer of
the cloud affect application performance
(i.e. trade-off between abstraction versus
control)?

• How will clouds affect performance of
high-throughput versus high-performance
computing applications?

• What type of application needs what exe-
cution model to provide useful abstractions
in the cloud, such as for data partition-
ing, data streaming, and parameter sweep
algorithms?

• How do we handle large scientific work-
flows for complex applications that may
be deployed as a set of virtual machines,
virtual storage and virtual networks to sup-
port different functional components?

• What are common best practices and stan-
dards needed to achieve portability and
interoperability for cloud applications and
environments ?

• How can (and will) organizations like
DMTF and OGF help us with our cloud
standardization requirements?

• And last but not least, what if your cloud
service provider fails?

28

Porting HPC Applications to Grids and Clouds

One example of an early innovative Cloud
system came from Sun Microsystems when in
2005 it truly built its SunGrid (Sun 2010) from
scratch, based on the early vision that the network
is the computer. As with other early technologies
in the past, Sun paid a high price for being first
and doing all the experiments and the evangeliza-
tion. Its successor, Sun Network.com (Sun 2010),
was popular among its few die-hard clients. This
is because of an easy-to use technology (Grid
Engine, Jini, JavaSpaces), but it’s especially
because of their innovative early users, such as
CDO2 (2008), a provider of innovative pricing
and risk technology for organizations trading
structured credit products.

It is interesting to observe how some of the
earlier differences between Grids and clouds are
fading away. While in the beginning of the Grid
era, many Grid infrastructure prototypes were
built and disappeared after a while, today we see
many production Grids providing infrastructure,
platform, and software services (almost) on de-
mand, similar to the clouds, especially from an
end-user point of view. One good example is the
DEISA e-Infrastructure discussed in Chapter 5
above, with its DECI– DEISA Extreme Computing
Initiative. Why is DECI currently so successful
in offering millions of supercomputing cycles to
the European e-Science community and helping
scientists gain new scientific insights? Several
reasons, in my opinion: because DEISA has a
very targeted focus on specific (long-running)
supercomputing applications and most of the
applications just run on one – best-suited - sys-
tem; because of its user-friendly access - through
technology like DESHL (2008) and UNICORE
(2008); because of staying away from those more
ambitious general-purpose Grid efforts aiming
at providing everything to everybody; because
of its coordinating function which leaves the
consortium partners (the 14 largest European
supercomputer centers) fully independent; and –
similar to network.com in the past – because of
ATASKF (DECI, 2010), the application task force,

consisting of application experts who help the us-
ers with porting their applications to the DEISA
infrastructure. Because of the benefits of DEISA,
the PRACE Consortium (PRACE, 2008) decided
in 2010 to incorporate the DEISA Infrastructure
into PRACE and provide access to the PRACE
Petaflops systems via DEISA.

With this sea-change ahead of us, there will
be a continuous strategic importance for sciences
and businesses to support the work of the Open
Grid Forum (OGF, 2008). Because only standards
– recently also for clouds (OCCI, 2010) – will
enable building e-infrastructures and grid- and
cloud-enabled applications easily from different
technology components and to transition towards
an agile platform for federated services. Standards,
developed in OGF, guarantee interoperation of dif-
ferent Grid and cloud components best suited for
HPC applications, and thus reducing dependency
from proprietary building blocks and services,
keeping cost under control, and increasing research
and business flexibility.

CLOUD CASE STUDIES: HPC
APPLICATIONS ON AMAZON

Amazon Web Services (AWS) is Amazon’s
cloud computing platform, with Amazon Elastic
Compute Cloud (EC2) as its central part, first an-
nounced as beta in August 2006. Users can rent
Virtual Machines (VMs) on which they run their
applications. EC2 allows scalable deployment of
applications by providing a web service through
which a user can boot an Amazon Machine Image
(AMI) to create a virtual machine, which Ama-
zon calls an “instance”, containing any software
desired. A user can create, launch, and terminate
server instances as needed and paying by the hour
for active servers. EC2 provides users with control
over the geographical location of instances which
allows for latency optimization and high levels
of redundancy.

29

Porting HPC Applications to Grids and Clouds

NAS Parallel Benchmark
on Amazon EC2

In order to find out if and how clouds are suit-
able for HPC applications, Ed Walker (Walker
2008) run an HPC benchmark on Amazon EC2.
He used several macro and micro benchmarks to
examine the “delta” between clusters composed
of state-of-the-art CPUs from Amazon EC2
versus an HPC cluster at the National Center
for Supercomputing Applications (NCSA). He
used the NAS Parallel Benchmarks (NAS 2010)
to measure the performance of these clusters for
frequently occurring scientific calculations. Also,
since the Message-Passing Interface (MPI) library
is an important programming tool used widely in
scientific computing, his results demonstrate the
MPI performance in these clusters by using the
mpptest micro benchmark. For his benchmark
study on EC2 he use the high-CPU extra large
instances provided by the EC2 service.

The NAS Parallel Benchmarks (NPB 2010)
comprise a widely used set of programs designed
to evaluate the performance of HPC systems. The
core benchmark consists of eight programs: five
parallel kernels and three simulated applications.
In aggregate, the benchmark suite mimics the criti-
cal computation and data movement involved in
computational fluid dynamics and other “typical”
scientific computation.

Research from Ed Walker (2008) about the
runtimes of each of the NPB programs in the
benchmark shows a performance degradation of
approximately 7%–21% for the programs running
on the EC2 nodes compared to running them on
the NCSA cluster compute node.

Further results and an in-depth analysis showed
that message-passing latencies and bandwidth
are an order of magnitude inferior between EC2
compute nodes compared to between compute
nodes on the NCSA cluster. Walker (2008) con-
cluded that substantial improvements could be
provided to the HPC scientific community if a

high-performance network provisioning solution
can be devised for this problem.

LINPACK Benchmark on Amazon
Cluster Compute Instances

In July 2010, Amazon announced its Cluster Com-
pute Instances (CCI 2010) specifically designed
to combine high compute performance with high
performance network capability to meet the needs
of HPC applications. Unique to Cluster Compute
instances is the ability to group them into clusters
of instances for use with HPC applications. This
is particularly valuable for those applications that
rely on protocols like Message Passing Interface
(MPI) for tightly coupled inter-node communi-
cation. Cluster Compute instances function just
like other Amazon EC2 instances but also offer
the following features for optimal performance
with HPC applications:

• When run as a cluster of instances, they
provide low latency, full bisection 10 Gbps
bandwidth between instances. Cluster siz-
es up through and above 128 instances are
supported.

• Cluster Compute instances include the spe-
cific processor architecture in their defini-
tion to allow developers to tune their appli-
cations by compiling applications for that
specific processor architecture in order to
achieve optimal performance.

The Cluster Compute instance family cur-
rently contains a single instance type, the Cluster
Compute Quadruple Extra Large with the follow-
ing specifications: 23 GB of memory, 33.5 EC2
Compute Units (2 x Intel Xeon X5570, quad-core
“Nehalem” architecture), 1690 GB of instance
storage, 64-bit platform, and I/O Performance:
Very High (10 Gigabit Ethernet).

As has been benchmarked by the Lawrence
Berkeley Laboratory team (2010), some applica-
tions can expect 10x better performance than on

30

Porting HPC Applications to Grids and Clouds

standard EC2. For the Linpack benchmark, they
saw 8.5x compared to similar clusters on standard
EC2 instances. On an 880-instance CC1 cluster,
Linpack achieved a performance of 41.82 Tflops,
bringing EC2 at #146 in the June 2010 Top 500
rankings.

MATLAB on Amazon Cluster
Compute Instances

Another recent example for HPC on EC2 CCI
comes form the MATLAB team at MathWorks
(MATLAB 2010) which tested performance
scaling of the backslash (“\”) matrix division
operator to solve for x in the equation A*x = b. In
their testing, matrix A occupies far more memory
(290 GB) than is available in a single high-end
desktop machine—typically a quad core processor
with 4-8 GB of RAM, supplying approximately
20 Gigaflops.

Therefore, they spread the calculation across
machines. In order to solve linear systems of
equations they need to be able to access all of the
elements of the array even when the array is spread
across multiple machines. This problem requires
significant amounts of network communication,
memory access, and CPU power. They scaled up
to a cluster in EC2, giving them the ability to work
with larger arrays and to perform calculations at
up to 1.3 Teraflops, a 60X improvement. They
were able to do this without making any changes
to the application code.

Each Cluster Compute instance runs 8 workers
(one per processor core on 8 cores per instance).
Each doubling of the worker count corresponds
to a doubling of the number of Cluster Computer
instances used (scaling from 1 up to 32 instances).
They saw near-linear overall throughput (mea-
sured in Gigaflops on the y axis) while increasing
the matrix size (the x axis) as they successively
doubled the number of instances.

Cloud User Scenario: Astronomic
Data Processing on Amazon EC2

The following cloud user scenario has been taken
from (Ahronovitz 2010): Gaia is a mission of the
European Space Agency (ESA) that will conduct
a survey of one billion stars in our galaxy (Gaia
2010). It will monitor each of its target stars about
70 times over a five-year period, precisely chart-
ing their positions, distances, movements, and
changes in brightness. It is expected to discover
hundreds of thousands of new celestial objects,
such as extra-solar planets and failed stars called
brown dwarfs.

This mission will collect a large amount of
data that must be analyzed. The ESA decided to
prototype a cloud-based system to analyze the
data. The goals were to determine the technical
and financial aspects of using cloud computing to
process massive datasets. The prototype system
contains the scientific data and a whiteboard used
to publish compute jobs. A framework for distrib-
uted computing (developed in house) is used for
job execution and data processing. The framework
is configured to run AGIS (Astrometric Global
Iterative Solution). The process runs a number
of iterations over the data until it converges.
For processing, each working node gets a job
description from the database, retrieves the data,
processes it and sends the results to intermediate
servers. The intermediate servers update the data
for the following iteration.

The prototype evaluated 5 years of data for
2 million stars, a small fraction of the total data
that must be processed in the actual project.
The prototype went through 24 iterations of 100
minutes each, equivalent to running a Grid of
20 Virtual Machines (VMs) for 40 hours. For
the full billion-star project, 100 million primary
stars will be analyzed along with 6 years of data,
which will require running the 20 VM cluster
for 16,200 hours. To evaluate the elasticity of a
cloud-based solution, the prototype ran a second
test with 120 high CPU extra large VMs. With

31

Porting HPC Applications to Grids and Clouds

each VM running 12 threads, there were 1440
processes working in parallel.

All of the VMs were running standard operating
systems and none of the software used in the project
is cloud-specific. The portability concern for this
application would be the ability to migrate those
VM images to another provider without having
to rebuild or reconfigure the images.

The estimated cost for the cloud-based solution
is less than half the cost of an in-house solution.
That cost estimate does not include the additional
electricity or system administration costs of an
in-house solution, so the actual savings will be
even greater. Storage of the datasets will be cloud-
based as well.

CONCLUSION: GRIDS VERSUS
CLOUDS FOR HPC

Time and again, people ask questions like “Will
HPC codes move to the cloud?” or “Now that cloud
computing is well accepted, are Grids dead?” or
even “Should I now build my Grid in the cloud?”
Despite all the promising developments in the Grid
and cloud computing space, and the avalanche
of publications and talks on this subject, many
people still seem to be confused and hesitant to
take the next step. A number of issues are driv-
ing this uncertainty, (Gentzsch, 2009), which are
discussed in the following.

Grids didn’t keep all their promises. Grids
did not evolve into the next fundamental IT in-
frastructure for mainstream HPC, as had been
anticipated by some experts. Because of the
diversity of computing environments different
middleware stacks (for department, enterprise,
global, compute, data, sensors, instruments,
etc.) had to be developed, and had to face differ-
ent usage models with different benefits. HPC
Grids are providing better resource utilization
and flexibility, while global Grids are best suited
for complex R&D application collaboration and
resource sharing. For enterprise usage, setting up
and operating Grids was often too complicated.

For R&D experts this characteristic was seen to
be a necessary evil: implementing complex HPC
applications has never been easy.

Grid: the way station to the cloud. After 40
years of dealing with HPC, Grid computing was
indeed the next big thing for the grand challenge,
big-science researcher, while for the enterprise
CIO, the Grid was a way station on its way to the
cloud model. For the enterprise today, private and
public clouds are providing all the missing pieces:
easy to use, economies of scale, business elasticity
up and down, and pay-as you go and thus getting
rid of some capital expenditure (CapEx), but still
concerned of removing the roadblocks mentioned
above. And in cases where security matters, there
is always the private cloud solution. In more
complex HPC environments, with applications
running under different policies, private clouds
can easily connect to public clouds into a hybrid
cloud infrastructure, to balance security with
elasticity and efficiency.

Different policies, what does that mean?
No HPC simulation job is alike. Jobs differ by
priority, strategic importance, deadline, budget,
IP and licenses. In addition, the nature of the code
often necessitates a specific computer architecture,
operating system, memory, and other resources.
These important factors influence where and when
a job is running. For any new type of job, a set of
specific requirements decide on the set of specific
policies that have to be defined and programmed
into the scheduler, such that any of these jobs
will run according to these policies. Ideally, this
is guaranteed by a dynamic resource broker that
controls submission to Grid or cloud resources,
be they local or global, private or public.

Grids or clouds? One important question is
still open: how do I find out, and then ‘tell’ the
resource broker, whether my application should
run on the Grid or in the cloud? The answer, among
others, depends on the algorithmic structure of
the compute-intensive part of the program, which
might be intolerant of high latency and low band-
width as they are often present in public clouds.
This has been observed with benchmark results

32

Porting HPC Applications to Grids and Clouds

(Walker, 2008). The performance limitations in
clouds are exhibited mainly by parallel applica-
tions with tightly-coupled, data-intensive inter-
process communication, running on hundreds or
even thousands of processor cores.

The good news is, however, that many HPC
applications do not require high bandwidth and
low latency. Examples are parameter studies
(sweeps) often seen in science and engineering,
with one and the same application executed for a
spectrum of parameters, resulting in many inde-
pendent jobs, such as analyzing the data from a
particle physics collider, identifying the solution
parameter in numerical optimization, ensemble
runs to quantify climate model uncertainties,
identifying potential drug targets via screening a
database of ligand structures, studying economic
model sensitivity to parameters, simulating flow
around an airplane wing with different angels of
attach, and analyzing different materials and their
resistance in crash tests, to name just a few.

HPC needs Grids and clouds. According to
the DEISA Extreme Computing Initiative (DECI,
2010), there are plenty of complex grand chal-
lenge science and engineering applications that
can only run effectively on the largest and most
expensive supercomputers. Today, nobody would
build an HPC cloud for these particular big-
science grand-challenge applications. It simply
isn’t a profitable business: the “HPC market” is
far too small and thus lacks economy of scale. In
some specific science application scenarios, with
complex workflows consisting of different tasks
(workflow nodes), a hybrid infrastructure might
make sense: cloud capacity resources combined
with HPC capability nodes, providing the best
of both worlds.

However, for a wide range of HPC applica-
tions like the parameter-sweeps mentioned above,
clouds will be the way to go. We already see more
and more HPC clouds today like Exa PowerFLOW
(Exa, 2008), and Cyclone (SGI, 2010) which offers
cloud services for engineering and scientific ap-
plications like BLAST, Gaussian, STAR-CCM+,
and LS-DYNA.

CONCLUSIONS: TEN RULES FOR
BUILDING SUSTAINABLE GRID
AND CLOUD E-INFRASTRUCTURES
FOR HPC APPLICATIONS

Grid-enabled applications require sustainable
Grid infrastructures. It doesn’t make any sense,
for example, in a three-year funded Grid project,
to develop or port a complex application to a
Grid which will shut down after the project ends.
We have to make sure that we are able to build
sustainable Grid infrastructures which will last
for a long time. Therefore, in the following, the
author offers ‘his’ 10 rules for building a sus-
tainable Grid or cloud infrastructure, originally
presented in the OGF Thought Leadership Series
(2008). These rules are derived from mainly four
sources: research on major Grid projects published
in a RENCI report (Gentzsch, 2007a), the e-IRG
Workshop on “A Sustainable Grid Infrastructure
for Europe” (Gentzsch, 2007b), the 2nd Inter-
national Workshop on Campus and Community
Grids at OGF20 in Manchester (McGinnis, 2007),
and personal experience with coordinating the
German D-Grid Initiative (D-Grid, 2008). The 10
rules are mainly non-technical, because we believe
most of the challenges in building and operating
a Grid are in the form of mental, cultural, legal
and regulatory barriers. Although these rules have
been derived originally for successfully building
a sustainable Grid infrastructure, recent experi-
ence with cloud computing shows that most of
these rules still hold for introducing, building or
connecting to a cloud infrastructure.

Rule 1: Identify your specific benefits. Your
first thought should be about the benefits for your
users and your organization. What’s in it for them?
Identify the benefits which fit best: transparent ac-
cess to and better utilization of resources; almost
infinite compute and storage capacity; flexibility,
adaptability and automation through dynamic and
concerted interoperation of networked resources,
in-house or from a public cloud; cost reduction
through utility model; shorter time-to-market be-
cause of more simulations at the same time on the

33

Porting HPC Applications to Grids and Clouds

Grid or in the cloud. Grid and cloud technologies
help to adjust an enterprise’s IT architecture to
real business requirements (and not vice versa).
For example, global companies will be able to
decompose their highly complex processes into
modular components of a workflow which can be
distributed around the globe such that on-demand
availability and access to suitable workforce and
resources are assured, productivity increased,
and cost reduced. Application of Grid and cloud
technologies in these processes, guarantees seam-
less integration of and communication among all
distributed components and provides transparent
and secure access to sensitive company informa-
tion and other proprietary assets, world-wide. Grid
and cloud computing is especially of great benefit
for those research and business groups which
cannot afford expensive IT resources. It enables
engineers to remotely access any IT resource as
a utility, to simulate any process and any product
(and product life cycle) before it is built, resulting
in higher quality, increased functionality, and cost
and risk reduction.

Rule 2: Evangelize your decision makers
first. They are the ones who give you the money
and authority for your project. The more they know
about the project and the more they believe in it
(and in you) the more money and time you will
get, and the easier becomes your task to lead and
motivate your team and to get things done. Pres-
ent a business case (current deficiencies, specific
benefits of the Grid and/or cloud (see Rule #1),
how much will it cost and how much will it return,
etc). They might also have to modify existing
policies, top down, to make it easier for users (and
providers) to cope with the challenges of and to
accept and use these new services. For example,
why would a researcher (or a department in an
enterprise) stop buying computers when money
continues to be allocated for buying it (CapEx)?
This policy should be changed to support a utility
model instead of an ownership model (OpEx). If
you are building a national e-Infrastructure, for

example, convincing your government to modify
its research funding model is a tough task.

Rule 3: Don’t re-invent wheels. In the early
Grid days, many Grid projects tried to develop
the whole software stack themselves: from the
middleware layer, to the software tools, to grid-
enabling the applications, to the portal and Web
layer…and got troubled by the next technology
change or by experts leaving the team. Today, so
many Grid technologies, products and projects
exist already that you first want to start looking
for similar projects, select your favorite (most
successful) ones which fit best your users’ needs,
and ‘copy’ what they have built: and that will
be your prototype. Consider, however, that all
Grids are different. For example, research Grids
are mainly about sharing (e.g. sharing resources,
knowledge, data) and collaboration, commercial
enterprise Grids are about reducing cost and in-
creasing productivity and revenue.

Rule 4: Keep It Simple. It took your users
years to get acquainted with their current working
environment, tools, and applications. Ideally, you
won’t change that. Try hard to stick with what
they have and how they do things. Plan for an
incremental approach and lots of time listening
and talking. Social effects dominate in Grids and
in clouds. Join forces with the system people to
change/modify mainly the lower layers of the
architecture. Your users are your customers, they
are king. Differentiate between two groups of
users: the end users who are designing and de-
veloping the company’s products (or the research
results) which account for all the earnings of your
company (or reputation and therefore funding for
your research institute), and the system experts
who are eager to support the end users with the
best possible services.

Rule 5: Evolution, not revolution. As the
saying goes: “never change a running system”. We
all hate changes in our daily lives, except when
we are sure that things will drastically improve.
Your users and their applications deeply depend
on a reliable infrastructure. So, whenever you

34

Porting HPC Applications to Grids and Clouds

have to change especially the user layer, only
change it in small steps and in large time cycles.
And, start with enhancing existing service mod-
els moderately, and test suitable utility models
first as pilots. And, very important, part of your
business plan has to be an excellent training and
communications strategy.

Rule 6: Establish a governance structure.
Define clear responsibilities and dependencies for
specific tasks, duties and people during and after
the project. An advisory board should include
all stakeholders (e.g. your representatives of
your end-users as well as application and system
experts). In case of more complex projects, e.g.
consisting of an integration project and several
application or community projects, an efficient
management board should lead and steer coor-
dination and collaboration among the projects
and the working groups. The management board
(Steering Committee) should consist of leaders of
the sub-projects. Regular face-to-face meetings
are very important.

Rule 7: Money, money, money. Don’t have
unrealistic expectations that Grid and/or cloud
computing will save you money from the start.
In their early stage, Grid and cloud projects need
enough funding to get over the early-adopter
phase into a mature state with a rock-solid e-
Infrastructure such that other user communities
can join easily. In research grids, for example,
we estimate this funding phase currently to be in
the order of 2-3 years, with more funding in the
beginning for the Grid infrastructure, and later
more funding for the application communities. In
larger (e.g. global) research grids, funding must
cover Teams or Centers of Excellence, for building,
managing and operating the e-Infrastructure, and
for middleware tools, application support, training,
and dissemination. Also, most of today’s funding
models in research and education are often project
based and thus not ready for a utilitarian approach
where resource usage is based on a pay-as-you-
go approach. Old funding models first have to be
adjusted accordingly before a utility model can

be introduced successfully. For example, today’s
existing government funding models are often
counter-productive when establishing new and
efficient forms of utilitarian services (see Rule #2).
In the long run, Grid and cloud computing will
save you money through a much more efficient,
flexible, reliable, and productive infrastructure.

Rule 8: Secure some funding for the post-
project phase. Continuity especially for

Maintenance, support, and dissemination (the
latter to attract more users) are extremely important
for the sustainability of your Grid infrastructure.
Make sure already at the beginning of your project
that additional funding will be available after the
end of the project, to guarantee service and support
and continuous improvement and adjustment of
the infrastructure.

Rule 9: Try not to grid-enable your applica-
tions in the first place. Adjusting your application
to changing hardware and software technologies
costs a lot of effort and money, and takes a lot of
your precious time. Did you ‘macro-assemble’,
vectorize, multitask, parallelize, or multithread
your application yourself in the past? Then, grid-
enabling such a code is relatively easy, as we have
seen in this article before. But doing this from
scratch is not what a user should do. Better to
use the money to buy (lease, rent, subscribe to)
software as a service or to hire a few experienced
consultants who grid-enable your application and/
or (even better) help you enable your Grid archi-
tecture to dynamically cope with the application
and user requirements (instead vice versa). Today,
in grids, or in Grid workflows, we are looking
more at chunks of independent jobs, (or chunks
of transactions). And we let our schedulers and
brokers decide how to distribute these chunks
onto the best-suited and least-loaded servers in
the Grid or in the cloud, or let the servers decide
themselves in an over-load situation to share the
chunks with their neighboring servers automati-
cally whenever they become available.

Rule 10: Adopt a ‘human’ business model.
Don’t invent new business models. This usually

35

Porting HPC Applications to Grids and Clouds

increases the risk for failure. Learn from the
business models we have with our other service
infrastructures: water, gas, telephony, electricity,
mass transportation, the Internet, and the World
Wide Web. Despite this wide variety of areas,
there is only a handful of successful business
models: on one end of the spectrum, you pay the
total price, and the whole thing is yours (CapEx).
Or you pay only a share of it, but pay the other
share on a per usage basis. Or you rent every-
thing, and pay chunks back on a regular basis,
like a subscription fee or leasing. Or you pay just
for what you use (OpEx). Sometimes, however,
there are ‘hidden’ or secondary applications. For
example, electrical power alone doesn’t help. It’s
only useful if it generates something, e.g. light, or
heat, or cooling. And this infrastructure is what
creates a whole new industry of appliances: light
bulbs, heaters, refrigerators, and so on. Back to
Grids and clouds: providing the right (transparent)
infrastructure (services) and the right (simple)
business model will most likely create a new set
of services which most probably will improve our
quality of life in the future.

REFERENCES

Ahronovitz, M., et al. (2010). Cloud comput-
ing use cases. A white paper produced by the
Cloud Computing Use Case Discussion Group.
Retrieved from http://groups.google.com/ group/
cloud-computing-use-cases

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Lu-
dascher, B., & Mock, S. (2004). Kepler: An exten-
sible system for design and execution of scientific
workflows. Proceedings of the 16th International
Conference on Scientific and Statistical Database
Management (SSDBM), Santorini Island, Greece.
Retrieved from http://kepler-project.org

Amazon Elastic Compute Cloud EC2. (2007).
Retrieved from www.amazon.com/ec2

Badia, R. M., Labarta, J. S., Sirvent, R. L.,
Perez, J. M., Cela, J. M., & Grima, R. (2003).
Programming Grid applications with GRID Su-
perscalar. Journal of Grid Computing, 1, 151–170.
doi:10.1023/B:GRID.0000024072.93701.f3

Baker, S. (2007, December 13). Google and the
wisdom of clouds. Business Week. Retrieved
from www.businessweek.com/magazine/ con-
tent/07_52/ b4064048925836.htm

BEinGRID. (2008). Business experiments in grids.
Retrieved from www.beingrid.com

Beltrame, F., Maggi, P., Melato, M., Molinari,
E., Sisto, R., & Torterolo, L. (2006). SRB data
Grid and compute Grid integration via the Engin-
Frame Grid portal. Proceedings of the 1st SRB
Workshop, 2-3 February 2006, San Diego, USA.
Retrieved from www.sdsc.edu/srb/Workshop /
SRB-handout-v2.pdf

BIRN. (2008). Biomedical Informatics Research
Network. Retrieved from www.nbirn.net/index.
shtm

Buyya, R., Abramson, D., & Giddy, J. (2000).
Nimrod/G: An architecture for a resource manage-
ment and scheduling system in a global computa-
tional grid. Proceedings of the 4th International
Conference on High Performance Computing in
the Asia-Pacific Region. Retrieved from www.
csse.monash.edu.au /~davida/nimrod/ nimrodg.
htm

CCI. (2010). Amazon cluster compute instances.
Retrieved from http://aws.amazon.com/ hpc-
applications/

CDO2. (2008). CDOSheet for pricing and risk
analysis. Retrieved from www.cdo2.com

Chaubal, C. (2003). Sun Grid engine enterprise
edition—software configuration guidelines and
use cases. Sun Blueprints. www.sun.com/blue-
prints /0703/817-3179.pdf

36

Porting HPC Applications to Grids and Clouds

D-Grid. (2008). Retrieved from www.d-grid.de/
index.php?id=1&L=1

DECI. (2010). DEISA extreme computing initia-
tive. Retrieved from www.deisa.eu/science/deci

DEISA. (2010). Distributed European infrastruc-
ture for supercomputing applications. Retrieved
from www.deisa.eu

DESHL. (2008). DEISA services for heteroge-
neous management layer. Retrieved from http://
forge.nesc.ac.uk/projects /deisa-jra7/

Dongarra, J., Foster, I., Fox, G., Gropp, W., Ken-
nedy, K., Torczon, L., & White, A. (2003). Source-
book of parallel computing. Morgan Kaufmann
Publishers.

EnginFrame. (2008). EnginFrame Grid and cloud
portal. Retrieved from www.nice-italy.com

Exa. (2008). PowerFLOW on demand. Retrieved
from http://www.exa.com/ pdf/IBM_Exa_OnDe-
mand _Screen.pdf

Foster, I. (2000). Internet computing and the
emerging grid. Nature. Retrieved from www.
nature.com/nature/ webmatters/grid /grid.html

Foster, I. (2002). What is the grid? A three point
checklist. Retrieved from http://www-fp.mcs.anl.
gov/ ~foster/Articles/ WhatIsTheGrid.pdf

Foster, I. Kesselman, & C., Tuecke, S. (2002). The
anatomy of the Grid: Enabling scalable virtual
organizations. Retrieved from www.globus.org/
alliance/ publications/papers/ anatomy.pdf

Foster, I., & Kesselman, C. (Eds.). (1999). The
Grid: Blueprint for a new computing infrastruc-
ture. Morgan Kaufmann Publishers.

Foster, I., & Kesselman, C. (Eds.). (2004). The
Grid 2: Blueprint for a new computing infrastruc-
ture. Morgan Kaufmann Publishers.

Fox, G., Williams, R., & Messina, P. (1994).
Parallel computing works!Morgan Kaufmann
Publishers.

Frey, J., Mori, T., Nick, J., Smith, C., Snelling,
D., Srinivasan, L., & Unger, J. (2005). The open
Grid services architecture, version 1.0. www.ggf.
org/ggf_areas _architecture.htm

GAIA. (2010). European space agency mission.
Gaia overview. Retrieved from http://www.esa.
int/esaSC/ 120377_index_0_m.html

GAT. (2005). Grid application toolkit. Retrieved
from www.gridlab.org/ WorkPackages/wp-1/

Gentzsch, W. (2004). Grid computing adoption
in research and industry In Abbas, A. (Ed.), Grid
computing: A practical guide to technology and
applications (pp. 309–340). Charles River Media
Publishers.

Gentzsch, W. (2004). Enterprise resource man-
agement: Applications in research and industry
In Foster, I., & Kesselman, C. (Eds.), The Grid
2: Blueprint for a new computing infrastructure
(pp. 157–166). Morgan Kaufmann Publishers.

Gentzsch, W. (2007a). Grid initiatives: Lessons
learned and recommendations. RENCI Report.
Retrieved from www.renci.org/publications /
reports.php

Gentzsch, W. (Ed.). (2007b). A sustainable Grid
infrastructure for Europe. Executive Summary of
the e-IRG Open Workshop on e-Infrastructures,
Heidelberg, Germany. Retrieved from www.e-irg.
org/meetings /2007-DE/workshop.html

Gentzsch, W. (2008). Top 10 rules for building a
sustainable Grid. Grid Thought Leadership Series.
Retrieved from www.ogf.org/TLS/?id=1

Gentzsch, W. (2009). HPC in the cloud: Grids
or clouds for HPC? Retrieved from http://www.
hpcinthecloud.com /features/ Grids-or-Clouds-
for-HPC-67796917.html

Gentzsch, W., Girou, D., Kennedy, A., Lederer,
H., Reetz, J., Riedel, M., … Wolfrat, J. (2011).
DEISA – Distributed European infrastructure for
supercomputing applications. Journal on Grid
Computing. Springer.

37

Porting HPC Applications to Grids and Clouds

Gentzsch, W., Kennedy, A., Lederer, H., Pringle,
G., Reetz, J., Riedel, M., et al. Wolfrat, J. (2010).
DEISA: E-science in a collaborative, secure,
interoperable and user-friendly environment.
Proceedings of the e-Challenges Conference
e-2010, Warsaw.

GEONGrid. (2008). Retrieved from www.geon-
grid.org

Goodale, T., Jha, S., Kaiser, H., Kielmann, T.,
Kleijer, P., & Merzky, A. … Smith, Ch. (2008).
A simple API for Grid applications (SAGA).
Grid Forum Document GFD.90. Open Grid Fo-
rum. Retrieved from www.ogf.org/documents /
GFD.90.pdf

Google. (2008). Google app engine. Retrieved
from http://code.google.com/appengine/

Google Groups. (2010). Cloud computing.
Retrieved from http://groups.google.ca/ group/
cloud-computing

Grid Engine. (2001). Open source project. Re-
trieved from http://sourceforge.net/ projects/
gridscheduler/

GridSphere. (2008). Retrieved from www.grid-
sphere.org/ gridsphere/gridsphere

GridWay. (2008). Metascheduling technologies
for the Grid. Retrieved from www.gridway.org/

Gustafson, J. (1987). Reevaluating Amdahl’s
law. Communications of the ACM, 31, 532–533.
doi:10.1145/42411.42415

Jacob, B., Ferreira, L., Bieberstein, N., Gilzean,
C., Girard, J.-Y., Strachowski, R., & Yu, S. (2003).
Enabling applications for Grid computing with
Globus. IBM Redbook. Retrieved from www.red-
books.ibm.com /abstracts/ sg246936.html?Open

Jha, S., Kaiser, H., El Khamra, Y., & Weidner, O.
(2007). Design and implementation of network
performance aware applications using SAGA
and Cactus. 3rd IEEE Conference on eScience
and Grid Computing, Bangalore, India, 10-13
Dec, (pp. 143-150).

Karonis, N. T., Toonen, B., & Foster, I. (2002).
MPICH-G2: A Grid-enabled implementation of
the Message Passing Interface. Journal of Par-
allel and Distributed Computing, 63, 551–563.
doi:10.1016/S0743-7315(03)00002-9

Lederer, H. (2008). DEISA2: Supporting and de-
veloping a European high-performance computing
ecosystem. Journal of Physics, 125. doi:10.1088/
1742-6596/125/1/011003.

Lee, C. (2003). Grid programming models: Cur-
rent tools, issues and directions In Berman, G. F.,
& Hey, T. (Eds.), Grid computing (pp. 555–578).
USA: Wiley Press. doi:10.1002/0470867167.ch21

Luther, A., Buyya, R., Ranjan, R., & Venugopal,
S. (2005). Peer-to-peer Grid computing and
a. NET-based Alchemi framework. In M. Guo
(Ed.), High performance computing: Paradigm
and infrastructure. Wiley Press, USA. Retrieved
from www.alchemi.net

MATLAB. (2010). Amazon Web Services for
high-performance cloud computing – MATLAB.
Solving Ax=b. Retrieved from http://aws.typepad.
com/aws /2010/09/ high-performance-cloud-
computing-nasa-matlab.html

McGinnis, L., Wallom, D., & Gentzsch, W. (Eds.).
(2007). 2nd International Workshop on Campus
and Community Grids. Retrieved from http://forge.
gridforum.org/ sf/go/doc14617?nav=1

MyGrid. (2008). Retrieved from www.mygrid.
org.uk

NEESGrid. (2008). Retrieved from www.nees.org/

Neuroth, H., Kerzel, M., & Gentzsch, W. (Eds.).
(2007). German Grid initiative D-Grid. Univer-
sitätsverlag Göttingen Publishers. Retrieved from
www.d-grid.de/ index.php?id=4&L=1

NPB. (2010). NAS parallel benchmark. Retrieved
from http://www.nas.nasa.gov/Resources /Soft-
ware/npb.html

38

Porting HPC Applications to Grids and Clouds

OCCI. (2010). Open Cloud Computing Interface
working group at OGF. Retrieved 2010 from http://
forge.ogf.org/sf/ projects/occi-wg

OGF. (2008). Open Grid forum. Retrieved from
www.ogf.org

P-GRADE. (2003). Parallel Grid run-time and
application development environment. Retrieved
from www.lpds.sztaki.hu /pgrade/

Perez, J.M., Bellens, P., Badia, R.M., & Labarta,
J. (2007). CellSs: Programming the Cell/ B.E.
made easier. IBM Journal of R&D, 51(5).

Portal, C. H. R. O. N. O. S. (2004). Retrieved from
http://portal.chronos.org/ gridsphere/gridsphere

PRACE. (2008). Partnership for advanced com-
puting in Europe. Retrieved from www.prace-
project.eu/

Proactive. (2005). Proactive manual, rev.ed. 2.2.
Proactive, INRIA. Retrieved from http://www-
sop.inria.fr /oasis/Proactive/

Saara Väärtö, S. (Ed.). (2008). Advancing sci-
ence in Europe. DEISA – Distributed European
Infrastructure for Supercomputing Applications.
EU FP6 Project. Retrieved from www.deisa.eu/
press/ DEISA-AdvancingScience InEurope.pdf

SAGA. (2006). SAGA implementation homepage.
Retrieved from http://fortytwo.cct.lsu.edu:8000/
SAGA

Seymour, K., Nakada, H., Matsuoka, S., Dongarra,
J., Lee, C., & Casanova, H. (2002). Overview of
GridRPC: A remote procedure call API for Grid
computing. Proceedings of the Third International
Workshop on Grid Computing [Baltimore, MD:
Springer.]. Lecture Notes in Computer Science,
2536, 274–278. doi:10.1007/3-540-36133-2_25

SGI. (2010). Cyclone: HPC cloud results on
demand. Retrieved from http://www.sgi.com/
products /hpc_cloud/cyclone /index.htm

SIMDAT. (2008). Grids for industrial product de-
velopment. Retrieved from www.scai.fraunhofer.
de /about_simdat.html

Soh, H., Shazia Haque, S., Liao, W., & Buyya,
R. (2006). Grid programming models and envi-
ronments In Dai, Y.-S. (Eds.), Advanced parallel
and distributed computing (pp. 141–173). Nova
Science Publishers.

Streit, A., Bergmann, S., Breu, R., Daivandy, J.,
Demuth, B., & Giesler, A. … Lippert, T. (2009).
UNICORE 6, a European Grid technology. In W.
Gentzsch, L. Grandinetti, & G. Joubert (Eds.),
High-speed and large scale scientific computing,
(pp. 157-176). IOS Press.

Sun. (2010). Sun Network.com, SunGrid, and Sun
utility computing, now under Oracle. Retrieved
from www.sun.com/service/sungrid/

SURA Southeastern Universities Research As-
sociation. (2007). The Grid technology cookbook.
Programming concepts and challenges. Retrieved
from www.sura.org/cookbook/gtcb/

TAVERNA. (2008). The Taverna workbench 1.7.
Retrieved from http://taverna.sourceforge.net/

TRIANA. (2003). The Triana project. Retrieved
from www.trianacode.org/

UNICORE. (2008). Uniform interface to comput-
ing resources. Retrieved from www.unicore.eu/

Venugopal, S., Buyya, R., & Winton, L. (2004).
A Grid service broker for scheduling distributed
data-oriented applications on global grids. Pro-
ceedings of the 2nd workshop on Middleware for
Grid computing, (pp. 75–80). Toronto, Canada.
Retrieved from www.Gridbus.org/broker

Walker, E. (2008). Benchmarking Amazon EC2 for
high-performance scientific computing. Retrieved
from http://www.usenix.org/ publications/login/
2008-10/openpdfs/walker.pdf

39

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

DOI: 10.4018/978-1-60960-603-9.ch003

INTRODUCTION

The Grid (Foster and Kesselman, 2003) is a
distributed computing environment in which
resources from dispersed sites are virtualized
through specialized services to provide applica-
tions with vast execution capabilities. Just like an
electrical infrastructure, which spreads over cities
to convey and deliver electricity, the Grid offers
a computing infrastructure to which applications

can be easily “plugged” and efficiently executed
by leveraging resources of different administra-
tive domains. Precisely, “Grid” comes from an
analogy with the electrical grid, since applications
will take advantage of Grid resources as easily as
electricity is now consumed.

Unfortunately, this analogy does not com-
pletely hold yet since it is difficult to “gridify”
an application without rewriting or modifying it.
A major problem is that most Grid toolkits pro-
vide APIs for merely implementing applications
from scratch (Mateos et al., 2008a). Examples of

Cristian Mateos
ISISTAN - UNCPBA, Argentina

Alejandro Zunino
ISISTAN - UNCPBA, Argentina

Marcelo Campo
ISISTAN - UNCPBA, Argentina

Grid-Enabling Applications
with JGRIM

ABSTRACT

The development of massively distributed applications with enormous demands for computing power,
memory, storage and bandwidth is now possible with the Grid. Despite these advances, building Grid
applications is still very difficult. We present JGRIM, an approach to easily gridify Java applications by
separating functional and Grid concerns in the application code, and report evaluations of its benefits
with respect to related approaches. The results indicate that JGRIM simplifies the process of porting
applications to the Grid, and the Grid code obtained from this process performs in a very competitive
way compared to the code resulting from using similar tools.

40

Grid-Enabling Applications with JGRIM

such toolkits are JavaSymphony (Fahringer and
Jugravu, 2005), Java CoG Kit (von Laszewski
et al., 2003), GSBL (Bazinet et al., 2007), GAT
(Allen et al., 2005) and MyCoG.NET (Paventhan
et al., 2006). Hence, the application logic results
mixed up with code for using Grid services, making
maintainability, testing and portability to differ-
ent Grid libraries and platforms somewhat hard.
Furthermore, gridifying existing code requires
to rewrite significant portions of it to use those
APIs. These problems are partially addressed by
tools that take an executable, along with user pa-
rameters (e.g. input arguments, CPU and memory
requirements, etc.), and wrap the executable with
a component that isolates the details of the Grid.
Some tools falling in this category are GEMLCA
(Delaittre et al., 2005), LGF (Baliś & Wegiel,
2008) and GridSAM (McGough et al., 2008).
However, the output of these tools are coarse
grained applications whose execution cannot be
configured to make better use of Grid resources
(e.g. parallelize and/or distribute individual ap-
plication components). Overall, this represents
a trade-off between ease of gridification versus
flexibility to configure the runtime aspects of
gridified applications (Mateos et al., 2008a).

To address these issues, we propose JGRIM, a
novel method for porting Java applications onto
service-oriented Grids, this is, based on Web
Services. JGRIM minimizes the requirement of
source code modification when gridifying Java
applications, and provides simple mechanisms to
effectively tune transformed applications. JGRIM
follows a two-step gridification methodology, in
which developers first implement and test the
logic of their applications, and then Grid-enable
them by undemandingly and non invasively
injecting Grid services. Therefore, we conceive
gridification as shaping the source code of an
ordinary application according to few coding
conventions, and then adding Grid concerns to it.
In a previous paper (Mateos et al., 2008b), we re-
ported preliminary comparisons between JGRIM
and other approaches for gridifying software in

terms of source code metrics. In this article we
also report JGRIM execution performance on an
Internet-based Grid, measuring execution time
and network usage of two resource-intensive
applications. The rest of the article analyzes the
most relevant related works, describes JGRIM,
and presents the experimental evaluations.

RELATED WORK

Motivated by the complex and challenging nature
of porting conventional applications to the Grid
(Gentzsch, 2009), research in tools and methods
to easily gridify ordinary software is growing at
an astonishingly rate. Besides providing APIs
for developing and executing Grid applications,
many of these tools actually materialize alterna-
tive approaches to support easy gridification of
existing applications. For an exhaustive survey
on technologies to port applications to the Grid,
see (Mateos et al., 2008a). Below we describe a
representative subset of such tools.

ProActive (Baduel et al., 2006) is a platform
for parallel distributed computing that provides
technical services, a support which allows users
to address non-functional concerns (e.g. load
balancing and fault tolerance) by plugging certain
external configuration to the application code at
deployment time. ProActive applications com-
prise one or more mobile entities whose creation,
migration and lookup are performed by explicit
code provisioning. Likewise, the JPPF (2008)
framework supports distributed scheduling for
CPU-intensive tasks on distributed environments.
In both cases, after porting an application to a
Grid, the application logic results mixed up with
Grid-related code. Therefore, gridification as well
as software maintenance thereafter become dif-
ficult. Furthermore, GridGain (GridGain Systems,
2008) attempts to minimize this problem by using
Java annotations to seamlessly exploit distributed
processors. However, GridGain does not target

41

Grid-Enabling Applications with JGRIM

interoperability, and is not aimed at leveraging
Grid services provided by other platforms.

JavaSymphony (Fahringer and Jugravu, 2005)
provides a semi-automatic execution model that
deals with migration, parallelism and load bal-
ancing of applications. The model also allows
programmers to explicitly control such aspects
through API primitives. Similarly, Babylon (van
Heiningen, 2008) features weak mobility, remote
object communication and parallelism in an uni-
form programming API. As JavaSymphony and
Babylon are API-inspired gridification tools, they
require developers to learn another API as well as
to perform extensive modifications when gridify-
ing their conventional applications.

Moreover, Ibis (van Nieuwpoort et al., 2005)
is a Grid platform designed as an uniform and
extensible communication facility on top of which
a variety of distributed programming models are
implemented. An interesting subsystem of Ibis
is Satin (Wrzesinska et al., 2006), which allows
developers to straightforwardly execute conven-
tional divide and conquer codes in parallel on
clusters and Grids. Similar to JPPF, Ibis offers
limited support for using well-established Grid
protocols such as WSDL and UDDI (Curbera
et al., 2002). Consequently, interoperability is
almost absent when using these tools to build
Grid applications.

GMarte (Alonso et al., 2006) is a high-level
API offering an object-oriented view on top of
Globus (Foster, 2005). Developers can employ the
API to compose and execute existing binary codes
by means of a new Java application. GMarte also
features metascheduling capabilities and fault-
tolerance via custom checkpointing mechanisms.
However, as GMarte treats these codes as black
boxes, their structure cannot be altered to make
better use of Grid resources, for example, parallel-
ize or distribute portions of the codes. In addition,
XCAT (Gannon et al., 2005) supports distributed
execution of component-based applications on
top of existing Grid platforms (mostly Globus).
Application components can also represent legacy

binary programs. XCAT provides an API to build
workflow applications by assembling service
and legacy components. Though this task can be
performed with little programming effort, develop-
ers still have to manage component creation and
linking in their programs. Besides, like GMarte,
XCAT does not provide support for fine tuning
components at the application level.

All in all, existing toolkits and frameworks
for gridifying software can be grouped into two
major categories (Mateos et al., 2008a): those
that aim at separating application logic from Grid
functionality, and those that do not. Our work
aligns with the proposals in the former category.
However, we believe that these efforts are some
way off from being effective tools for gridifying
applications. On one hand, those efforts that rely on
an API-oriented approach to gridification require
modifications to the input applications, which in
turn requires developers to learn Grid APIs and
negatively affects maintainability and portability.
Nevertheless, developers have a deeper control of
the internal structure of their applications. Con-
versely, tools based on gridifying by wrapping or
composing existing applications (e.g. GEMLCA,
GMarte, XCAT, LGF, GridSAM) simplify gridifi-
cation, but prevent the usage of tuning mechanisms
such as parallelization, mobility and distribution
of individual application components. This rep-
resents a trade-off between ease of gridification
versus true flexibility to configure the runtime
aspects of gridified applications.

In this sense, JGRIM tackles this trade-off by
avoiding excessive source code modifications
when porting applications to the Grid, yet offer-
ing means to effectively tune these applications
at a high level of abstraction once they have been
transformed. Besides, developers are allowed to
furnish application component with common Grid
concerns such as parallelism and distribution at
several levels of granularity. Moreover, JGRIM
preserves the integrity of the application logic
by allowing developers to seamlessly inject Grid
concerns to their applications. This means that,

42

Grid-Enabling Applications with JGRIM

upon gridification, the ordinary application code
does not get mixed with Grid-related code. This
improves maintainability, testability and portabil-
ity of the same source code to different Grid APIs
and environments. In addition, unlike most of the
aforementioned tools, the JGRIM API only have
to be explicitly used when performing application
tuning and, in such a case, the application logic is
not affected. Finally, because of the component-
based roots of its programming model, JGRIM is
similar to using popular component development
models for Java such as JavaBeans or EJBs. Given
the widespread adoption of both Java and such
models, our approach can benefit a large percent-
age of today’s Java applications.

JGRIM

JGRIM is an approach for creating and deploy-
ing conventional applications on service-oriented
Grids. Its goal is to allow applications to discover
and efficiently use Grid services without requir-
ing developers to provide code for it. JGRIM
provides a layer whereby component-based Java
applications are effortlessly transformed to appli-
cations that are furnished with specialized library
components (see Figure 1). These components
glue applications and the underlying Grid infra-

structure by leveraging the services provided by
existing Grid platforms. Conceptually, JGRIM
is a software/hardware stack comprising the fol-
lowing layers:

• Resource: represents the physical infra-
structure of the Grid (resources and trans-
port protocols).

• Service: provides sophisticated services
to applications (e.g. load balancing, bro-
kering, parallelism, security, etc.) by
means of existing Grid platforms (e.g. Ibis
(van Nieuwpoort et al., 2005), ProActive
(Baduel et al., 2006)) and resource man-
agement systems (e.g. Globus (Foster,
2005), Condor (Thain et al., 2003)). The
Service layer is often the Grid entry point
for gridification under most of the existing
approaches, this is, gridified applications
directly talk to Grid services.

• Middleware: comprises some metaser-
vices that act as a glue between applica-
tions and the Grid. A metaservice is a
representative of a set of related concrete
services. Examples include service dis-
covery, service invocation and application
tuning.

• Application: contains applications con-
sisting of a number of interacting compo-

Figure 1. A layered view of JGRIM

43

Grid-Enabling Applications with JGRIM

nents. During gridification, JGRIM alters
some of them and their interactions by us-
ing metaservices, thus at runtime some op-
eration requests originated by applications
at this layer are handled by the Middleware
layer.

JGRIM assumes that applications are properly
componentized, which is the case of most Java
applications. This allows JGRIM to treat an in-
dividual application as a collection of interacting
components. The idea is to enhance these interac-
tions by using metaservices, for example to add
remoting, load balancing or security. In addition,
individual components can be enriched too, for
example to add parallelism, job scheduling, wrap
as a Web Service, etc.

Central to JGRIM is the concept of Dependency
Injection (DI) (Johnson, 2005). With DI, com-
ponents providing services can be transparently
injected into components that require these ser-
vices. JGRIM exploits DI by allowing developers
to inject metaservices into ordinary applications.
Essentially, JGRIM targets the “ease of gridifica-
tion versus flexible tuning” trade-off (Mateos et
al., 2008a), minimizing the requirement of code
modification when porting applications to the
Grid, nonetheless providing useful mechanisms

to tune Grid applications that give developers
control over the way their gridified applications
execute on a Grid.

Injecting Grid Services into
Conventional Applications

DI achieves higher decoupling in component-
based applications by having components de-
scribed through public interfaces and reducing
couplings by delegating the responsibility for
component creation and linking to a DI container
(Johnson, 2005). Put differently, components only
know each other’s interfaces, but it is up to the
DI container to create and set (inject) into a cli-
ent component an instance of another (provider)
component implementing a required interface
(center of Figure). A DI container is a runtime
platform in charge of binding clients components
to providers components.

Consider an application that includes a book
catalog (BookService) and a client component
(Client) accessing it (see Figure 2). The catalog
may be implemented, for instance, by using
a relational database (BookDB). Client has to
setup a BookBD component by providing it with
initialization parameters, specifically the location
of the database, drivers, user name and password.

Figure 2. DI and Grid service injection

44

Grid-Enabling Applications with JGRIM

In consequence, though Client is only interested
in finding and listing books (the operations of the
BookService interface), it has to know implemen-
tation details of BookDB.

The center of Figure 2 shows the DI version
of the application. The DI container nows injects
a concrete implementation of BookService, such
as our previous BookDB or a Web Service inter-
face to Amazon Books. Consequently, DI removes
the dependency between the client and the service
provider, because Client is no longer in charge of
instantiating an implementation of the book ser-
vice. Besides, as long as different implementations
of the book catalog realize BookService, any of
them could be used without modifying the source
code of Client.

JGRIM takes DI a step further by introduc-
ing an indirection between software components
to inject Grid metaservices (right of Figure 2).
After gridification the container no longer injects
a service implementation into the client but a
metaservice, which is for example able to find
the fastest service from several implementations
residing in the Grid. The client interacts with
the metaservice, which in turn interacts with
an implementation of the required service. This
indirection is transparent to the client: there is no
need to change its code, since both the service
implementation and the metaservice realize the
same interface (BookService). Besides discovery,
metaservices may add load balancing, fault toler-
ance, distribution, etc.

From an application perspective, after the
metaservice finds a proper service implementa-
tion S, it becomes a proxy to S. A service such
as the book catalog, for which many realizations
may exist and access is mediated by interfaced
metaservices, is called a functional service (FS).
FSs are entities that expose their functionality
through clear interfaces. Within Grids, they are
often materialized as Web Services (Atkinson et al.,
2005). FSs are categorized as internal or external.
The former are parts of a complete application
that, during gridification, are exposed so that other

applications can use them. The latter are deployed
Grid applications, external to the application being
gridified, acting as building blocks. The second
type of services JGRIM takes advantage of are
called non-functional services (NFS). NFSs lack
a clear and standard interface to their capabilities,
as they represent abstract Grid concerns rather
than explicitly-interfaced services. Examples of
NFSs are parallelism, mobility, load balancing,
security and distribution (Service layer of Figure
1). An NFS also may have many materializations.
For instance, load balancing is simultaneously
featured by Ibis, Globus and ProActive.

Conceptually, injecting FSs sometimes also
requires the injection of NFSs, but not the other
way around. For instance, this would be the case
of using security mechanisms when contacting
or invoking FSs.

Gridification Process

JGRIM prescribes a semi-automatic gridification
process that developers have to follow to gridify
their applications, which consists of the following
steps (see Figure 3):

1. Developers identify application components
and dependencies between components that
will benefit from the Grid, or the hot-spots
for gridification within their applications.
Conceptually, hot-spot are the portions of
an ordinary application to which one or more
metaservices are associated.

2. Modification of the application code to obey
some simple and standard object-oriented
coding conventions, ensuring that applica-
tion components defined in the previous
step are implicitly linked through get/set
accessors using the JavaBeans style. Any
reference to a component C within the code
must be done by calling a fictitious method
getC(), instead of accessing it directly as
C.operation(). For example, if an application
reads data from a file component, it should

45

Grid-Enabling Applications with JGRIM

be accessed as getFile().read(). JGRIM
modifies the application code to include the
necessary instance variables and accessors.
Since this style is commonplace in Java, this
task often requires little or no effort.

3. Definition of internal and external interfaces.
Involves separating what a component does
from its implementation. Again, for the in-
ternal interfaces this is a common practice in
Java. For the external interfaces it involves
specifying the method signatures for either
using third-party services or exporting ap-
plication components as FSs.

4. Automatic assembling of the outputs of (2)
and (3) with metaservices. Basically, the
DI-enabled application code is injected with
JGRIM API classes by using the Spring DI
container (Walls and Breidenbach, 2005).
The resulting application is a reactive mobile
Grid service (MGS), a service capable of mi-
grating its execution based on environmental
conditions (Mateos et al., 2005) such as CPU
load, storage availability, network latency,
etc. More details on the JGRIM API and its
implementation can be found in (Mateos,
2008).

The next section illustrates these steps through
the gridification of a concrete application.

Gridifying the k-NN Classifier

The k-NN algorithm (Dasarathy, 1991) is a popular
supervised learning technique for mining data.
k-NN is computationally intensive, hence it is a
suitable application for execution on a Grid. In the
next paragraphs, we will gridify it with JGRIM.

k-NN classifies instances by placing them at a
point of a multidimensional feature space. k-NN
first partitions the space into regions according
to class labels of several training samples, or
dataset. Then, it assigns the class C to a point if
C is the most frequent label among the k nearest
training samples.

Let us suppose that the existing implementation
of the k-NN algorithm consists of various helper
classes plus a KNN class with three operations:

• classifyInstance: computes the label asso-
ciated to an instance.

• classifyInstances: analogous to classifyIn-
stance but operates on a list of instances.

• sameClass: tests whether two instances
have the same label.

One of the helper classes provides access to
a file-based dataset, which is accessed by these
methods. Basically, the structure of the applica-
tion code is:

Figure 3. JGRIM: gridification process

46

Grid-Enabling Applications with JGRIM

public class KNN {
 private int k;
 private FileDataset dataset;
 public KNN(int k){
 this.k = k;

 this.dataset = new
 FileDataset();

 }

 public double
 classifyInstance(Instance

 instance) {...}

 public double[]classifyInstances
 (Instance[] instances) {...}

 public boolean
 sameClass(Instance instA,

 Instance instB) {...}

}

public class FileDataset {
 public Instance[] readItems(int
 rowStart, int rowEnd) {...}
 public int size() {...}
 public int dimensions() {...}
}

First, we must determine which classes (KNN)
and interactions between components (KNN
needs a data resource - the KNN-FileDataset
interaction) to gridify. Then, we have to separate
the implementation of the data resource from its
interface, and replace all accesses to dataset by
getDataset(). In the example, the valid operations
of dataset were defined in DatasetService. Finally,
we process the code with JGRIM, resulting in:

public interface DatasetService {
 public Instance[] readItems(int
 rowStart, int rowEnd);
 public int size();
 public int dimensions();
}

public class KNN extends jgrimapi.
MGS {

 private int k;
 private DatasetService dataset;

 public KNN(int k) { this.k = k; }
 public void
setdataset(DatasetService

injectedDataset) { this.dataset =

injectedDataset };

 public DatasetService getdataset() {
return dataset; }

 /** Classification methods */

 ...

}

Note that JGRIM added proper getter/setters for
interacting with the dataset. Besides, the resulting
source code is very clean, since it was not neces-
sary to use any JGRIM API class for gridification
purposes. Moreover, JGRIM generates an XML
configuration file:

<beans>

 <bean id=”knnComponent” class=”KNN”>

 <property name=”dataset”

ref=”datasetMetaService”/>

 </bean>

 <bean id=”datasetMetaService”

class=”jgrimapi.JGRIMServiceDiscov-

erer”>

 <property name=”requiredInterface”

value=”DatasetService”/>

 </bean>

</beans>

The XML file links application components
and JGRIM metaservices together through DI.
Here, KNN is decoupled from the dataset imple-
mentation by linking it --via the dataset property--
with a component that provides runtime Web
Service discovery. Currently, service discovery
is based on the inspection of UDDI registries
(Curbera et al., 2002). Consequently, KNN can use
any external dataset service of the Grid provided
it implements the DatasetService interface and is
published to a UDDI registry.

So far we have decoupled the storage mecha-
nism of the dataset from the KNN class. When the

47

Grid-Enabling Applications with JGRIM

KNN application is executed, JGRIM searches an
appropriate dataset in the Grid and injects it into
KNN. Besides, JGRIM mediates between these two
components, hiding the actual location of the da-
taset and the communication details. Furthermore,
the application is converted into a Grid service
capable of transparently migrating its execution.
Thus, the application becomes a callable entity
that other applications can discover and use.

Now we will use JGRIM for executing KNN
in multiple distributed threads to improve its
performance. The sameClass operation classifies
two instances and compares the results:

...

c1 = classifyInstance(instA);

c2 = classifyInstance(instB);

return (c1 == c2);

The calls to classifyInstance are independent
between each other, thus they can be computed
concurrently. Let us exploit this by injecting par-
allelism into the sameClass operation. We have
to define an interface for the classifyInstance
operation:

public interface Classifier {
 public double

 classifyInstance(Instance instance);

}

After processing the code with JGRIM, a new
component is added to the XML file:

<beans>

 <bean id=”knnComponent” class=”KNN”>

 ...

 <property name=”classifier”

ref=”spawnerMetaService”/>

 </bean>

 ...

 <bean id=”spawnerMetaService”

class=”jgrimapi.JGRIMMethodSpawner”>

 <property name=”spawnableMethods”

value=”Classifier”/>

 </bean>

</beans>

JGRIMMethodSpawner1 parallelizes the invo-
cations to the methods specified by the Classifier
interface. Also, the programmer must replace the
calls to classifyInstance by calls to a fictitious
getclassifier method. Future uses of c1 and c2 will
block the execution of sameClass until their values
are computed by JGRIMMethodSpawner. This
coordination is supported through Java futures,
which are available in the java.util.concurrent
package of the JVM since version 5.0. Behind
scenes, JGRIM installs classifyInstance in several
computers of the Grid and dynamically finds idle
computers to execute one invocation per computer.
This is, JGRIM not only parallelizes KNN, but also
distributes its execution. For supporting parallel-
ism on Grids, JGRIM relies on Satin (Wrzesinska
et al., 2006), a subsystem of Ibis that is designed
to execute embarrasingly parallel computations on
distributed environments. Furthermore, a spawner
based on raw, local threads is also available.

Besides parallelism, JGRIM allows developers
to tune applications by using code mobility and
policies based on environmental conditions. To
briefly illustrate this mechanism, let us suppose
our MGS is deployed on a Grid of several sites
each hosting a replica of the dataset. Let us ad-
ditionally assume that bandwidth between sites
could drastically vary along time.

As KNN works by reading data blocks from
the dataset and then performing computations on
them, bandwidth indirectly affects response time.
Particularly, accessing a replica through a busy
network channel might decrease performance.
JGRIM metaservices, unless otherwise indicated,
assume that the best service instance is always the
one offering the highest throughput. Through a
policy, we can redefine what “best” means to an
application, i.e. the highest transfer capabilities
in our scenario.

48

Grid-Enabling Applications with JGRIM

To specify a policy for the dataset resource,
we will attach to DatasetInterface a new class
that implements four operations:

public class DatasetPolicy extends
jgrimapi.Policy {

 private boolean initialized = true;
 public String accessWith(String
methodA, String methodB){

 return jgrimapi.Constants.INVOKE;
 }

 public String accessFrom(String
siteA, String siteB){

 double trA = jgrimapi.Profiler.
instance().profile(“bandwidth”,

“localhost”, siteA);

 double trB = jgrimapi.Profiler.
instance().profile(“bandwidth”,

“localhost”, siteB);

 return (trA < trB) ? siteA: siteB;
 }

 public void before(){
 if (!this.initialized) {
 getOwnerMGS().move(jgrimapi.

Profiler.instance().idlestSite());

 this.firstEval = false;
 }

 }

 public void after(){...}
}

For simplicity, we have omitted the XML con-
figuration that is generated by JGRIM to inject this
policy into the application. The policy mechanism
works as follows: upon each call to the dataset,
DatasetPolicy is evaluated, which instructs KNN
(through accessWith and accessFrom methods)
to remotely contact the service replica which is
hosted at the site that offers the best bandwidth (al-
ternatively, the KNN application could be moved
to that site). Methods before and after are used to
perform initialization/disposal tasks before/after
an individual evaluation of the policy takes place.
For example, the policy causes KNN to migrate

to the idlest site upon the first evaluation. Like
any component, policies can maintain state (e.g.
the initialized variable), and be associated just to
single interface operations. Overall, by adding a
simple policy, KNN is able to smartly interact
with the dataset. Policy coding is not mandatory
and, even more important to our work, it does not
affect the application logic.

EVALUATION AND DISCUSSION

To provide empirical evidence about the practi-
cal soundness of our approach, we conducted a
comparison between JGRIM, ProActive and Satin.
In short, these tools were separately employed to
gridify existing implementations of two different
applications, namely the k-NN explained in past
paragraphs, and an application for panoramic
image restoration based on the enhancement al-
gorithm proposed in (Tschumperlé and Deriche,
2003). After gridification, representative code
metrics on the Grid-aware applications were taken
to quantitatively analyze how difficult is to port a
Java application to a Grid with either of the three
alternatives. Besides, experiments were conducted
to evaluate the performance of JGRIM applica-
tions with respect to the other two approaches.

The restoration application was originally im-
plemented as a master component responsible for
splitting/joining images, plus worker components
for carrying out the CPU intensive processing,
this is, running the actual restoration algorithm
on individual portions of the whole panoramic
image. Experiments were performed on a Grid
comprising three Internet-connected clusters (see
Figure 4). Each cluster hosted a replica of the k-NN
dataset wrapped with a Web Service. For the sake
of fairness, all gridified codes used the replicated
datasets. Both the original codes of k-NN and
the restoration application were implemented by
an experienced Java programmer. On the other
side, gridification was performed by a different
developer with similar skills in Java programming

49

Grid-Enabling Applications with JGRIM

but minimal background on JGRIM, ProActive
and Satin. All experiments were performed dur-
ing nighttime (from 11 P.M. to 8 A.M.), when the
Internet traffic is low and the network latency has
little variability.

Table 1 details the CPU and memory specifi-
cations of the nodes of the previous Grid setting.

Machines were equipped with Ubuntu Linux
(kernel version 2.6.20) and the Sun JDK 1.5.0.
The reason of using such an heterogeneous hard-
ware was to establish a realistic Grid testbed for
the experiments.

We assessed the impact of gridification on the
application code when employing the three tools

Figure 4. Grid used for the experiments

Table 1. Hardware specifications of the Grid machines

Cluster name Machine
name CPU model CPU frequency Memory

(MB)

A
A.1 AMD Athlon XP 2200+ 1.75 Ghz. 256

A.2 Intel Core2 T5600 1.83 Ghz. (per core) 1.024

B
B.1 AMD Sempron 1.90 Ghz. 512

B.2 AMD Athlon 64 X2 Dual Core 3.600+ 2.00 Ghz. (per core) 1.024

C

C.1 Intel Pentium 4 2.80 Ghz. 512

C.2 Intel Pentium III (Coppermine) 852 Mhz. 256

C.3 Intel Pentium III (Coppermine) 852 Mhz. 256

C.4 Intel Pentium III (Coppermine) 852 Mhz. 384

C.5 Intel Pentium III (Coppermine) 852 Mhz. 384

C.6 Intel Pentium III (Coppermine) 798 Mhz. 256

50

Grid-Enabling Applications with JGRIM

by comparing TLOC (Total Lines Of Code) and
GLOC (Grid Lines Of Code) metrics for the
original applications and their gridified counter-
parts. Basically, these metrics were computed as
follows:

• TLOC: Number of non-blank, non-com-
mented code lines including algorithms,
code for interacting with data, performing
Grid exception handling, and parallelism.
Note that this metric is closely related to
the extra effort necessary to adapt the ordi-
nary version of the applications to execute
on our Grid.

• GLOC: Number of lines within the code
of a gridified application that explicitly
access the underlying Grid platform API.
Intuitively, the larger the GLOC, the more
the time a developer spends learning the
API. In addition, greater GLOC means the
application is more tied to a specific Grid
library.

Before measuring, all codes were uniformly
formatted with the help of the Eclipse SDK. Table
2 summarizes the obtained values for these met-
rics (lower values are better). Moreover, for the
JGRIM applications we obtained two variants by
implementing a caching policy for k-NN, which
stores dataset accesses to reduce network traffic,
and a mobility policy for the image application,
which explicitly moves application components
to reduce network latency.

From Table 2, it is clear that at least for these
applications, JGRIM obtained good TLOC and
GLOC. Satin k-NN resulted in high TLOC since
the platform does not provide support for using
Web Services. On the other hand, ProActive sup-
port for Web Services is minimal. This feature,
however, is crucial to achieve interoperability
across Grids (Atkinson et al., 2005). Conversely,
discovery metaservices allowed JGRIM k-NN to
delegate dataset discovery and access to the un-
derlying platform, discarding the code for using
a file-based dataset present in the original k-NN
application. Moreover, achieving parallelism (i.e.
classify several instances in parallel) with Satin
and ProActive demanded more API code. Remark-
ably, unlike its competitors, the JGRIM API was
only used for coding policies, not affecting the
original codes. These facts suggest that using
JGRIM may lead to more maintainable and por-
table Grid code, since JGRIM effectively pushes
most of the code for handling Grid-specific con-
cerns out of the application logic. Besides, the
lower GLOC values of the JGRIM applications
indicate that JGRIM is appropriate for users not
proficient in JGRIM or even Grid technologies,
as the amount of API functionality that is neces-
sary to learn before using the tool is much less
compared to employing Satin and ProActive.

To evaluate the performance and resource
usage of the Grid-enabled codes, each gridified
version of k-NN was used to classify several list
of input instances with different sizes (5, 10, 15,
20 and 25 instances). For the image application

Table 2. Test applications: code metrics

k-NN Image restoration

Tool TLOC GLOC Tool TLOC GLOC

Original 192 N/A Original 241 N/A

Satin 1477 10 Satin 227 5

ProActive 404 404 ProActive 299 17

JGRIM 166 4 JGRIM 226 0

JGRIM (with caching policy) 179 6 JGRIM (with mobility policy) 233 1

51

Grid-Enabling Applications with JGRIM

we used five pictures of various sizes (0.4 MB,
0.9 MB, 1.5 MB, 1.8 MB and 2.4 MB). We aver-
aged the execution time (AET) and accumulated
the network traffic for 10 executions per test
(deviations were around 5%). Loopback network
traffic was filtered out, as it does not consume
bandwidth and it is negligible compared to LAN
and WAN traffic. To capture network traffic, we
used the tcpdump2 network monitoring program.
Figures 5 and 6 show the obtained results. As
expected, JGRIM behaved similar to the alterna-
tives. Besides, the use of JGRIM policies (caching
and mobility) greatly improved both performance
and network usage.

When not using the caching policy, the JGRIM
variant of k-NN incurred in a performance over-
head of 10-15% compared to its Satin counterpart.

However, this overhead was associated to perform
service discovery, a key Grid feature that is not
present in Satin and ProActive. Besides, caching
allowed JGRIM to continue using discovery
-which intuitively translates into overhead- and
at the same time to stay very competitive. Fur-
thermore, ProActive k-NN performed poorly.
Roughly, ProActive is strongly oriented towards
simplifying the deployment of Grid applications,
which contributes to make application setup
slower. In principle, these results suggest that
ProActive is not suitable for applications whose
execution time is similar than their setup time.
Moreover, caching significantly reduced network
traffic, which is a consequence of performing less
remote dataset accesses. It is worth noting that
Satin and ProActive k-NN might have benefited

Figure 5. AET of the k-NN application (left) and the image restoration application (right)

Figure 6. Network traffic of the k-NN application (left) and the image restoration application (right)

52

Grid-Enabling Applications with JGRIM

from this caching technique too, but this would
have required yet more modifications to the
original application code, and thus it would have
increased TLOC.

With respect to the image application, the
plain variant of JGRIM (this is, without using the
mobility policy) performed better than Satin, even
when in the experiments JGRIM used Satin for
performing parallelism. This is because JGRIM
exploits Satin by extending it so as to avoid the
standard handshaking process of Satin when coop-
eratively executing applications. Furthermore, the
ProActive version showed acceptable performance
levels. In this case, unlike ProActive k-NN, the
deployment times did not heavily impact in the
performance, since these times were not significant
with respect to the total execution times.

Moreover, ProActive generated the least
amount of WAN traffic. Unlike Satin and there-
fore JGRIM, its job scheduling is not subject to
random factors. Basically, the Satin platform is
based on a load balancing algorithm by which
each machine of the underlying Grid randomly
asks other nodes for jobs to execute when it
becomes idle. Nevertheless, injecting mobility
allowed JGRIM to achieve higher performance
and reduce this traffic. Again, the policy did not
affect the original code. Unfortunately, Satin do
not let developers to explicitly control mobility,

whereas ProActive only offers weak mobility,
which requires extensive code modifications to
manually handle the behavior for saving/restor-
ing the execution state of running computations.

To conclude, Figure 7 shows the speedup
achieved by the various applications, which were
computed as AETs/AET, where AETs is the average
execution time of the original codes on a single
machine (C.1). Note that, in both graphics, the
speedup curves of Satin and JGRIM seemed to
have the same behavior, since JGRIM relies on
Satin for parallelism. This is, JGRIM inherits the
job scheduling scheme of Satin. Due to the random
nature of the Satin scheduler plus the heteroge-
neity of our Grid setting, for some experiments
regarding the Satin and JGRIM applications, we
obtained lower speedups for larger experiments.
For example, note that for k-NN, there was a dip
in the speedup for 20 instances (Figure 7 (left)). To
a lesser extent, this effect was also present in the
restoration application. Furthermore, the ProAc-
tive applications appeared to linearly gain speedup
as the size of the experiments increased, but this
trend should be further corroborated. In summary,
the implications of the speedups are twofold. On
one hand, the original codes certainly benefited
from being gridified, thus they were representa-
tive Grid applications to experiment with. On the
other hand, through the use of policies, JGRIM

Figure 7. Speedups achieved by the grid-enabled versions of the k-NN application (left) and the image
restoration application (right)

53

Grid-Enabling Applications with JGRIM

achieved very competitive speedups compared
to both Satin and ProActive, while preserving
the technical quality of the application code,
as evidenced by the values for the code metrics
discussed before.

CONCLUSION AND FUTURE WORK

In this article, we have presented JGRIM, a new
approach to simplify the gridification of Java
applications by hiding the complex nature of the
Grid and its services. We showed the advantages
of the approach through experimentation with
two related approaches. A distinctive feature
JGRIM is that it promotes a convenient model
for developing Grid applications that is familiar
to most Java programmers. JGRIM allows for a
better separation of application logic and Grid
code (e.g. for performing service discovery and
invocation), and makes the task of consuming
Grid services easier. Besides, custom decisions
for tuning gridified applications can be specified
separately from their logic through the use of
policies, thus letting developers to seamlessly
adapt the same application to different Grids and
distributed environments. We experimentally
showed that JGRIM simplifies gridification and
produces better Grid code without resigning per-
formance for the two aforementioned applications.
However, we will conduct more experiments to
further validate JGRIM. This will involve the
gridification of more applications on larger Grids.

We are extending JGRIM in several directions.
Since JGRIM applications can travel across differ-
ent administrative domains looking for resources
and services, security is crucial. A future research
line is to incorporate security mechanisms into
JGRIM. Another limitation arises from the as-
sumptions made for gridifying applications, as
JGRIM only accepts as input component-based
applications, which does not likely hold for all
applications. Fortunately, the problem of com-
ponentization of legacy object-oriented code has

been addressed (Li & Tahvildari, 2006). Therefore,
a similar approach could be employed to supply
the JGRIM gridification process with an extra
code transformation phase to ensure, prior to the
first step of the current version of the process, that
input applications are component-based. Similarly,
it would be interesting to handle the case when
the source code of ordinary applications is not
available for gridification. We have implemented
a tool that builds on the ideas presented in this
article, but focuses on dynamically modifying Java
bytecodes to run in parallel on a Grid. Basically,
the tool takes advantage of the facilities provided
by the Java Virtual Machine for altering classes at
runtime to adapt ordinary bytecodes to transpar-
ently run on Satin clusters.

In addition, we are working on metaservices
to leverage other state-of-the-art mechanisms for
Grid resource discovery, such as those described
in (Zhang et al., 2007), and more Grid execution
services. With regard to the former, we are cur-
rently integrating JGRIM with GMAC (Gotthelf
et al., 2008), a P2P protocol of our own that is
designed for exchanging information between the
hosts of a Grid in a scalable way. Specifically,
GMAC will serve as a mean to efficiently gather
information about the Grid resources available
for executing applications, thus providing ac-
curate metrics through the profiling interface to
application programmers. With respect to the
latter, we have already implemented a prototype
integration with Condor that is based on a Java
interface to Condor clusters3. Basically, this will
allow JGRIM to smoothly delegate to Condor the
execution of component operations representing
resource-intensive, coarse-grained Grid jobs.

Also, since JGRIM is essentially a technology-
agnostic gridification method, we are exploring
the viability of materializing JGRIM in other pro-
gramming languages besides Java. For example,
languages such as C++ or Python are extensively
employed for developing Grid applications. How-
ever, this will require to carefully study whether
these new languages provide support for core

54

Grid-Enabling Applications with JGRIM

features of JGRIM such as mobility, dependency
injection and Web Service integration.

Finally, we are developing an Eclipse plug-
in to supply developers with graphical tools to
specify dependencies and associate metaservices.
The plug-in is also expected to offer support for
deploying, debugging and monitoring the execu-
tion of JGRIM applications. Basically, the goal of
this line of research is to provide a full-fledged
IDE for gridifying and running applications with
JGRIM.

REFERENCES

Allen, G., Davis, K., Goodale, T., Hutanu, A.,
Kaiser, H., & Kielmann, T. (2005). The Grid
Application Toolkit: Towards generic and easy
application programming interfaces for the
Grid. Proceedings of the IEEE, 93(3), 534–550.
doi:10.1109/JPROC.2004.842755

Alonso, J., Hernández, V., & Moltó, G. (2006).
GMarte: Grid middleware to abstract remote task
execution. Concurrency and Computation, 18(15),
2021–2036. doi:10.1002/cpe.1052

Atkinson, M., DeRoure, D., Dunlop, A., Fox, G.,
Henderson, P., & Hey, T. (2005). Web Service
Grids: An evolutionary approach. Concurrency
and Computation, 17(2-4), 377–389. doi:10.1002/
cpe.936

Baduel, L., Baude, F., Caromel, D., Contes, A.,
Huet, F., Morel, M., & Quilici, R. (2006). Grid
computing: Software environments and tools.
In Programming, Composing, Deploying on the
Grid, (pp. 205-229)., Berlin, Heidelberg, and New
York: Springer

Bartosz Baliś, M., & Wegiel, M. (2008). LGF: A
flexible framework for exposing legacy codes as
services. Future Generation Computer Systems,
24(7), 711–719. doi:10.1016/j.future.2007.12.001

Bazinet, A., Myers, D., Fuetsch, J., & Cum-
mings, M. (2007). Grid Services Base Library: A
high-level, procedural application programming
interface for writing Globus-based Grid services.
Future Generation Computer Systems, 23(3),
517–522. doi:10.1016/j.future.2006.07.009

Curbera, F., Duftler, M., Khalaf, R., Nagy, W.,
Mukhi, N., & Weerawarana, S. (2002). Unraveling
the Web Services Web: An introduction to SOAP,
WSDL, and UDDI. IEEE Internet Computing,
6(2), 86–93. doi:10.1109/4236.991449

Dasarathy, B. (1991). Nearest neighbor (NN)
norms: Nn pattern classification techniques. IEEE
Computer Society Press Tutorial.

Delaittre, T., Kiss, T., Goyeneche, A., Tersty-
anszky, G., Winter, S., & Kacsuk, P. (2005).
GEMLCA: Running legacy code applications as
Grid services. Journal of Grid Computing, 3(1-2),
75–90. doi:10.1007/s10723-005-9002-8

Fahringer, T., & Jugravu, A. (2005). JavaSym-
phony: A new programming paradigm to control
and synchronize locality, parallelism and load
balancing for parallel and distributed comput-
ing. Concurrency and Computation, 17(7-8),
1005–1025. doi:10.1002/cpe.840

Foster, I. (2005). Globus Toolkit version 4: Soft-
ware for service-oriented systems. In Network
and Parallel Computing - IFIP International
Conference, Beijing, China, 3779, 2-13. Springer.

Foster, I., & Kesselman, C. (2003). The Grid 2:
Blueprint for a new computing infrastructure,
chapter Concepts and Architecture (pp. 37–63).
San Francisco, CA, USA: Morgan-Kaufmann
Publishers Inc.

Gannon, D., Krishnan, S., Fang, L., Kandaswamy,
G., Simmhan, Y., & Slominski, A. (2005). On
building parallel and Grid applications: Compo-
nent technology and distributed services. Cluster
Computing, 8(4), 271–277. doi:10.1007/s10586-
005-4094-2

55

Grid-Enabling Applications with JGRIM

Gentzsch, W. (2009). Porting applications to
grids and clouds. International Journal of Grid
and High Performance Computing, 1(1), 55–77.
doi:10.4018/jghpc.2009010105

Gotthelf, P., Zunino, A., Mateos, C., & Campo,
M. (2008). GMAC: An overlay multicast network
for mobile agent platforms. Journal of Parallel
and Distributed Computing, 68(8), 1081–1096.
doi:10.1016/j.jpdc.2008.04.002

GridGain Systems. (2008). GridGain. Retrieved
October 16, 2008, from http://www.gridgain.com.

Johnson, R. (2005). J2EE development frame-
works. Computer, 38(1), 107–110. doi:10.1109/
MC.2005.22

JPPF. (2008). Java Parallel Processing Frame-
work. Retrieved October 16, 2008, from http://
www.jppf.org.

Li, S., & Tahvildari, L. (2006). JComp: A reuse-
driven componentization framework for Java
applications. In 14th IEEE International Confer-
ence on Program Comprehension (ICPC’06), (pp.
264-267). IEEE Computer Society.

Mateos, C. (2008). An approach to ease the
gridification of conventional applications. Doc-
toral dissertation. Universidad del Centro de la
Provincia de Buenos Aires, Argentina. Retrieved
October 16, 2008, from http://www.exa.unicen.
edu.ar/~cmateos/files/phdthesis.pdf.

Mateos, C., Zunino, A., & Campo, M. (2005).
Integrating intelligent mobile agents with Web
Services. International Journal of Web Ser-
vices Research, 2(2), 85–103. doi:10.4018/
jwsr.2005040105

Mateos, C., Zunino, A., & Campo, M. (2008a).
A survey on approaches to gridification. Soft-
ware, Practice & Experience, 38(5), 523–556.
doi:10.1002/spe.847

Mateos, C., Zunino, A., & Campo, M. (2008b).
JGRIM: An approach for easy gridification of ap-
plications. Future Generation Computer Systems,
24(2), 99–118. doi:10.1016/j.future.2007.04.011

McGough, S., Lee, W., & Das, S. (2008). A
standards based approach to enabling legacy
applications on the Grid. Future Generation
Computer Systems, 24(7), 731–743. doi:10.1016/j.
future.2008.02.004

Paventhan, A., Takeda, K., Cox, S., & Nicole,
D. (2007). MyCoG.NET: A multi-language CoG
toolkit. Concurrency and Computation, 19(14),
1885–1900. doi:10.1002/cpe.1133

Thain, D., Tannenbaum, T., & Livny, M. (2003).
Condor and the grid . In Berman, F., Fox, G., &
Hey, A. (Eds.), Grid computing: Making the global
infrastructure a reality (pp. 299–335). New York,
NY, USA: John Wiley & Sons Inc.

Tschumperlé, D., & Deriche, R. (2003). Vector-
valued image regularization with PDE’s: A com-
mon framework for different applications. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’03), Madison, WI, USA, 1,
651-656. IEEE Computer Society.

van Heiningen, W., MacDonald, S., & Brecht,
T. (2008). Babylon: middleware for distributed,
parallel, and mobile Java applications. Concur-
rency and Computation, 20(10), 1195–1224.
doi:10.1002/cpe.1264

van Nieuwpoort, R., Maassen, J., Wrzesinska, G.,
Hofman, R., Jacobs, C., Kielmann, T., & Bal, H.
(2005). Ibis: A flexible and efficient Java based
Grid programming environment. Concurrency and
Computation, 17(7-8), 1079–1107. doi:10.1002/
cpe.860

von Laszewski, G., Gawor, J., Lane, P., Rehn, N.,
& Russell, M. (2003). Features of the Java Com-
modity Grid Kit. Concurrency and Computation,
14(13-15), 1045–1055. doi:10.1002/cpe.674

56

Grid-Enabling Applications with JGRIM

Walls, C., & Breidenbach, R. (2005). Spring in
action. Greenwich, Connecticut, USA: Manning
Publications Co.

Wrzesinska, G., van Nieuwport, R., Maassen, J.,
Kielmann, T., & Bal, H. (2006). Fault-tolerant
scheduling of fine-grained tasks in Grid envi-
ronments. International Journal of High Perfor-
mance Computing Applications, 20(1), 103–114.
doi:10.1177/1094342006062528

Zhang, X., Freschl, J., & Schopf, J. (2007). Scal-
ability analysis of three monitoring and informa-
tion systems: MDS2, R-GMA, and Hawkeye.
Journal of Parallel and Distributed Computing,
67(8), 883–902. doi:10.1016/j.jpdc.2007.03.006

ENDNOTES

1 This is an example of a metaservice repre-
senting an NFS (parallelism)

2 tcpdump: http://www.tcpdump.org
3 Condor Java API: http://staff.aist.go.jp/hide-

nakada/condor_java_api/index.html

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1,
Issue 3, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 52-72, copyright 2009 by IGI Publishing (an imprint of IGI Global).

Section 2
Scheduling

58

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

Kuo-Chan Huang
National Taichung University of Education, Taiwan

Po-Chi Shih
National Tsing Hua University, Taiwan

Yeh-Ching Chung
National Tsing Hua University, Taiwan

Moldable Job Allocation
for Handling Resource

Fragmentation in
Computational Grid

ABSTRACT

In a computational Grid environment, a common practice is to try to allocate an entire parallel job onto
a single participating site. Sometimes a parallel job, upon its submission, cannot fit in any single site due
to the occupation of some resources by running jobs. How the job scheduler handles such situations is
an important issue which has the potential to further improve the utilization of Grid resources, as well
as the performance of parallel jobs. This paper adopts moldable job allocation policies to deal with such
situations in a heterogeneous computational Grid environment. The proposed policies are evaluated
through a series of simulations using real workload traces. The moldable job allocation policies are also
compared to the multi-site co-allocation policy, which is another approach usually used to deal with
the resource fragmentation issue. The results indicate that the proposed moldable job allocation poli-
cies can further improve the system performance of a heterogeneous computational Grid significantly.

DOI: 10.4018/978-1-60960-603-9.ch004

59

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

INTRODUCTION

Most parallel computing environments running
scientific applications adopt the space-sharing ap-
proach. In this approach, the processing elements
of a parallel computer are logically partitioned
into several groups. Each group is dedicated
to a single job, which may be serial or parallel.
Therefore, each job has exclusive use of the group
of processing elements allocated to it when it is
running. However, different running jobs may have
to share the networking and storage resources to
some degree.

In a computational Grid environment, a com-
mon practice is try to allocate an entire parallel
job onto a single participating site. However, this
kind of allocation sometimes runs into a situation
called resource fragmentation. The following is an
example. Assume a Grid consisting of 4 computing
sites each equipped with 32 processors. After a
sequence of job allocations, at some moment the
amounts of leftover processors for the four sites
are 4, 2, 4, 6 in order. At the moment, a new job
requiring 10 processors is submitted into the Grid.
Apparently, there is no site being able to accom-
modate the job for immediate execution. It has to
wait in queue. However, carefully inspecting the
leftover processors reveals that some combina-
tions among the four sites have a total amount of
leftover processors larger than the requirement
of the incoming job. For example, site 3 and site
4 add up to exactly 10 processors. Site 1, site2,
and site3 together can make it, too. This is what
we called resource fragmentation in Grid envi-
ronments. This paper tries to deal with resource
fragmentation through moldable job allocation.

Most current parallel application programs
have the moldable property (Dror, Larry, Uwe,
Kenneth, & Parkson, 1997). It means the programs
are written in a way so that at runtime they can
exploit different parallelisms for execution ac-
cording to specific needs or available resource.
Parallelism here means the number of processors a
job uses for its execution. The moldable job alloca-

tion policies proposed in this paper take advantage
of the moldable property of parallel programs to
improve the overall system performance.

This paper develops moldable job allocation
policies for both homogeneous parallel computers
and heterogeneous computational Grid environ-
ments. The proposed policies require users to
provide estimations of job execution times upon
job submission. The policies are evaluated through
a series of simulations using real workload traces.
The effects of inexact runtime estimations on sys-
tem performance are also investigated. The mold-
able job allocation policies are also compared to
the multi-site co-allocation policy, which is another
approach usually used to deal with the resource
fragmentation issue. The results indicate that the
proposed moldable job allocation policies are
effective as well as stable under different system
configurations and can tolerate a wide range of
runtime estimation errors.

RELATED WORK

This paper deals with scheduling and allocating
independent parallel jobs in a heterogeneous
computational Grid. Without Grid computing lo-
cal users can only run jobs on the local site. The
owners or administrators of different sites are
interested in the consequences of participating in
a computational Grid, whether such participation
will result in better service for their local users
by improving the job turnaround time. A common
load-sharing practice is allocate an entire paral-
lel job to a single site which is selected from all
sites in the Grid based on some criteria. However,
sometimes a parallel job, upon its submission,
cannot fit in any single site due to the occupation
of some resources by running jobs. How the job
scheduler handles such situations is an important
issue which has the potential to further improve
the utilization of Grid resources as well as the
performance of parallel jobs.

60

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

Job scheduling for parallel computers has been
subject to research for a long time. As for Grid
computing, previous works discussed several
strategies for a Grid scheduler. One approach
is the modification of traditional list scheduling
strategies for usage on Grid (Carsten, Volker,
Uwe, Ramin, & Achim, 2002; Carsten Ernemann,
Hamscher, Streit, & Yahyapour, 2002a, 2002b;
Hamscher, Schwiegelshohn, Streit, & Yahyapour,
2000). Some economic based methods are also
being discussed (Buyya, Giddy, & Abramson,
2000; Carsten, Volker, & Ramin, 2002; Rajkumar
Buyya, 2002; Yanmin et al., 2005). In this paper we
explore non economic scheduling and allocation
policies with support for a speed-heterogeneous
Grid environment.

England and Weissman in (England & Weiss-
man, 2005) analyzed the costs and benefits of load
sharing of parallel jobs in the computational Grid.
Experiments were performed for both homoge-
neous and heterogeneous Grids. However, in their
works simulations of a heterogeneous Grid only
captured the differences in capacities and workload
characteristics. The computing speeds of nodes on
different sites are assumed to be identical. In this
paper we deal with load sharing issues regarding
heterogeneous Grids in which nodes on different
sites may have different computing speeds.

For load sharing there are several methods
possible for selecting which site to allocate a
job. Earlier simulation studies in the literature
(Hamscher et al., 2000; Huang & Chang, 2006)
showed the best results for a selection policy called
best-fit. In this policy a particular site is chosen
on which a job will leave the least number of free
processors if it is allocated to that site. However,
these simulation studies are performed based on
a computational Grid model in which nodes on
different sites all run at the same speed. In this
paper we explore possible site selection policies
for a heterogeneous computational Grid. In such
a heterogeneous environment nodes on different
sites may run at different speeds.

In the literature (Barsanti & Sodan, 2007;
John, Uwe, Joel, & Philip, 1994; Sabin, Lang, &
Sadayappan, 2007; Srividya, Vijay, Rajkumar,
Praveen, & Sadayappan, 2002; Sudha, Savitha, &
Sadayappan, 2003; Walfredo & Francine, 2000,
2002) several strategies for scheduling moldable
jobs have been introduced. Most of the previous
works either assume the job execution time is a
known function of the number of processors al-
located to it or require users to provide estimated
job execution time. In (Huang, 2006) without the
requirement of known job execution time three
adaptive processor allocation policies for mold-
able jobs were evaluated and shown to be able to
improve the overall system performance in terms
of average job turnaround time. Most of the previ-
ous work deals with scheduling moldable jobs in a
single parallel computer or in a homogeneous Grid
environment. In this paper, we explore moldable
job allocation in a heterogeneous computational
Grid environment. In addition to moldable job
allocation, multi-site co-allocation (Sonmez,
Mohamed, & Epema, 2010) is another approach
usually used to deal with the resource fragmenta-
tion issue in computational Grid environments.
We will compare the performance of these two
approaches in this paper.

COMPUTATIONAL GRID MODEL
AND EXPERIMENTAL SETTING

In this section, the computational Grid model is
introduced on which the evaluations of the pro-
posed policies are based. In the model, there are
several independent computing sites with their
own local workload and management system. This
paper examines the impact on performance results
if the computing sites participate in a computa-
tional Grid with appropriate job scheduling and
processor allocation policies. The computational
Grid integrates the sites and shares their incoming
jobs. Each participating site is a homogeneous
parallel computer system. The nodes within each

61

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

site run at the same speed and are linked with a
fast interconnection network that does not favor
any specific communication pattern (Feitelson
& Rudolph, 1995). This means a parallel job can
be allocated on any subset of nodes in a site. The
parallel computer system uses space-sharing and
run the jobs in an exclusive fashion.

The system deals with an on-line scheduling
problem without any knowledge of future job
submissions. The jobs under consideration are
restricted to batch jobs because this job type is
dominant on most parallel computer systems run-
ning scientific and engineering applications. For
the sake of simplicity, in this paper we assume
a global Grid scheduler which handles all job
scheduling and resource allocation activities. The
local schedulers are only responsible for starting
the jobs after their allocation by the global sched-
uler. Theoretically a single central scheduler could
be a critical limitation concerning efficiency and
reliability. However, practical distributed imple-
mentations are possible, in which site-autonomy is
still maintained but the resulting schedule would
be the same as created by a central scheduler (C.
Ernemann, Hamscher, & Yahyapour, 2004).

For simplification and efficient load sharing
all computing nodes in the computational Grid
are assumed to be binary compatible. The Grid is
heterogeneous in the sense that nodes on different
sites may differ in computing speed and differ-
ent sites may have different numbers of nodes.
When load sharing activities occur a job may
have to migrate to a remote site for execution.
In this case the input data for that job have to be
transferred to the target site before the job execu-
tion while the output data of the job is transferred
back afterwards. This network communication is
neglected in our simulation studies as this latency
can usually be hidden in pre- and post-fetching
phases without regards to the actual job execution
phase (C. Ernemann et al., 2004).

In this paper we focus on the area of high
throughput computing, improving system’s overall
throughput with appropriate job scheduling and

allocation methods. Therefore, in our studies the
requested number of processors for each job is
bound by the total number of processors on the
local site from which the job is submitted. The
local site which a job is submitted from will be
called the home site of the job henceforward in
this paper. We assume all jobs have the moldable
property. It means the programs are written in a
way so that at runtime they can exploit different
parallelisms for execution according to specific
needs or available resource. Parallelism here
means the number of processors a job uses for
its execution. In our model we associated each
job with several attributes. The following five
attributes are provided before a simulation starts.
The first four attributes are directly gotten from
the SDSC SP2’s workload log. The estimated
runtime attribute is generated by the simulation
program according to the specified range of esti-
mation errors and their corresponding statistical
distributions.

• Site number. This indicates the home site
of a job which it belongs to.

• Number of processors. It is the number of
processors a job uses according to the data
recorded in the workload log.

• Submission time. This provides the infor-
mation about when a job is submitted to its
home site.

• Runtime. It indicates the required execu-
tion time for a job using the specified num-
ber of processors on its home site. This
information for runtime is required for
driving the simulation to proceed.

• Estimated runtime. An estimated runtime
is provided upon job submission by the
user. The job scheduler uses this informa-
tion to guide the determination process of
job scheduling and allocation.

The following job attributes are collected and
calculated during the simulation for performance
evaluation.

62

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

• Waiting time. It is the time between a
job’s submission and its allocation.

• Actual runtime. When moldable job al-
location is applied, a job’s actual runtime
may be different from the runtime recorded
in the workload log. This attribute records
the actual runtime it takes.

• Actual number of processors. When the
scheduler applies moldable job allocation,
the number of processors a job actually
uses for execution may be different from
the value recorded in the workload log.
This attribute records the number of pro-
cessors actually used.

• Execution site. In a computational Grid
environment, a job may be scheduled to
run on a site other than its home site. The
attribute records the actual site that it runs
on.

• Turnaround time. The simulation pro-
gram calculates each job’s turnaround time
after its execution and records the value in
this attribute.

Our simulation studies were based on publicly
downloadable workload traces (“Parallel Work-
loads Archive,”). We used the SDSC’s SP2 work-
load logs1 on (“Parallel Workloads Archive,”) as
the input workload in the simulations. The detailed
workload characteristics are shown in Table 1.

In the SDSC’s SP2 system the jobs in the logs
are put into different queues and all these queues
share the same 128 processors. In section 4, this
original workload is directly used to simulate a
homogeneous parallel computer with 128 proces-
sors. In section 5 the workload log will be used
to model the workload on a computational Grid
consisting of several different sites whose work-
loads correspond to the jobs submitted to the
different queues respectively. Table 2 shows the
configuration of the computational Grid accord-
ing to the SDSC’s SP2 workload log. The number
of processors on each site is determined according
to the maximum number of required processors
of the jobs belonged to the corresponding queue
for that site.

To simulate the speed difference among par-
ticipating sites we define a speed vector, e.g.
speed=(sp1,sp2,sp3,sp4,sp5), to describe the

Table 1. Characteristics of the workload log on SDSC’s SP2

Number of
jobs

Maximum
execution time

(sec.)

Average
execution time

(sec.)

Maximum number of
processors

 per job

Average number of processors
 per job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490

Table 2. Configuration of the computational Grid according to SDSC’s SP2 workload

total site 1 site 2 site 3 site 4 site 5

Number of processors 442 8 128 128 128 50

63

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

relative computing speeds of all the five sites in
the Grid, in which the value 1 represents the
computing speed resulting in the job execution
time in the original workload log. We also define
a load vector, e.g. load=(ld1,ld2,ld3,ld4,ld5),
which is used to derive different loading levels
from the original workload data by multiplying
the load value ldi to the execution times of all jobs
at site i.

MOLDABLE JOB ALLOCATION
ON HOMOGENEOUS
PARALLEL COMPUTER

Moldable job allocation takes advantage of the
moldable property of parallel applications to
improve the overall system performance. For
example, an intuitive idea is allowing a job to use
a less number of processors than originally speci-
fied for immediate execution if at that moment the
system has not enough free processors; otherwise
the job has to wait in a queue for an uncertain
period of time. On the other hand, if the system
has more free processors than a job’s original
requirement, the system might let the job to run
with more processors than originally required to
shorten its execution time. This is called moldable
job allocation in this paper. Therefore, the system
can dynamically determine the runtime parallelism
of a job before its execution through moldable job
allocation to improve system utilization or reduce
the job’s waiting time in queue.

For a specific job, intuitively we know that
allowing higher parallelism can lead to shorter
execution time. However, when the overall system
performance is concerned, the positive effects of
raising a job’s parallelism can not be so assured
under the complex system behavior. For example,
although raising a job’s parallelism can reduce
its required execution time, it might, however,
increase other jobs’ probability of having to wait
in queue for longer time. This would increase
those jobs’ waiting time and in turn turnaround

time. Therefore, it is not straightforward to know
how raising a single job’s parallelism would affect
the overall system-level performance, e.g. the
average turnaround time of all jobs. On the other
hand, reducing a job’s parallelism might shorten
its waiting time in queue at the cost of enlarged
execution time. It is not always clear whether the
combined effects of shortened waiting time and
enlarged execution time would lead to a reduced
or increased overall turnaround time. Moreover,
the reduced parallelism of a job would usually in
turn result in the decreased waiting time of other
jobs. This makes it even more complex to analyze
the overall effects on system performance.

The above examples illustrate that the effects
of the idea of moldable job allocation on overall
system performance is complex and require further
evaluation. In our previous work (Huang, 2006)
we proposed two possible adaptive processor al-
location policies. In this paper, we improve the two
policies by requiring users to provide estimated
job execution time upon job submission, just like
what is required by the backfilling algorithms. The
estimated job execution time is used to help the
system determine whether to dynamically scale
down a job’s parallelism for immediate execution,
i.e. shorter waiting time, at the cost of longer
execution time or to keep it waiting in queue for
the required amount of processors to become
available. This section explores and evaluates the
two improved moldable job allocation policies,
which take advantage of the moldable property
of parallel applications, on homogeneous paral-
lel computers. The three allocation policies to be
evaluated are described in detail in the following.

• No adaptive scaling. This policy allocates
the number of processors to each parallel
job exactly according to its specified re-
quirement. The policy is used in this sec-
tion as the performance basis for evaluat-
ing the moldable job allocation policies.

• Adaptive scaling down. If a parallel job
specifies an amount of processors which

64

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

at that moment is larger than the number
of free processors. The system has two
choices for scheduling the job: scaling its
parallelism down for immediate execution
or keeping it waiting in queue. According
to the estimated execution time of the job,
the system can compute the job’s enlarged
execution time once scaling down its par-
allelism. On the other hand, based on the
estimated execution time of each job run-
ning on the system, it is possible to pre-
dict how long it will take for the system to
gather enough free processors to fulfill the
original requirement of the job. Therefore,
the system can compare the resultant per-
formances of the two choices and choose
the better one. We use a threshold variable
to control the selection between the two
choices. The system chooses to scale down
the job’s parallelism for immediate execu-
tion only if threshold × To > Tsd, where To
is the predicted turnaround time if the job
waits in queue until enough free proces-
sors are available and Tsd is the predicted
turnaround time if the job run immediately
with reduced parallelism.

• Conservative scaling up and down. In ad-
dition to the scaling down mechanism de-
scribed in the previous policy, this policy

automatically scales a parallel job’s paral-
lelism up to use the amount of total free
processors even if its original requirement
is not that large. However, to avoid a sin-
gle job from exhausting all free processors,
resulting in subsequent jobs’ unnecessary
enlarged waiting time in queue, the policy
scales a parallel job’s parallelism up only if
there are no jobs behind it in queue. This is
why it is called conservative.

Figure 1 shows the performance evaluation of
various allocation policies where

• no scaling. No adaptive scaling.
• down. Adaptive scaling down without run-

time estimation.
• down_est. Adaptive scaling down with

runtime estimation.
• up_down. Conservative scaling up and

down without runtime estimation.
• up_down_est. Conservative scaling up and

down with runtime estimation.

For the adaptive policies with runtime esti-
mation, we experimented with several possible
threshold values and chose the best result to present
in Figure 1. For the adaptive scaling down policy,
the best threshold value is 2.1 and the conserva-

Figure 1. Performance comparison of moldable job allocation policies

65

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

tive scaling up and down policy delivers the best
performance when the threshold value is 2. Figure
1 shows that moldable job allocation in general
can improve the overall system performance
several times, compared to the traditional alloca-
tion policy sticking to a job’s original amount of
processor requirement. Moreover, the improved
moldable job allocation policies presented in
this paper can further improve the performance
significantly with the aid of runtime estimation.
For the original moldable job allocation policies,
allowing scaling up parallelism cannot improve
system performance further in addition to scaling
down parallelism in terms of average turnaround
time. However, for the improved moldable alloca-
tion policies, scaling up parallelism does improve
the system performance delivered by the policy
which scales down the parallelism only. Overall
speaking, the conservative scaling up and down
policy with runtime estimation outperforms the
other policies.

The studies in Figure 1 assume that users al-
ways provide exact estimations of job execution
times. However, this is by no means possible in
real cases. Therefore, we performed additional
simulation studies to evaluate the stability of

the moldable job allocation policies when users
provide only inexact estimations. The results are
presented in Figure 2. The error range of estima-
tion is relative to a job’s actual execution time.
Figure 2 shows that sometimes small estimation
error might even lead to better performance than
exact estimation such as the case of conservative
scaling up and down with a 20% error range. In
general, a larger error range results in degraded
performance. However, up to 90% error range, the
improved moldable job allocation policies with
runtime estimation still outperform the original
moldable allocation policies, compared to Figure
1. The results illustrate that the proposed moldable
job allocation policies are stable and practical.

The simulations for Figure 2 assume the esti-
mation errors conform to the uniform distribution.
Figure 3 presents another series of simulations
which evaluate the cases where the estimation
errors conform to the normal distribution. The
results again show that sometimes larger error
ranges lead to better performances. Moreover,
Figure 3 indicates that the moldable job allocation
policies perform even more stably under the
normal distribution of estimation errors, compared
to Figure 2.

Figure 2. Effects of inexact runtime estimation under uniform distribution

66

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

MOLDABLE JOB ALLOCATION IN
HETEROGENEOUS GRID

In a computational Grid environment, a common
practice is try to allocate an entire parallel job onto
a single participating site. Sometimes a parallel
job, upon its submission, cannot fit in any single
site due to the occupation of some processors
by running jobs. How the job scheduler handles
such situations is an important issue which has
the potential to further improve the utilization
of Grid resources as well as the performance of
parallel jobs. This section extends the moldable
job allocation policies proposed in the previous
sections to deal with the resource fragmentation
issue in a heterogeneous computational Grid
environment.

The detailed moldable job allocation procedure
is illustrated in Figure 4. The major difference
between the moldable job allocation procedures
for a homogeneous parallel computer and for
a heterogeneous Grid environment is the site
selection process regarding the computation and
comparison of computing power of different sites.
A site’s free computing power is defined as the
number of free processors on it multiplied by the

computing speed of a single processor. Similarly,
the required computing power of a job is defined
as the number of required processors specified in
the job multiplied by the computing speed of a
single processor on its home site.

In the following, we compare the perfor-
mances of five different cases. They are indepen-
dent clusters representing a non-Grid architecture,
moldable job allocation without runtime estima-
tion, moldable job allocation with exact runtime
estimation, moldable job allocation with uniform
distribution of runtime-estimation errors, mold-
able job allocation with normal distribution of
runtime-estimation errors. Figure 5 presents the
results of simulations for a heterogeneous com-
putational Grid with speed vector (1,3,5,7,9) and
load vector (10,10,10,10,10), where

• IC. Independent clusters.
• no estimation. Adaptive processor alloca-

tion without runtime estimation.
• exact estimation. Adaptive processor allo-

cation with exact runtime estimation.
• uniform distribution. Adaptive processor

allocation with uniform distribution of
runtime-estimation errors.

Figure 3. Effects of inexact runtime estimation under normal distribution

67

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

Figure 4. Moldable job allocation procedure in heterogeneous Grid

Figure 5. Performance evaluation in a heterogeneous computational Grid

68

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

• normal distribution. adaptive processor al-
location with normal distribution of run-
time-estimation errors.

For the last two cases in Figure 5, we present
their worst-case data within the estimation-error
range from 10% to 100% with the step of 10%.
The results in Figure 5 show that Grid computing
with moldable job allocation can greatly improve
the system performance compared to the non-Grid
architecture. Moreover, the improved moldable
job allocation policies with runtime estimation
can improve the system performance further
compared to the original moldable job allocation
policy. The results also indicate that estimation
errors lead to little influence on overall system
performance. Therefore, the proposed moldable
allocation policies are stable in a heterogeneous
computational Grid.

Figure 5 represents only one possible speed
configuration in a heterogeneous computational
Grid environment. To further investigate the ef-
fectiveness of the proposed policies, we conducted
a series of 120-case simulations corresponding to
all possible permutations of the site speed vec-
tor (1,3,5,7,9) under the SDSC’s SP2 workload.
Figure 6 shows the average turnaround times over
the 120 cases for the five allocation policies in
Figure 5, accordingly. The results again confirm
that the proposed moldable job allocation policies

are stable and can significantly improve system
performance. For the details, among all the 120
cases, the proposed moldable allocation policies
with runtime estimation outperform the original
moldable policy in 108 cases.

COMPARISON WITH MULTI-SITE
CO-ALLOCATION

Multi-site co-allocation (Sonmez, Mohamed, &
Epema, 2010) is another approach usually used
to deal with the resource fragmentation issue in
computational Grid environments. It allows a
parallel job to run across site boundary, simultane-
ously using processors from more than one sites.
Figure 7 compares multi-site co-allocation and
moldable job allocation under the SDSC’s SP2
workload. In our job model, each job is associ-
ated with an attribute, slowdown, which indicates
how long its runtime would be extended to when
running with multi-site co-allocation in the Grid.
In the simulations, the slowdown values for these
jobs are generated according to specified statis-
tical distributions and upper limits. The upper
limits are denoted by p in Figure 5. Two types
of statistical distributions, uniform and normal
distributions, are evaluated in the simulations.
Results in Figure 5 show that the performance of
multi-site co-allocation is greatly affected by the

Figure 6. Average performance over 120 different speed configurations

69

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

slowdown value which is determined by both the
parallel program characteristics and underlying
interconnection speed. On the other hand, perfor-
mance of moldable job allocation is irrelative to
the slowdown values and the results also indicate
that moldable job allocation outperforms multi-
site co-allocation in the simulations.

CONCLUSION

In the real world, a Grid environment is usually
heterogeneous at least for the different comput-
ing speeds at different participating sites. The
heterogeneity presents a challenge for effectively
arranging load sharing activities in a computational
Grid. This paper develops moldable job allocation
policies based on the moldable property of paral-
lel applications for heterogeneous computational
Grids. The proposed policies can be used when a
parallel job, during the scheduling activities, can-
not fit in any single site in the Grid. The proposed
policies require users to provide estimations of
job execution times upon job submission. The
policies are evaluated through a series of simu-
lations using real workload traces. The results
indicate that the moldable job allocation policies
can further improve the system performance of a
heterogeneous computational Grid significantly

when parallel jobs have the moldable property.
The effects of inexact runtime estimations on
system performance are also investigated. The
results indicate that the proposed moldable job
allocation policies are effective as well as stable
under different system configurations and can
tolerate a wide range of estimation errors.

REFERENCES

Barsanti, L., & Sodan, A. (2007). Adaptive job
scheduling via predictive job resource alloca-
tion. Proceedings of the 12th Conference on Job
Scheduling Strategies for Parallel Processing,
(pp. 115-140).

Buyya, R., Abramson, D., Giddy, J., & Stockinger,
H. (2002). Economic models for resource manage-
ment and scheduling in Grid computing. Concur-
rency and Computation, 14(13-15), 1507–1542.
doi:10.1002/cpe.690

Buyya, R., Giddy, J., & Abramson, D. (2000). An
evaluation of economy-based resource trading
and scheduling on computational power grids for
parameter sweep applications. Paper presented
at the Second Workshop on Active Middleware
Services (AMS2000), Pittsburgh, USA.

Figure 7. Comparison under SDSC’s SP2 workload for uniformly and normally distributed slowdown
values

70

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

Carsten, E., Volker, H., & Ramin, Y. (2002).
Economic scheduling in Grid computing. Paper
presented at the 8th International Workshop on
Job Scheduling Strategies for Parallel Processing.

Carsten, E., Volker, H., Uwe, S., Ramin, Y., &
Achim, S. (2002). On advantages of Grid Comput-
ing for parallel job scheduling. Paper presented
at the 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid.

Dror, G. F., Larry, R., Uwe, S., Kenneth, C. S.,
& Parkson, W. (1997). Theory and practice in
parallel job scheduling. Paper presented at the
Job Scheduling Strategies for Parallel Processing
Conference.

England, D., & Weissman, J. B. (2005). Costs
and benefits of load sharing in the computational
Grid. In Proceedings of the Conference on Job
Scheduling Strategies for Parallel Processing
(pp. 160-175).

Ernemann, C., Hamscher, V., Streit, A., & Ya-
hyapour, R. (2002a). Enhanced algorithms for
multi-site scheduling. In Grid Computing (pp.
219–231). GRID.

Ernemann, C., Hamscher, V., Streit, A., & Yahy-
apour, R. (2002b). On effects of machine configu-
rations on parallel job scheduling in computational
Grids. Proceedings of International Conference
on Architecture of Computing Systems, ARCS,
(pp. 169-179).

Ernemann, C., Hamscher, V., & Yahyapour, R.
(2004). Benefits of global Grid computing for job
scheduling. Paper presented at the Fifth IEEE/
ACM International Workshop on Grid Comput-
ing, 2004.

Feitelson, D., & Rudolph, L. (1995). Parallel job
scheduling: Issues and approaches. In Proceedings
of International Conference on Job Scheduling
Strategies for Parallel Processing (pp. 1-18).

Hamscher, V., Schwiegelshohn, U., Streit, A.,
& Yahyapour, R. (2000). Evaluation of job-
scheduling strategies for Grid computing. In Grid
Computing (pp. 191–202). GRID.

Huang, K.-C. (2006). Performance evaluation
of adaptive processor allocation policies for
moldable parallel batch jobs. Paper presented at
the Third Workshop on Grid Technologies and
Applications.

Huang, K.-C., & Chang, H.-Y. (2006). An inte-
grated processor allocation and job scheduling
approach to workload management on computing
Grid. Paper presented at the 2006 International
Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’06),
Las Vegas, USA.

John, T., Uwe, S., Joel, L. W., & Philip, S. Y. (1994).
Scheduling parallel tasks to minimize average
response time. Paper presented at the fifth annual
ACM-SIAM Symposium on Discrete algorithms.

Parallel Workloads Archive. (n.d.). Retrieved from
http://www.cs.huji.ac.il/labs/ parallel/workload/

Sabin, G., Lang, M., & Sadayappan, P. (2007).
Moldable parallel job scheduling using job ef-
ficiency: An iterative approach. In Proceedings
of the Conference on Job Scheduling Strategies
for Parallel Processing (pp. 94-114).

Sonmez, O., Mohamed, H., & Epema, D. (2010).
On the benefit of processor coallocation in multi-
cluster Grid systems. IEEE Transactions on Par-
allel and Distributed Systems, (June): 778–789.
doi:10.1109/TPDS.2009.121

Srividya, S., Vijay, S., Rajkumar, K., Praveen, H.,
& Sadayappan, P. (2002). Effective selection of
partition sizes for moldable scheduling of paral-
lel jobs. Paper presented at the 9th International
Conference on High Performance Computing.

71

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

Sudha, S., Savitha, K., & Sadayappan, P. (2003).
A robust scheduling strategy for moldable sched-
uling of parallel jobs.

Walfredo, C., & Francine, B. (2000). Adaptive
selection of partition size for supercomputer re-
quests. Paper presented at the Workshop on Job
Scheduling Strategies for Parallel Processing.

Walfredo, C., & Francine, B. (2002). Using mold-
ability to improve the performance of supercom-
puter jobs. Journal of Parallel and Distributed
Computing, 62(10), 1571–1601.

Yanmin, Z., Jinsong, H., Yunhao, L., & Ni, L. M.
Chunming, H., & Jinpeng, H. (2005). TruGrid: A
self-sustaining trustworthy Grid. Paper presented
at the 25th IEEE International Conference on
Distributed Computing Systems Workshops, 2005.

ENDNOTE

1 The JOBLOG data is Copyright 2000 The
Regents of the University of California All
Rights Reserved.

72

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

Attila Ulbert
Eötvös Loránd University, Hungary

László Csaba Lőrincz
Eötvös Loránd University, Hungary

Tamás Kozsik
Eötvös Loránd University, Hungary

Zoltán Horváth
Eötvös Loránd University, Hungary

Speculative Scheduling
of Parameter Sweep

Applications Using Job
Behaviour Descriptions

ABSTRACT

The execution of data intensive Grid applications raises several questions regarding job scheduling, data
migration, and replication. This paper presents new scheduling algorithms using more sophisticated
job behaviour descriptions that allow estimating job completion times more precisely thus improving
scheduling decisions. Three approaches of providing input to the decision procedure are discussed:
a) single job description, b) multiple job descriptions, and c) multiple job descriptions with mutation.
The proposed Grid middleware components (1) monitor the execution of jobs and gather resource ac-
cess information, (2) analyse the compiled information and generate a description of the behaviour of
the job, (3) refine the already existing job description, and (4) use the refined behaviour description to
schedule the submitted jobs.

DOI: 10.4018/978-1-60960-603-9.ch005

73

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

INTRODUCTION

Resource management is one of the major tasks
of Grid middleware. Resources include avail-
able computing power (i.e. CPUs), memory and
secondary storage. The strategies implemented
by the middleware fundamentally determine how
early a job can finish its execution and provide
the desired computing results. For data intensive
parameter sweep applications the placement of
data onto Storage Elements (SEs) and the selection
of Computing Elements (CEs) have substantial
impact on their completion time, therefore the
combined efficiency of resource management and
scheduling strategies significantly determine the
performance of the Grid.

The resource management and scheduling
algorithms may take into account the current state
of the Grid, or statistics collected on the perfor-
mance of the Grid components and applications.
Some of the resource management strategies make
use of sophisticated economy-based decision
algorithms (Bell, Cameron, Carvajal-Schiaffino,
Millar, Stockinger, & Zini, 2003), others focus
chiefly on data replication, and present replica
management Grid middleware (Laure, Stockinger,
& Stockinger, 2005). Scheduling algorithms may
apply statistical prediction methods (Gao, Rong,
& Huang, 2005)(Nabrizyski, Schopf, & Weglarz,
2003), which can be used to rank the CEs by the
estimated job completion time and select the
optimal target CE.

Our resource management and scheduling ap-
proach is based on the realization that the comple-
tion time of a job on a CE can be determined
exactly only after the given job has terminated.
Furthermore, we could make perfect scheduling
decisions if we were able to run the job on all pos-
sible CEs of the Grid one by one within the same
circumstances, register the finishing times and run
the job on the “best” CE. Obviously, such perfect
decisions are not possible to be made, and we can
only mimic the process of the selection of the best
CE (Lőrincz, Kozsik, Ulbert, & Horváth, 2005).

In order to predict the completion time of the job
the proposed scheduling strategies need to know
the state of the Grid, the characteristics of the CEs
and the expected resource access patterns of the
job. For each job, the proposed Grid middleware
services will (1) monitor the execution of the
job and gather resource access information, (2)
generate a compact description of the behaviour
of the job, (3) use the job behaviour description
to calculate the expected completion time of the
job and schedule the job accordingly, and (4) re-
fine the already existing behaviour description
using the behaviour description reflecting its
latest execution.

Our proposed scheduling strategies also take
into consideration the effects of data replication
and provide replication commands harmonising
with the actual scheduling decision. For example,
if the job accesses large chunks of data, it is most
likely a good idea to schedule it to the Computing
Element (or to a location in its neighbourhood)
where the input files are available. However, if the
job had to wait too long before it could be started on
the chosen Computing Element, it would be worth
copying the input files to another Grid component
where the job can be executed earlier. In the case
of jobs that are less data intensive (use less and
smaller input files), the nearness of the files is
not so important since the cost of the replication
is very low. Furthermore, knowing the resource
access patterns of the job the files can be replicated
parallel to the execution of the job by fetching the
necessary file fragments “just-in-time”.

RELATED WORK

Our approach focuses on the resource access of
jobs; the scheduling decisions are made based
on the finishing time estimations exploiting the
knowledge of the behaviour of jobs.

Nabrizyski et al. (Nabrizyski, Schopf, &
Weglarz, 2003) gives an excellent overview of
Grid resource management. Besides presenting

74

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

a number of scheduling strategies (Ranganathan
& Foster, 2003), in Chapter 16 W. Smith intro-
duces new statistical prediction techniques for
the execution times for applications. The first
technique uses historical information of previous
similar runs to form predictions. The similarity
of runs are determined by categorising discrete
characteristics of the submitted jobs. The second
technique uses instance-based learning: a database
of experiences is maintained and used to make
predictions. Each experience consists of input
and output features. The input feature is a simple
job description (user name, job name, number of
CPUs requested, requested operating system, etc.).

Similar to our approach, Y. Gao et al. (Gao,
Rong, & Huang, 2005) introduces models for
estimating the completion time of jobs in a service
Grid and proposes scheduling algorithms minimis-
ing the average completion time of all jobs. The
prediction of the completion time of an impend-
ing job is based on the number of jobs running
on the Grid nodes and historical execution data
of already completed jobs. In order to schedule a
single job arriving at the node that shall take up
the shortest time to execute the job an adaptive
system-level job scheduling algorithm is used.
To schedule multiple simultaneously arriving
jobs genetic algorithms areapplied to minimise
the completion time of all jobs.

In the context of workflow management
systems Chervenak et al. (Chervenak, et al., Sep-
tember 2007) proposes improved data placement
strategies based on the knowledge of applications
and of expected data access patterns. Their research
concentrates on the interplay between data place-
ment services and workflow management systems.
In order to improve performance pre-staging –
using replication service and asynchronous data
placement – is proposed; while the data placement
operations are performed as the data sets become
available – independently of the actions of the
workflow management system.

The Data Intensive and Network Aware (DI-
ANA) meta-scheduling approach (McClatchey,

Anjum, Stockinger, Ali, Willers, & Thomas, March
2007) concentrates on the characteristics and
state of the hardware environment when making
scheduling decisions. Such characteristics are the
data location and size, processing power and net-
work bandwidth. The scheduler provides a global
ranking of the computing resources based on their
(changing) state and characteristics. Thereafter, the
scheduling decision is made based on the global
ranking and execution cost.

ARCHITECTURE OVERVIEW

Our scheduling solution has four keystone com-
ponents. These are the job behaviour description,
the description repository service, the description
generator, and the scheduler. The relation of the
components is depicted by Figure 1.

Each job may have a behaviour description
document, which characterises the resource al-
location and consumption strategy implemented
and executed by the given job. A job may have at
most one descriptor document. The job descrip-
tions are stored and accessed through the descrip-
tion repository service. Besides storing the job
descriptors the service is also capable of re-fining
the descriptor of a job after it has been termi-
nated using the descriptor relating to the latest
execution. The job description generator monitors
the execution of a job and creates the job descrip-
tion document relating to the actual job execution
by analysing its resource access log. When a job
is submitted to the Grid the scheduler queries its
description document using the description re-
pository service and selects the node on which
the job must be executed.

Figure 2 depicts a proposed deployment
scenario for the components. The scheduler is
deployed on the entry-point of the Grid, which, in
our case is the P-Grade portal (P-GRADE portal).
The description repository service should be de-
ployed in the vicinity of the scheduler, although it
may be practical to use a different server machine.

75

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

Figure 1. Main components of the system

Figure 2. Deployment of the main system components

76

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

The description generator must be installed on
each computer a job can run on. A later section
discusses the realities of the deployment in details.

JOB BEHAVIOUR DESCRIPTION

According to our job model the jobs are data
intensive applications which process huge files.
The behaviour description (XML) document
of a job contains relevant information for the
scheduler about the characteristics of the resource
consumption of the job. The relevant operations
influencing the length of job execution are the
file accesses and computing. Therefore the job
description characterises the file processing al-
gorithm implemented by the job.

After each execution of a job a “simple” de-
scription can be generated, which relates to a single
path in the control flow graph (CFG) of the job.
Therefore, in order to give a detailed description
of the job behaviour, the whole graph has to be
explored, which is equivalent to the exploration
of all possible paths in the CFG. The “complex”
job description reflects the complex structure of
the job: the already explored CFG.

Simple Description

The “simple” description format is presented
through an example in Algorithm 1.

The description comprises different file-bound
data access patterns of the job. Each data access
pattern is marked by the file XML element which
contains the following attributes and sub-elements:

• attributes:
type: Type of the file: in for input files, out

for output files.
name: File name.
access_ratio: The used portion of the file

(∈[0,1]).
intersection_ratio: The file usage redun-

dancy (∈[0,1]).

• sub-elements: A data access pattern de-
scription contains at least one sub-element.
A sub-element specifies the file access
method of the job bound to a given seg-
ment of the file. The file access method
can be sequential or random marked by
the corresponding sub-element. Each sub-
element contains a data-block and a timing
sub-element:
 ◦ datablock: Characterises the file

segment that is processed sequen-
tially. It specifies the starting and
ending positions defining the current
segment in bytes and relative to the
file-size (∈[0,1]): min_pos_absolute,
max_pos_absolute, min_pos_rela-
tive, max_pos_relative. It also speci-
fies the distance between starting
positions of two successive data ac-
cess operations in bytes (step) and the
number of bytes read/written by a file
operation (size).

 ◦ area: Characterises the file segment
that is processed randomly. It speci-
fies the lower and upper bounds of
the segment processed in bytes and
relative to the file-size (∈[0,1]): low-
er_bound_absolute, upper_bound_
absolute, lower_bound_relative, up-
per_bound_relative. It also specifies
how many times a byte of the cur-
rent file segment has been accessed
(access_ratio), the average level of
intersection of blocks read/written
by subsequent file operations (inter-
secion_ratio ∈[0,1]), and the average
number of bytes read/written by a file
operation (avg_size).

 ◦ timing: Specifies the frequency of
the data access operations. In the case
of the random method it contains the
avg_op_time and avg_op_mips at-
tributes: the average system time (in
milliseconds) and CPU time (in mips)

77

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

between two consecutive operations.
In the case of the sequential access
method the timing specification also
contains the minimum system and
CPU time. The latter has significance
in the case of dynamic scheduling
and replication.

The job description example of Algorithm 1
depicts the data access pattern generated for an
application that reads file “test1”: in the first part
the application reads sequentially blocks of 1000

bytes (skipping the following 1000 bytes); in the
second part the application reads sequentially
blocks of 2000 bytes; in the third part the applica-
tion reads the blocks randomly.

Complex Description

A complex job description is a set of simple de-
scriptions relating to the same job (see below).
Each member description has a weight attribute,
which specifies how many times the given member
description reflected the actual job behaviour.

Algorithm 1. Example job behaviour description

<file type=”in” name=”test1” access_ratio=”1.47218” intersection_ratio=”0.18”>

 <sequential>

 <datablock

 min_pos_absolute=”0” max_pos_absolute=”24000”

 min_pos_relative=”0” max_pos_relative=”0.24”

 step=”2000” size=”1000” />

 <timing

 op_time=”1” op_mips=”4.341”

 avg_op_time=”8” avg_op_mips=”34.728” />

 </sequential>

 <sequential>

 <datablock

 min_pos_absolute=”25000” max_pos_absolute=”49000”

 min_pos_relative=”0.25” max_pos_relative=”0.49”

 step=”2000” size=”2000” />

 <timing

 op_time=”1” op_mips=”4.341”

 avg_op_time=”15” avg_op_mips=”65.115” />

 </sequential>

 <random>

 <area

 lower_bound_absolute=”50000” upper_bound_absolute=”100000”

 lower_bound_relative=”0.5” upper_bound_relative=”1”

 access_ratio=”2.19436” intersection_ratio=”0.36”

 avg_size=”3300” />

 <timing avg_op_time=”39” avg_op_mips=”169.299” />

 </random>

</file>

78

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

Structure of complex job behavior descriptions

 <simple_description weight=”...”>

 ...

 </simple_description>

GENERATING JOB DESCRIPTIONS

Simple job descriptions are generated by the de-
scription generator deployed on the computers the
jobs will run on, the complex job descriptions are
maintained by the description repository service.
In the following the algorithms implemented by
these components are introduced.

Generating Simple Job Descriptions

The “simple” description is generated during the
job run. The generator monitors the activity of
the job and re-fines the simple description when-
ever the job accesses a ”relevant” resource. Such
monitored activity is the computing (CPU usage)
and file I/O (usage of secondary storage).

The analyser generates simple job descrip-
tions by continuously processing the resource
access information obtained by monitoring. For
each file accessed by the job the analyser builds
a file access description, which consists of one
or more file area access description(s). A file
area access description presents the file access
strategy used by the job when accessing a specific
part of a file. Throughout the job execution, the
analyser continuously keeps track of the file area
access strategies applied by the job. The analyser
recognises two kinds of file area access methods:
random and sequential. The latter can be both
increasing and decreasing.

Each of these methods is characterised by the
following behaviour parameters:

• the average size of the blocks accessed by
the individual file operations,

• the average time elapsed between two
subsequent file operations working on the
given file,

• the minimum and maximum file positions
accessed by the job, and the number of
times the job changes these positions.

When the analyser is called with a new activity,
it refines the corresponding file access descrip-
tion by either refining the latest file area access
description of the file access description or by
adding a new file area access description. The
changes in the applied file access methods are
detected through the recalculation of the behaviour
parameters and the comparison of the new values
with the previous ones. If a parameter change is
larger than a specified threshold value, the actual
file area access description will be closed and a
new one will be added to the file access descrip-
tion. For example, if the maximum file position
would be needed to be updated in the case of a
decreasing sequential method, the analyser will
decide that the job stopped using the decreasing
sequential method and it will try to determine
the new method.

The detection of the behaviour changes is based
on the access log which the analyser maintains
for each file accessed by the job. An access log
entry holds the position and size of the datablock
accessed by the job and the time elapsed since the
last file access. The size of the access logs is limited
allowing the analyser to detect and determine the
file access method changes in O(1) time.

In order to determine the new file access
method, the analyser resets all behaviour charac-
terisation parameters and the access log. At this
point, the file access method is undetermined.
After the analyser has processed enough file ac-
cess operations and has filled the access log, it
determines the new method. Please note that the
analyser actually detects changes of file access
behaviour. This means that the new method is
not necessarily a different kind of strategy but
a file access method having different behaviour

79

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

parameters. For example, if the job processes a
file sequentially but from a certain point it will
take much more (or less) time to process a data
block and the analyser will decide that the strategy
has been changed, the new method will be still
increasing sequential but with different timing
characteristics.

The file access method is determined in the
following way:

• The method is increasing sequential if
the maximum position has changed more
times than a threshold value (e.g. if the ac-
cess log size is 10, and the threshold is 7,
the maximum position has to be updated
8 times after processing 10 file operations
related to the given file).

• The method is decreasing sequential if the
minimum position has changed more times
than a threshold value.

• Otherwise the method is random.

After the method has been determined, when-
ever a new file operation is processed, the analy-
ser updates the access log and the characteristic
parameters and checks if the actual file access
method has changed.

The analyser algorithm has several parameters,
which determine how detailed the resulting file
access description will be:

• access log size: Specifies how deeply the
analyser can look into the past. The larger
this parameter the less detailed the descrip-
tion is.

• progress detection threshold: Specifies
how many times the maximum (minimum)
position has to be changed in order to de-
tect the increasing (decreasing) sequential
access.

• behaviour parameter variation: Determines
the scale by which the behaviour param-
eters can change.

• datablock log size: Determines how pre-
cise the access and intersection ratio will
be. The access and intersection ratios are
calculated by registering (per-file) the past
few datablocks accessed by the job.

Generating Complex
Job Descriptions

The generation of complex job descriptions is
based on two different approaches. These will
be presented in the following subsections along
with the algorithm implemented by the descrip-
tion repository service, which combines them.

Single Generalized Description

The algorithm used by the analyser sub-component
can be generalized to provide a refined description
that conforms to all previous executions of the
given job. According to the technique of the single
generalized description, the job description cannot
exclude an already completed sequence of opera-
tions. Therefore, the refinement of the description
mostly will lead to the relaxation of the behaviour
description. For example, if sometimes the job
processes a file sequentially and other times the
job processes it randomly, then the job description
cannot state that the file is processed sequentially,
because that would exclude the executions with
random file processing. Therefore the description
must state that the file access strategy is random.
However, the parameters of the random behaviour
description must not contradict with the parameters
of the sequential behaviour (e.g. block size).

The algorithm of refining a ”simple” job
description is as follows. Let us presume that we
have a job description that conforms to all previous
job descriptions and reflects the job behaviour as
close as possible. Let us also presume that after
running the job again, the generator provides a
new description that differs from the current one.
The following derivation rules define the basic
elements of job description refining:

80

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

1. If the new description contains parts ref-
erencing new files, add the corresponding
description parts to the current description.

2. Skip those parts that exist in both the new
and the current description and describe the
same behaviour.

3. Modify those parts of the current description
that exist in the new description, but describe
different behaviours.
a. If two sections of the part intersect

according to the relative file positions,
make a new section, which describes
the intersection of the two sections.

b. If the two intersecting sections are ran-
dom, the new section will be random.

c. If the two sections are sequential with
the same directions, the new section
will also be sequential.

d. If the two sections are sequential with
opposite directions, the new section
will be random.

e. If one of the sections is sequential
and the other one is random, then the
derived section will be random.

The attributes of the derived sections will
comply with those of the originator sections. For
example, if the originator sections are random,
then the access_ratio of the derived section is
the average of the access_ratio of the originator
random sections.

This technique results in job descriptions that
reflect the already visited control paths of a given
job. However, the resulting description is globally
less precise, as it is not able to give close descrip-
tions of the individual control paths.

Multiple Descriptions

Instead of using the latest individual job descrip-
tion, according to the multiple descriptions ap-
proach, a complex and detailed job description
is created by collecting simple job descriptions
relating to different paths in the job’s CFG. Besides

this, the execution frequencies (weights) of the
paths are also registered giving the probability of
their execution.

The new complex job description must provide
a more precise (compared to the simple job descrip-
tion) however non-redundant representation of the
CFG of the job. In our case, redundancy means
that the member job descriptions of the composed
job description have to give significantly different
completion time estimates. In order to generate
the desired precise non-redundant composed job
description:

1. the new job description is inserted into the
old composed description, or

2. a similar job description is replaced by the
new job description, or

3. the old composed job description is used.

The similarity of the new job description and
the members of the old complex description de-
termine which method is used to create the new
job description. The similarity measure of the
member job descriptions must be higher than a
certain threshold value (i.e. the composed descrip-
tion cannot contain similar member descriptions).

After calculating the similarity of the newly
generated individual job description (reflecting the
behaviour of the job during its latest execution)
and the member job descriptions, the complex
job description is updated in the following way:

1. If the distances between the individual job
description and the member job descriptions
are greater than the threshold then the new
description is inserted into the composed
description. The absolute weight of the new
member description will be 1.

2. If there is a member job description, which
is closer to the new individual description
than the similarity threshold value, but the
diversity of the member descriptions would
increase with the insertion of the new descrip-
tion, then the new description replaces the

81

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

“closest” member description. The absolute
weight of the newly inserted member de-
scription will be the absolute weight of the
description that was just replaced plus 1.

3. If at least one of the complex description
members is closer to the new job description
than the threshold and the diversity of the
composed description would not increase
with the insertion of the new individual de-
scription, than the old composed description
is used, and the absolute weight of the “clos-
est” member job description is increased by
1.

Many different similarity measures and thresh-
old values can be defined. The similarity measure
we have defined is based on the predicted execu-
tion time of jobs. The predicted job execution
time is defined by the description of the job and
the characterization of the Grid.

The Grid is characterised by its clusters, for-
mally grid profile g={c1,c2,…,cn}, where ci is a
cluster profile. Cluster profile ci=(mips,disk,net,k)
describes the “typical” resource characteristics of
a member cluster:

• mips: speed of a typical CPU in the cluster,
• disk: I/O bandwidth (CPU ⟷ HDD

communication),
• net: network bandwidth,
• κ∈(0,1]: weight of the given cluster in the

Grid calculated as the number of hosts in
the cluster divided by the total number of
hosts in the Grid. Note that

c g c∈
∑ = 1 .

The composed job description d is described
as the collection of its di member job descriptions:
d={d1,d2,…,dm}. The (d,i) weight of a di member
job description is defined as the absolute weight
of di divided by the sum of all absolute weights

of description d. Note that
i

n

d i
=
∑ =
1

1(,) .

Let C(c,di) denote the estimated execution
time of the job running on cluster c behaving ac-
cording to description di. Note that C(c,di) can be
easily calculated using cluster profile c, and the
avg_op_*, datablock, area specifications of the
job description. The similarity measure of two
individual job descriptions di and dj is defined by
the following sum.

D d d C c d C c d
i j

c g
i j

(,) | (,) (,) |= −
∈
∑

The diversity of the job description is defined
as the cumulative similarity of its member de-
scriptions.

D d D d d
d d d

i j

i j

() (,)
,

=
∈
∑

We have defined the similarity threshold as
the half of the minimum distance of the member
descriptions (the initial threshold is 0).

threshold D d d
d d d i j i ji j

= ∈ ≠min (,) /
, ,

2

Compared to the usage of individual job
descriptions the complex job description gives a
more precise characterization of the behavior of
the job. The complex job description offers there-
fore better job completion time estimates, which
eventually result in better scheduling decisions.

Complex Descriptions with Mutation

According to the multiple descriptions approach,
if the newly generated individual description is
closer to an already existing description than a
certain threshold, but adding the new description
would increase the diversity, then the new descrip-
tion would replace the other one. However, this
method unwillingly indicates that the new descrip-
tion is ”better” than the description it replaces.

82

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

The complex job descriptions are generated
with the multiple descriptions with mutation al-
gorithm. The algorithm differs from the multiple
descriptions approach, in that it considers, that in
such cases if the sections of the new and the “to-
be-replaced” description are the same and only
their attributes differ, they presumably reflect the
execution of the same sequence of operations.
The different attributes indicate that the actual
parameters were slightly different, however it
cannot be said that either the new or the old
description is closer to reality. Therefore, the to-
be-replaced description should not be replaced but
only mutated: the attributes of the sections have
to be recalculated using the new attribute values
(e.g. their average can be used) as determined by
the algorithm presented by the single generalized
description approach. The mutation operation
is defined by the single generalized description
approach.

After the execution of a given job the complex
job description is updated as follows:

1. If the distance between the newly generated
individual job description and the member
job descriptions is greater than a threshold,
the new individual description is inserted
into the composed description. The absolute
weight of the new member description will
be 1.

2. If there is a member job description which
is closer to the new individual description
than the threshold value, and the diversity
of the member descriptions would increase
with the insertion of the new description,
then the closest member job description is
mutated using the algorithm presented in
section Generating complex job descriptions.
The absolute weight of the mutated member
description is increased by 1.

3. If at least one of the complex description
members is closer to the new job description
than the threshold, and the diversity of the
composed description would not increase
with the insertion of the new individual de-

scription, then the old composed description
is used, and the absolute weight of the ”clos-
est” member job description is increased by
1.

If the number of member job descriptions is
limited, then mutation can be used to keep the
number of member descriptions under the limit,
and also to preserve the knowledge carried by the
new individual job description. The algorithm
resulting in complex job description with limited
siye is as follows,

1. If the number of member job descriptions is
less than the limit, the previously presented
algorithm is used.

2. If the number of member job descriptions
already reached the limit, this approach will
mutate (using the algorithm presented in sec-
tion Generating complex job descriptions)
the member job description which is the
closest to the new individual job description
according to the similarity measure. The
absolute weight of the mutated member job
description is increased by 1.

SCHEDULING STRATEGIES

This section will present the proposed schedul-
ing strategies that exploit the information stored
by the job descriptions. The major difference
between the scheduling strategies is that while
the first, static data feeder, strategy prepares the
input files before the job would be executed, the
second, dynamic data feeder, strategy delivers
the necessary files parallel to the execution of
the job, in a just-in-time manner. The process of
job scheduling and execution comprises of the
following major steps.

1. The user submits the job and its description.
2. The system looks up the corresponding job

behaviour description using the description
repository service.

83

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

3. The scheduler applies the proposed schedul-
ing algorithm, which – using the behaviour
description and the information available on
the current state of the Grid – calculates the
estimated job finishing time for each Grid
component, and schedules the job to the
component where the job would be finished
the earliest.

4. The job is executed on a computer belonging
to the chosen Grid component. The resource
consumption of the job is monitored, and
after the job is terminated, the collected
information is used by the description re-
pository service to update the description
repository with a refined description.

5. The output of the job (and the behaviour
description of the job) is copied to the speci-
fied target node.

Static Data Feeder Strategy

The static data feeder strategy ranks each Comput-
ing Element (CE) by estimating the termination
time of the submitted job on the given component.
After the ranking of CEs the scheduler runs the job
on the CE with the highest rank, i.e. the earliest
completion time. The estimated job completion
time depends on the job description and on the
information collected from the GIS and the Replica

Manager. The simplified code-snippet in Algo-
rithm 2 presents the static data feeder algorithm.

The estimated execution time of a job described
by d on cluster c is calculated as follows.

C c d d i C c d
i

i

m

(,) (,) * (,)=
=
∑l
1

The actual state of cluster c is obtained from
the GIS. The estimate(c,d) estimated termination
time of the given job on cluster c is the sum of the
estimated job execution time C(c,d), the ”length”
(measured by) of the job queue on that cluster
(Q(c)), and the time necessary for preparing the
input files (before running the job) and delivering
result/output files (after the job is terminated):

estimate(c,d) = C(c,d) + Q(c) +
fileTransferTime(c,d)

Please note that before running the job on the
chosen cluster the necessary files are replicated
by the Replica Manager (The DataGrid Project).

Dynamic Data Feeder Strategy

The basic idea behind the dynamic data feeder
strategy is to download relevant parts of the input
files (those parts that the job will presumably
access) and to upload the output of the job to the

Algorithm 2.

void schedule(Job j, JobDescription d) {

 Map<CE, Long> m = new HashMap<CE, Long>();

 for (ClusterProfile c: g) {

 if (c.canRun(descr)) {

 m.put(c, estimate(c, d)); // calculate the est. finish time

 }

 }

 CE c = getOptimalCE(m); // get the optimal CE

 executeJob(j, c); // run job j on c

}

84

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

specified destinations during runtime. Therefore,
instead of dividing the execution of the jobs into
three separate phases (download, run, upload),
the execution of all steps is attempted at the same
time: the input data is provided parallel to the
running of the job.

The algorithm of the dynamic data feeder
scheduler is similar to the algorithm of the static
data feeder scheduler with two differences:

1. The estimated job execution time takes
into account that the relevant parts of the
necessary files may be delivered after the
job is started (but before the job would
access them). Therefore the calculation
fileTransferTime(c,d) includes only the pre-
run and post-run file transfer times, it does
not include the transfer time of file segments
that are copied parallel to the running of the
job.

2. Replication commands are generated that
allow the relevant file segments being copied
parallel to the running of the job.

Please note that compared to the static data
feeder strategy, the estimated completion time of
a given job will be lower in most cases.

IMPLEMENTATION

The proposed architecture cannot be deployed
completely in existing “production” Grid en-
vironments. Lack of administrative/authoritive
credentials and missing services are among the
most important reasons. We have chosen to extend
the P-GRADE portal (P-GRADE portal) with our
proposed components as it allowed us to imple-
ment an adopted version of the static scheduler.
P-GRADE is a parallel application development
system for Grid, which (among others) implements
job scheduling, migration and checkpointing. P-
GRADE supports the Globus (Globus Toolkit)
and Condor(Condor Project) Grid environments.

Scheduler

The Portal runs a Java applet in the user’s browser
which communicates with the server layer. In order
to implement the proposed components we needed
to extend both the rich client and the server layer.

On the extended Portal interface the user can
specify which scheduler algorithm should be used
by the system. If our scheduler is selected the user
also has to provide the job behaviour description.

Because the P-GRADE portal does not al-
low querying the size of input files directly, the
implemented scheduler cannot consider it when
estimating the finishing time of a job on a CE.
Instead, the absolute file sizes contained by the
job behaviour description are used. Moreover,
the scheduler does not know the length of the
wait queues of the CEs, therefore the maximum
job running time estimates are used, which are
specified by the job submitters.

Description Generator

The Description generator is implemented by a
shared library, which monitors the resource access
activity of jobs and prepares the job descriptions
by analysing the pattern of activities.

File access monitoring is based on the intercep-
tion of standard file handling operations defined
in the stdio.h, fcntl.h and unistd.h libraries. In
general, for a given file operation, the name of the
operation, the file or stream descriptor, the name
of the file, the opening mode flags, the amount
of data read or written, or the new position in the
stream are considered.

CPU usage information is collected between
two consecutive file access operations. The /
proc - process information pseudo-filesystem
(LinuxForum: Linux Filesystem Hierarchy, 1.10.
/proc) - is used to access the kernel data struc-
tures containing the necessary CPU consumption
information.

Because the component (for administrative
reasons) cannot be deployed to all computers of

85

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

all CEs, it has to be sneaked in the target machine
along with the job. The Condor classAD is pre-
pared in this respect so that a simple shell script
setting the LD_PREALOAD environment vari-
able and running the job will be executed by the
work node. The job and the shared object of the
Description generator are transferred as input files
of the job runner executable. The classAD frag-
ment in Algorithm 3 demonstrates the technique.

Description Repository Service

For similar reasons which do not allow the perma-
nent deployment of the Description generator, the
Description repository service cannot be deployed
inside the Grid either. Therefore, we have not
implemented it in the current Grid environment
supported by P-GRADE.

SIMULATION RESULTS

Simulations were conducted by using OptorSim
v2.0 (Simulating data access optimization algo-
rithms - OptorSim), which was extended with
the proposed static data feeder and dynamic data
feeder scheduler implementations. The extended
OptorSim was configured to use the EDG topology
specified by the configuration file shipped with
the simulator. The CEs of the configuration were
extended with MIPS values. One of the group of
jobs submitted to the Grid (approx. 1/3 of the total
jobs) was changed to simulate the single source

shortest path searching algorithm in a graph. The
job first parses the graph description loaded from
a 300 MB input file then it starts to calculate the
shortest path from the given parameter node to
every other node in the graph. The jobs provided
by OptorSim are using input files of 10 GB each.
The number of jobs was also raised to 500 and
1000, to provide us with sufficient job queue sizes
on the CEs. Before the simulation was performed
OptorSim was supplied with the necessary com-
plex job descriptions.

Due to the lack of support for querying some
file related information from the current P-Grade
portal, we have simulated mainly solutions that
do not use such information during the schedul-
ing process (the default schedulers in this scope
in OptorSim are the Random and Queue Length
strategies). The static data feeder strategy has been
simulated both using and not using file informa-
tion, while the dynamic data feeder strategy was
simulated only with file information present. The
benefits can be clearly seen. The static data feeder
algorithm performs significantly better when the
correct size of the files used by the jobs is known
(Static DF) compared to the scheduling when
information about expected file transfer times is
absent (Static DF no FS info).

According to the simulation results (see Figure
3 for the mean job completion time values pro-
vided by OptorSim), using the static data feeder
scheduler (Static DF no FS info) the mean job
completion time of all jobs on Grid is about 3-4%
lower than in the case of the schedulers which do

Algorithm 3.

universe = vanilla

executable = runjob

output = stdout.log

error = stderr.log

log = job.log

transfer_input_files = <executable>,descrgen.so

...

86

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

not use any file related information (Rnd, QL).
As soon as file sizes are also considered (Static
DF) the mean job time of all jobs on the Grid is
about 40-60% lower than in the previous case.

Due to the more sophisticated file transferring
approach, using the dynamic data feeder sched-
uler leads to even better (about 5-20% lower)
mean job times. Besides, compared to the QL
scheduler, the jobs scheduled by the dynamic
strategy are finished 40-70% sooner. However
the difference can further increase as CE queues
would enlarge.

Another set of simulations was carried out for
the Static Data Feeder strategy mainly for under-
lining the importance of refined job descriptions
(see Figure 4). These measurements had been
configured in such a way that the jobs monitored
were consuming 10 times more CPU for the second
execution than during their first run.

Four cases were compared: in the case of
Static DF 1 the real execution of our jobs took 10
times longer than the values the scheduler was
using during its calculations. There is an up to
4-5% speedup with the Static DF 2 strategy, which
uses the real (multiplied) running times of the
jobs during the scheduling process. Static DF 3
uses also the shorter execution time estimates
during scheduling, while the real running times
of the jobs were normal for about 50% of the jobs,
and 10 times more for the other half of the jobs.
Using a merged description (currently a 1-1
weighted average) from the two executions men-
tioned above (Static DF 4 strategy) will also reduce
the mean job times with about 10% compared to
the previous strategy.

Refining further these job descriptions with
the execution of the monitored jobs can increase
the credibility of the scheduling strategy, resulting

Figure 3. Simulation results – mean job completion time

87

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

in more realistic assumptions, and lower execu-
tion times.

SUMMARY AND CONCLUSION

In this paper we have presented scheduling algo-
rithms for parameter sweep applications in Grid.
The scheduling algorithms estimate the job finish-
ing times and select the target CE accordingly.

The key for the job completion time estimation
is the description of the behaviour of the job. We
have defined the job behaviour description so that
it characterises the resource access of the job: the
CPU consumption and secondary storage access.
However, the description of a job alone is not
enough to estimate its completion time; informa-
tion about the characteristics and state of each CE
is also required. Such information is the length of
the job wait queue of the CE, the performance of

the CPUs of the CE and the size and location of
the files the given job would process.

We proposed algorithms for generating the
job behaviour descriptions automatically after
monitoring its resource access. The job behaviour
descriptions generated after subsequent executions
can be composed into a complex description.
By using the complex description the proposed
scheduling algorithms take into account that jobs
can act in different ways when they process dif-
ferent files.

The scheduling of the job, the creation of
its behaviour description, the refinement of the
description and the maintenance of the complex
description are supported by our proposed ar-
chitecture. However, for various non-technical
reasons, it is hard to implement the architecture
in the proposed form in existing production Grid
systems. Therefore, we could implement the com-
ponents of the presented solution only partially.

Figure 4. Performance of Static Data Feeder scheduler implementations

88

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

The potential benefits of the proposed algorithms
are demonstrated by performing simulations.

The simulations showed that the more the
scheduler knows about the Grid environment
and the behaviour of the job the better schedul-
ing decisions can be made and the earlier the job
completes.

FUTURE WORK

The proposed scheduling algorithms disregard the
overall Grid performance and solely optimize for
the finishing time of the current job. However, the
network characteristics should also be considered,
otherwise the network capacity can become a
major bottleneck which may lead to performance
degradation. Therefore we are planning to improve
the scheduling strategies to consider the global
performance of the Grid.

According to our model the job is a single
process application running on a single processor.
We would like to relax this limitation and extend
the job behaviour description by including com-
munication patterns for applications composed
of parallel processes (e.g. PVM and MPI tasks).
Accordingly we also intend to alter the scheduling
(and estimation) algorithms to take the commu-
nication patterns into account.

The primary focus of our current work is data
intensive applications and data Grids. We would
like to generalize our approach and enable the
scheduler to make efficient decisions in such cases
when file access does not determine the execu-
tion time of the job significantly. The generalized
approach should identify those operations which
substantially influence the performance of the
job. The job behaviour description and scheduling
strategies should also be generalized to include
and consider the relevant operations.

ACKNOWLEDGMENT

This work was supported by IKTA 64/2003, OTKA
T037742, GVOP-3.3.3-2004-07-0005/3.0 ELTE
IKKK, and the Bolyai Research Fellowship.

REFERENCES

Bell, W. H., Cameron, D. G., Carvajal-Schiaffino,
R., Millar, A. P., Stockinger, K., & Zini, F. (2003).
Evaluation of an economy-based file replication
strategy for a data Grid. In International Work-
shop on Agent based Cluster and Grid Computing
at CCGrid 2003. Tokyo, Japan: IEEE Computer
Society Press.

Casanova, H., Obertelli, G., Berman, F., & Wolski,
R. (2000). The AppLeS parameter sweep template:
User-level middleware for the Grid. Proceedings
of Supercomputing, 00, 75–76.

Chervenak, A., Deelman, E., Livny, M., Su, M.-
H., Schuler, R., Bharathi, S., et al. (September
2007). Data placement for scientific applications
in distributed environments. Proceedings of the
8th IEEE/ACM International Conference on Grid
Computing (Grid2007).

Condor Project. (n.d.). Retrieved from http://
www.cs.wisc.edu /condor/

Foster, I. (July 1998). The Grid: Blueprint for a new
computing infrastructure. Morgan-Kaufmann.

Gao, Y., Rong, H., & Huang, J. Z. (2005). Adaptive
grid job scheduling with genetic algorithms. Fu-
ture Generation Computer Systems, 21, 151–161.
doi:10.1016/j.future.2004.09.033

Globus Toolkit. (n.d.). Retrieved from http://www.
globus.org/toolkit

Job Description Language Attributes. (n.d.). Re-
trieved from http://auger.jlab.org/jdl /PPDG_JDL.
htm

89

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

Laure, E., Stockinger, H., & Stockinger, K.
(2005). Performance engineering in data Grids.
Concurrency and Computation, 17(2-4), 171–191.
doi:10.1002/cpe.923

LinuxForum. (n.d.). Linux filesystem hierarchy,
1.10. Retrieved from http://www.linuxforum.com
/linux-filesystem/proc.html

Lőrincz, L. C., Kozsik, T., Ulbert, A., & Horváth,
Z. (2005). A method for job scheduling in Grid
based on job execution status. Multiagent and
Grid Systems - An International Journal 4 (MAGS)
1(2), 197-208.

McClatchey, R., Anjum, A., Stockinger, H., Ali,
A., Willers, I., & Thomas, M. (2007, March).
Data intensive and network aware (DIANA) Grid
scheduling. Journal of Grid Computing, 5(1),
43–64. doi:10.1007/s10723-006-9059-z

Nabrizyski, J., Schopf, J. M., & Weglarz, J.
(2003). Grid resource management: State of the
art and future trends. In Nabrizyski, J., Schopf,
J. M., & Weglarz, J. (Eds.), International series
in operations research and management. Kluwer
Academic Publishers Group.

OptorSim. (n.d.). Simulating data access optimiza-
tion algorithms. Retrieved from http://edg-wp2.
web.cern.ch/ edg-wp2/optimization/ optorsim.
html

P-GRADE portal. (n.d.). Retrieved from http://
www.lpds.sztaki.hu /pgrade/

Phinjaroenphan, P., Bevinakoppa, S., & Zeephong-
sekul, P. (2005). A method for estimating the
execution time of a parallel task on a Grid node.
Lecture Notes in Computer Science, 3470, 226–
236. doi:10.1007/11508380_24

Ranganathan, K., & Foster, I. (2003). Computa-
tion scheduling and data replication algorithms for
data Grids. In Nabrzysk, J., Schopf, J., Weglarz,
J., Nabrzysk, J., Schopf, J., & Weglarz, J. (Eds.),
Grid resource management: State of the art and
future trends (pp. 359–373). Kluwer Academic
Publishers Group.

The DataGrid Project. (n.d.). Retrieved from
http://eu-datagrid.web.cern.ch /eu-datagrid/

90

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

INTRODUCTION

The grid, introduced in 1998, is an emerging field
for compute-intensive tasks (Foster, Kesselman,
Tsudik and Tuecke, 1998; Foster, Kesselman and

Tuecke, 2001). A computational grid is a collec-
tion of geographically dispersed heterogeneous
computing resources, providing a large virtual
computing system to users. Idle computers across
the globe can be utilized for such computations.
Such an arrangement ultimately produces the

Rekha Kashyap
Jawaharlal Nehru University, India

Deo Prakash Vidyarthi
Jawaharlal Nehru University, India

A Security Prioritized
Computational Grid
Scheduling Model:

An Analysis

ABSTRACT

Grid supports heterogeneities of resources in terms of security and computational power. Applications
with stringent security requirement introduce challenging concerns when executed on the grid resources.
Though grid scheduler considers the computational heterogeneity while making scheduling decisions,
little is done to address their security heterogeneity. This work proposes a security aware computational
grid scheduling model, which schedules the tasks taking into account both kinds of heterogeneities. The
approach is known as Security Prioritized MinMin (SPMinMin). Comparing it with one of the widely
used grid scheduling algorithm MinMin (secured) shows that SPMinMin performs better and sometimes
behaves similar to MinMin under all possible situations in terms of makespan and system utilization.

DOI: 10.4018/978-1-60960-603-9.ch006

91

A Security Prioritized Computational Grid Scheduling Model

power of expensive supercomputers which oth-
erwise would have been impossible.

There are four factors behind the growing
interest in grid computing: the evolution of key
standards such as TCP/IP and Ethernet in network-
ing; the ever-increasing bandwidth on networks
reaching into the gigabit range; the increasing
availability of idle megaflops on networked PCs,
workstations and servers; and the emergence of
Web services as a logical and open choice of
software computing tasks (Prabhakar, Ribbens
and Bora, 2002; Naedela, 2003). Grid scheduling
software considers a job composed of tasks; finds
suitable processors and other critical resources
on the network; distributes the tasks; monitors
their progress and reschedules any tasks that fail.
Finally, the grid scheduler aggregates the results
of the tasks so that the job is completed.

Grid computing has extensively supported col-
laborated science projects on the internet. Most
of these projects have stringent security require-
ments. To a certain extent, the security may be
provided by the application itself, but more usually
it should be ensured and supported by the grid
environment. The dynamic and multi-institutional
nature of these environments introduces challeng-
ing security issues that demand new technical
approaches for solutions. Scheduling algorithms
play an important role in any distributed system.
In an environment where security is of concern,
responsibility is delegated to the scheduler to
schedule the task on the resource that can meet the
security requirement of the task. Such a scheduler
is referred as the security aware scheduler (Jones,
2003; Tonelloto and Yahyapour, 2006). The goal of
a security aware scheduler is to meet the desired
security requirements as well as providing a high
level of performance metric e.g. site utilization
and makespan.

The most common public key authentication
protocol used in the grid today is the Transport
Layer Security (TLS) (Dierks and Allen, 2007;
Apostolopoulos, Peris and Debanjan, 1999) pro-
tocol that was derived from the Secure Sockets

Layer (SSL) (Freier, Karlton and Kocher, 1996).
Different versions of SSL/TLS provide differ-
ent level of security. Different version supports
various cipher suites (security algorithms) for
different security services like authentication,
encryption and integrity. Thus it is the job of
scheduler to allocate the tasks on the resources
which supports the required security version and
even supports required algorithm on a particular
version to satisfy the demand.

Various grid scheduling models (algorithms)
have been proposed in the past, but addressing
little about security-aware scheduling. In this
article, the thrust is security-aware scheduling
model to optimize performance characteristics
such as makespan (completion time of the entire
job set) and site utilization along with the security
demand of the task. The model is to consider the
constraints exerted by both the job and the grid
environment. In the proposed model, security
prioritization is incorporated in MinMin schedul-
ing strategy, resulting in renaming the model as
Security Prioritized MinMin (SPMinMin).

The next section discusses the related work
done in this field. Section 3 explains the proposed
grid scheduling SPMinMin model. Section 4
shows some experiments and the observations over
the results. Finally, section 5 concludes the work.

RELATED WORK

Often, grids are formed with resources owned by
many organizations and thus are not dedicated to
specific users. There are many important issues
that a job scheduler should address for such a
heterogeneous environment with multiple users.
The grid resources have different security capabil-
ity and computational power. The assignment of
a task to a machine on which the task executes
can significantly affect the overall performance.
Resource contention should also be considered
while scheduling tasks on grid resources with
multiple users. Further, grid, being a non-dedicated

92

A Security Prioritized Computational Grid Scheduling Model

networked system, has its own local jobs; i.e. it
cannot provide exclusive services to remote jobs.
Hence, scheduling algorithms need to address the
performance measures of the jobs on non-dedi-
cated network in the presence of multiple users.

Due to security heterogeneity, jobs that are
dispatched to a remote site can possibly experi-
ence security and reliability problems. Scheduled
grid tasks may have its security demand (SD) and
the grid site offers a certain security level (SL).
If security demand of the job (multiple tasks) is
not met by the resource on which it is made to
execute, the job may fail and is to be rescheduled
on some other resources.

A security-aware scheduling algorithm need
to satisfy the security constraints and at the same
time has to optimize the performance parameters
like site utilization (percentage of total task run-
ning time out of total available time on a given
site), makespan (completion time of the entire job
set), average response time (average value of all
tasks’ response time), average slowdown ratio
(ratio of the task’s response time to its service
time).Therefore, multi-objective criteria have to
be met. Some of the grids scheduling algorithms
are discussed below. All these algorithms need
prediction information on processor speed and
the task length.

• DFPLTF: (Dynamic Fastest Processor to
Largest Task First) gives the highest pri-
ority to the largest task but is not a secu-
rity aware algorithm (Paranhos, Cirne and
Brasileiro; 2003).

• Suffer: (Casonova, Legrand, Zagorodnov
and Berman; 2000) allocates the processor
to the task that would suffer the most if that
processor is not assigned to it.

• Round Robin: (RR) proposed by Noriyuki
Fujimoto and Kenichi Hagihara (2003) grid
scheduling algorithm for parameter sweep
applications which does not require predic-
tion information regarding task length and

processor speed. However RR does not
consider security requirements.

• MinMin: gives highest priority to the task
that can be completed first. In this, for each
task the grid site that offers the earliest
completion time is tagged and the task that
has the minimum earliest completion time
is allocated to the respective node. MinMin
executes shorter task in parallel whereas
longer task follows the shorter one (Freund
et al., 1998).

• MaxMin: here the grid site that offers ear-
liest completion time is tagged. Highest
priority is given to the task with maximum
earliest completion time. The idea behind
max-min is overlapping long running task
with short running ones. MaxMin executes
many shorter tasks in parallel with the lon-
ger one (Freund et al., 1998).

MinMin and MaxMin are used in real world
distributed resource management systems such as
SmartNet (Freund et al., 1998). Both have time
complexities of (mn2) where m is the number of
machines at the site and n is the number of tasks
to schedule. They are suitable when the tasks to
schedule are independent and compute intensive.

• SATS, suggested by Xie and Qin (2007),
takes into account heterogeneities in secu-
rity and computation. It provides a means
of measuring overhead incurred by secu-
rity services and quantitatively measuring
quality of service (QoS) but it does not
assure the desired security rather try to
improve security and minimize computa-
tional overhead.

• MinMin (Secure, Risky) (Song, Kwok
and Hwang; 2005), are secured version
of MinMin. Secure mode allocates task to
those sites that can definitely satisfy the
security requirements. Risky mode allo-
cates tasks to any available grid site and
thus takes all possible risks at the resource

93

A Security Prioritized Computational Grid Scheduling Model

site. Merely imposing security demand
in the MinMin degrades its performance
which is discussed through cases in the
later sections.

PROPOSED MODEL

This work proposes a guaranteed security aware
scheduling model as Security Prioritized MinMin
[SPMinMin]. It is a security aware scheduling
model and assures security requirement of the
job (multiple tasks) unlike algorithms like Suffer,
DFPLTF, MinMin, MaxMin etc. MinMin gives
highest priority to the task that can be completed
first. Song et al. (2005) secured the MinMin by
merely imposing security restrictions on it. It
degrades the performance as security requirement
act as the limiting factor rather than guiding fac-
tor. This work modified the Min-Min algorithm
where the security demand of the task is the
major guiding factor for scheduling decisions.
SPMinMin allocates highest security demanding
tasks first on faster resources. Tasks having same
security requirement are then scheduled according
to MinMin. Thus it never compromises with the
benefits of MinMin but simply modifies it to work
efficiently in a secured environment. Extensive
experiments have been conducted over simulated
grid environments for both MinMin and the SP-
MinMin. The experimental test bed is divided on
the basis of possible heterogeneous scenario that
may exist in a real grid environment. The results
obtained clearly indicates that the proposed model
performs better and at the same time proves that
in non-grid environment MinMin can outperform
SPMinMin The results also reveal significant
performance gain and better site utilization of
SPMinMin over MinMin.

Terminologies Used

Grid is considered to be composed of number of
non dedicated processing nodes and the node in

turn can be a single processor or a group of het-
erogeneous or homogeneous processors. A grid
job is comprised of “n” independent tasks. The
aim is to find an optimum schedule for assigning
the grid job (all the tasks) to the processing nodes
that satisfies the security constraint. Following is
the list of terminologies, used in this article.

Tcomplete is the list of all the task of the given
job that is to be scheduled.

Thigh is the list of all the tasks with highest
security requirement.

A task is characterized as Ti = {Li, SDi} where,
Li is the length (size) of the task (number of
instructions in the task), and SDi is the security
level demand of the task.

A processing node is characterized as Nj = (SPj,
SLj, BTj) where, SPj is the execution speed of the
processing node, SLj is the maximum security
level offered by the processing node, and BTj is
the begin time of the node (time to execute the
tasks already assigned to the node).

Nqualified,i is the list of processing nodes on which
the ith task can be executed i.e. list of the nodes
meeting the security demand of the ith task.

A schedule of the job is a set of n triplets <Pj,
Ti, CTij> where, Pj is jth processing node, Ti is
ith task, CTij is completion time of ith task on jth
processing node.

CTij = ETij + BTj where, ETij is execution time
of ith task on jth processing node, and BTj is the
begin time of jth processor.

Earliest Completion Time (ECT) of a task is
the minimum time amongst all the selected nodes
taken to complete the task.

SPMinMin

In a Grid, tasks with different levels of security
requests compete for the resources. It is assumed
that a task with low security requirement can be
executed on both types of resources; the one of-
fering high security as well as the one offering
low security. Thus, a task with a desired security
level service can be executed only on a resource

94

A Security Prioritized Computational Grid Scheduling Model

providing required or higher than the required
security level.

As mentioned in section 2, MinMin is one
of the most popular scheduling algorithms and
is used in real world distributed resource man-
agement systems such as SmartNet (Freund et
al., 1998). The original MinMin is not security
aware and attempts have been made by Song et
al. (2005) to make it secure. MinMin (secured)
works as follows:

• Compute the completion time of all the
tasks on all the nodes.

• Grid node that offers the minimum com-
pletion time while meeting the security de-
mand is tagged for each grid task.

• Among all such task- node pair, the task
which has the minimum completion time
is allocated to the respective node.

MinMin was not designed to incorporate secu-
rity as a scheduling parameter. The only guiding
parameters for MinMin are size of the task and
speed of the processor. Introducing security made
it behave inefficiently especially under certain
situations. Shorter tasks are scheduled on faster
nodes at priority according to MinMin. In a typi-
cal situation where highly secured machines are
the fastest and there are many shorter tasks with
lower security requirements the performance of
MinMin degrades significantly. The reason is, in
the beginning shorter tasks even with low security
requirement are unnecessarily assigned to the fast-
est node (highly secured) and at the end longer task
also run on overloaded highly secured machines,
as they cannot run on any other machines.

To overcome this shortcoming, we have
modified the Min-Min algorithm to consider
the security requirement as a guiding factor for
the scheduling decisions. The modified Security
Prioritized MinMin (SPMinMin) allocates highest
security demanding tasks first on faster resources.
Its working is as follows:

• Create a list of the tasks with highest secu-
rity requirement (Thigh) from the complete
set of tasks (TComplete).

• For each task of Thigh, find the list of the
nodes (Nqualified) which satisfies the security
demand of the task.

• Compute the completion time for each task
of Thigh on its entire node list (Nqualified).

• For each task, tag the node(s) from the
Nqualified that offers minimum completion
time.

• Among all such task-node pair, allocate the
task which has the minimum completion
time to the respective node.

• Remove the task from the Thigh and TComplete
list.

• Modify the begin time (BT) of the resource.
• Repeat the entire process till Thigh list is

empty. After all the tasks from Thigh are al-
located new Thigh is generated and the en-
tire process begins for the new Thigh.

The Algorithm

The algorithm for the SPMinMin is given in Box 1.

EXPERIMENTAL EVALUATION

To validate and evaluate the performance, simu-
lation experiments have been carried out. The
experimental study considers the complete het-
erogeneous environment e.g. Security requirement
of the tasks; security offered by the nodes, speed
of the nodes and size of the task. Altogether, fol-
lowing possibility for the experimentation exists:

1. High speed nodes are more secured and
heavy tasks require more security.

2. High speed nodes are more secured and
heavy tasks require less security.

3. High speed nodes are more secured no depen-
dency between length of task and security.

95

A Security Prioritized Computational Grid Scheduling Model

4. High speed nodes are less secured and heavy
tasks require more security.

5. High speed nodes are less secured and heavy
tasks require less security.

6. High speed nodes are less secured and no
dependency between length of task and
security.

7. No dependency between speed of nodes and
security and no dependency between length
of task and their security requirement.

The parameters needed for the simulation to
work in a secured grid environment are mentioned
in Table 1.

Figure 1a to 1g shows the simulation results
for the mentioned seven grid environments for
MinMin and SPMinMin when the number of
processing nodes for a grid environment is fixed
to 16 and the number of task to be scheduled on

them varies from 8 to 100. The aim is to study
the performance of the two algorithms for differ-
ent job sizes (number of tasks) when the grid size
is kept constant. Figure 2a to 2g shows the simu-
lation results when the tasks to be scheduled on
a grid environment are fixed to 40 and the number
of nodes varies from 4 to 24. This is to study the
performance of the two algorithms for different
grid size keeping job size fixed.

Also, the experiment was conducted to observe
the time taken by both the algorithms under
similar environment. Conspicuous is the fact that
apart from offering better makespan the SPMin-
Min is better in terms of its own execution in
comparison to MinMin. Figure 3 shows the com-
parison over the speed of the two algorithms. It
has been observed that with the increase in the
number of tasks the execution time of the algorithm
improves exponentially.

Box 1. The SPMinMin scheduling algorithm

do until (T
Complete

 != NULL) //there are more tasks

 {

 Create T
high

 from T
Complete

 // the tasks demanding high security

 do until (T
high

, != NULL) // there are tasks in T
high

 {

 for each task i from T
high

 {

 Create N
qualified,i

 for each node j from node list N
qualified,i

 compute CT
ij
 = ET

ij
 + BT

j

 find the ECT(Earliest Completion Time)

 for each task and its corresponding node.

 Generate matrix ECT
task(i),node.

 }

 from the matrix ECT, find the task with

 minimum ECT =(ECT
k,m
)) // tth task on mth node

 Schedule task t on node m,

 Delete task t from T
high

 and T
complete

 Modify BT
m
 = BT

m
 + CT

km
 // begin time for the node m is

 modified

 }

}

96

A Security Prioritized Computational Grid Scheduling Model

OBSERVATIONS AND CONCLUSION

The present work proposes a security aware
scheduling model for computational grid as an
extension of MinMin model. It also compares the
widely used MinMin algorithm with the proposed
SPMinMin for performance metrics like makes-
pan and site utilization. SPMinMin is a modified
MinMin and it shows remarkable improvement
where security demanded by the task cannot be
compromised. According to MinMin, shortest
task will be scheduled at priority on fastest node.
This makes lighter and low security demanding
tasks to be unnecessarily scheduled on faster high
security nodes. This affects negatively on the site
utilization and the entire jobs’ (multiple tasks)
makespan. To overcome this shortcoming, the
Min-Min (secured) algorithm has been modified
with the security demand of the task as a guiding
factor to scheduling decisions. The modified Se-
curity Prioritized MinMin (SPMinMin) allocates
highest security demanding tasks first on the faster
resources. The highest security requiring tasks
are then scheduled according to MinMin. Thus
it never compromises the benefits of MinMin
but very simply modifies it to work efficiently
in a secured environment. Experimental results
confirm our study.

The article has elaborated various possible
situations in a grid environment based on the

computational and security heterogeneity of
grid resources and grid tasks. Experiments are
conducted on simulated grid environments in
two sets. In the first set, the number of nodes is
fixed to 16 and the number of tasks varies from
8 to 100. In the second set number of tasks are
fixed to 100 and number of nodes varies from 4
to 24. For all possible situations, experimental
data is generated and the behavior of MinMin and
SPMinMin for makespan and site utilization are
studied and compared. The following observations
are derived from the experiments:

Whenever heavy tasks demanded more security
the proposed model always behaved much better
than MinMin as shown in Figure 1a, 1d and 2a,
2d. The more the percentage of such tasks the
more will be the improvement in performance
of SPMinMin over MinMin. When there is no
dependency between length of tasks and the se-
curity, even then SPMinMin outperforms MinMin
as depicted from plots 3c, 3f and 4c, 4f. Similar
results are obtained for both the sets; varying job
size or varying grid size. Thus for any grid size or
job size SPMinMin outperforms MinMin when-
ever heavy tasks are more security demanding.

In a grid situation when heavy tasks require
more security and higher speed nodes are more
secured, there is a significant improvement in the
performance of SPMinMin over MinMin and this
comes out to be the most favorable situation for

Table 1. Parameters for simulations

Parameter Value Range

No of nodes fixed to 16 // fig. 1a to 1g

No of tasks 8 to 100 // fig. 1a to 1g

No of tasks fixed to 40 // fig. 2a to 2g

No of nodes 4 to 24 // fig. 2a to 2g

Speed of the processing nodes (SP) 1, 2, 5, 10 (MIPS)

Security level of the processing node (SL) 4 / 6 / 9

No. of tasks Up to 100

Size of tasks 10 to 100 (MB)

Security level demand of the grid task (SD) 4 / 6 / 9

97

A Security Prioritized Computational Grid Scheduling Model

SPMinMin. Under this grid environment, if we
keep on increasing the tasks while keeping grid
size constant, makespan of SPMinMin improves as
shown in Figure 1a. For the same grid environment
performance of SPMinMin is much better than
MinMin for smaller grid as shown in Figure 2a.

In a situation when heavy task demand less
security but high speed nodes are more secured,
the two behaves similar for larger grid as shown in
Figure 1b. For the same situation, it is also observed
that for fewer grid nodes, SPMinMin behaves bet-
ter than MinMin as depicted in Figure 2b.

Figure 1. Makespan comparison for different grid environments when number of processing nodes is
fixed to 16 and number of task varies from 8 to 100

98

A Security Prioritized Computational Grid Scheduling Model

It has also been observed that whenever heavy
tasks demands less security and high speed nodes
are less secured, SPMinMin and MinMin behave
identically as can be gleaned from Figure 1e and
Figure 2e.

There are no dependencies between speed of
nodes and security and between length of task and
security demand. This is the most realistic grid situ-

ation and under most of the situation SPMinMin
will perform better than MinMin giving a better
makespan and site utilization as shown with the
sample data above. Graph 3g and 4g confirm this.

Finally, it is concluded that under all possible
situations where security of the task needs to be
fulfilled, SPMinMin either outperforms MinMin
or in the worst case behaves similar to MinMin. It

Figure 2. Makespan comparison for different grid environments when number of tasks is fixed to 40 and
the number of processing nodes varies from 4 to 24

99

A Security Prioritized Computational Grid Scheduling Model

is also observed that SPMinMin is a faster algo-
rithm than MinMin. Thus, SPMinMin is a prime
candidate to be considered as a security aware
scheduler on a computational grid.

REFERENCES

Apostolopoulos, G., Peris, V., & Debanjan Saha,
D. (1999). Transport Layer Security: How Much
Does it Really Cost. Proceedings of the IEEE
INFOCOM. New York.

Casanova, H., Legrand, A., Zagorodnov, D., &
Berman, F. (2000). Heuristics for scheduling
parameter sweep applications in grid environ-
ments. The Ninth IEEE Heterogeneous Computing
Workshop (HCW),(pp. 349–363).

Dierks, T. (2007). The Transport Layer Security
(TLS) Protocol Version 1.2 Network Resonance,
Inc. Available at http://www.ietf.org /internet-
drafts/draft-ietf-tls-rfc4346-bis-07.txt.

Foster, I., Kesselman, C., Tsudik, G., & Tuecke, S.
(1998). Security Architecture for Computational
Grids. ACM Conference on Computers and Se-
curity, (pp. 83-91).

Foster, I., Kesselman, C., & Tuecke, S. (2001).
The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of High
Performance Computing Applications, 200–222.
doi:10.1177/109434200101500302

Freier, A. O., Karlton, P., & Kocher, P. C. (1996).
Internet Draft: The SSL Protocol Version 3.0. The
Internet Engineering Task Force (IETF), Avail-
able at http://wp.netscape.com/eng/ssl3/draft302.
txt,last accessed in November 2007.

Freund, R. F., Gherrity, R. M., Ambrosius, S.,
Campbell, M., Halderman, D., Hensgen, E., &
Keith, T. Kidd, M. Kussow, Lima, J. D., Mi-
rabile, F. L., Moore, L., Rust, B., & Siegel, H.
J. (1998). Scheduling resources in multi-user,
heterogeneous, computing environments with
SMARTNET. 7th IEEE Heterogeneous Comput-
ing Workshop, (pp. 184–199).

Fujimoto, N., & Hagihara, K. (2003). Near-optimal
dynamic task scheduling of independent coarse-
grained tasks onto a computational grid. 32nd
Annual International Conference on Parallel
Processing (ICPP-03), (pp. 391–398).

Jones, M. (2003). Grid Security - An overview of
methods used to create a secure grid. Retrieved
from http://www.cse.buffalo.edu/faculty/miller/
Courses/Grid-Seminar/Security.pdf.

Naedele, M. (2003). Standards for XML and
Web Services Security. Computer, 36(4), 96–98.
doi:10.1109/MC.2003.1193234

Paranhos, D., Cirne, W., & Brasileiro, F. (2003).
Trading cycles for information: Using replication
to schedule bag-of-tasks applications on computa-
tional grids. International Conference on Parallel
and Distributed Computing (Euro-Par). Lecture
Notes in Computer Science, 2790, 169–180.

Prabhakar, S., Ribbens, C., & Bora, P. (2002).
Multifaceted web services: An approach to secure
and scalable grid scheduling. Proceedings of
Euroweb, Oxford, UK.

Figure 3. Comparison in speed of the two algo-
rithms

100

A Security Prioritized Computational Grid Scheduling Model

Song, S., Kwok, Y. K., & Hwang, K. (2005).
Trusted Job Scheduling in Open Computational
Grids: Security-Driven Heuristics and A Fast
Genetic Algorithms. Proceedings of International
Symposium Parallel and Distributed Processing,
Denver, Colorado.

Tonellotto, N., Yahyapour, R., & Wieder P.
H.(2006). A Proposal for a Generic Grid Schedul-
ing Architecture. Core GRID TR-0025.

Xie, T., & Qin, X. (2007). Performance Evalu-
ation of a New Scheduling Algorithm for Dis-
tributed Systems with Security Heterogeneity.
Journal of Parallel and Distributed Computing,
67, 1067–1081. doi:10.1016/j.jpdc.2007.06.004

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1,
Issue 3, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 73-84, copyright 2009 by IGI Publishing (an imprint of IGI Global).

101

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-60960-603-9.ch007

Zahid Raza
Jawaharlal Nehru University, India

Deo Prakash Vidyarthi
Jawaharlal Nehru University, India

A Replica Based Co-Scheduler
(RBS) for Fault Tolerant

Computational Grid

ABSTRACT

Grid is a parallel and distributed computing network system comprising of heterogeneous computing
resources spread over multiple administrative domains that offers high throughput computing. Since
the Grid operates at a large scale, there is always a possibility of failure ranging from hardware to
software. The penalty paid of these failures may be on a very large scale. System needs to be tolerant
to various possible failures which, in spite of many precautions, are bound to happen. Replication is a
strategy often used to introduce fault tolerance in the system to ensure successful execution of the job,
even when some of the computational resources fail. Though replication incurs a heavy cost, a selective
degree of replication can offer a good compromise between the performance and the cost. This chapter
proposes a co-scheduler that can be integrated with main scheduler for the execution of the jobs submit-
ted to computational Grid. The main scheduler may have any performance optimization criteria; the
integration of co-scheduler will be an added advantage towards fault tolerance. The chapter evaluates
the performance of the co-scheduler with the main scheduler designed to minimize the turnaround time
of a modular job by introducing module replication to counter the effects of node failures in a Grid.
Simulation study reveals that the model works well under various conditions resulting in a graceful
degradation of the scheduler’s performance with improving the overall reliability offered to the job.

102

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

INTRODUCTION

Computational resources being scarce requires an
efficient use of these resources. Resources may
vary from specialized computational machines,
storage machines to heterogeneous applications.
Grid is the aggregation of the resources across the
world seamlessly and enabling their use as, when
and wherever desired rather than individual group
investing heavily for high performance computa-
tional resources. In the era of high performance
and high throughput computing, grid has emerged
as an efficient means of connecting distributed
computers or resources scattered all over the
world for the purpose of collaborative computing
thus essentially unifying various heterogeneous
resources on a common platform while dimin-
ishing the administrative boundaries to provide
a transparent access to a user. Essentially being
a part of the grid means an infinite capability to
execute and compute any kind of job anywhere
by simply becoming its part. Therefore, even if
the appropriate computational capabilities are not
available with the user, the grid helps the job to
be executed on the right resources thereby being
efficient as well as cost effective.

Depending on the use grids can be classi-
fied as Computational grid, Data grid, Sensor
grid, Biological grid etc. A computational grid
emphasizes on the computing aspect thus sched-
uling the job to the grid resources by exploring
the computational requirements of the job and
effectively load balancing it. Scheduling can
be based on various objectives like maximizing
the reliability of job execution, minimizing the
make span or maximizing the Quality of Service
(QoS) for the job execution (Grid Computing
Info centre, 2008; Baker, Buyya, & Laforenza,
2002; Tarricone & Esposito, 2005; Ernemann,
Hamscher, & Yahyapour, 2002; Casanova, 2002;
Vidyarthi, Sarker, Tripathi & Yang, 2009; Raza
& Vidyarthi, 2008, 2009).

Execution of a job on the complex and dynamic
grid poses number of challenges. One of these

challenges is to ensure a reliable environment to
the job so that it can cope with any kind of failure.
Since the grid resources are heterogeneous in be-
havior and administrative control, introduction of
fault tolerance in the system is very difficult. In
addition, the jobs demanding execution on the grid
themselves may be very complex and may take
a long time to execute making them vulnerable
to failures. Further, the resources are under the
user control so even accidental damages or even
a forced shutdown may fail the execution. Similar
is true for the network failure also. These failures
may range from hardware to software and to the
network failures. The fault tolerant techniques can
thus vary from proactive to reactive approaches
to counter failure at any level (Dai, Xie, & Poh,
2002; Huda, Schmidt & Peake, 2005; Mujumdar,
Bheevgade, Malik & Patrikar, 2008). In spite of
these measures, the chances of failures cannot be
overruled. The desired objective is to accept these
failures and minimize their effect by gracefully
degrading the system with continued job execution
at the cost of a compromised overall performance.
One of the popular mechanisms to handle failures
is to introduce replication. This could be in the
hardware form or the software form in which same
application is executed or stored at more than one
resources. Therefore, with the slight increase in
the execution cost, replication increases the prob-
ability of the successful execution of the job, thus
being fault tolerant.

Replication incurs a heavy cost but this cost can
be minimized by adopting selective replication.
The selection of nodes or job modules depends
on certain parameters that can be decided by the
system as per the scheduling requirements. The
RBS works on the basis of replicating some of the
modules allocated on a node with high failure rate
on to those nodes with lesser failure rate. There-
fore, it increases the fault tolerance of the system
without severely affecting the performance.

This paper has six sections. Next section dis-
cusses the related work reported in the literature
with the similar objective followed by a section

103

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

elaborating the need and integration of RBS with
a main scheduler. Working of the model using a
suitable example is illustrated next along with the
details of the results obtained from the simulation
study. The chapter finally concludes detailing the
achievements and drawbacks of the work.

RELATED MODELS

The grid being an aggregation of geographically
distributed heterogeneous resources; the degree
of unreliable behavior extends from the compu-
tational resources to the applications running to
the network media. A reliable and fault tolerant
scheduling has gained enough attention from the
researchers and many models have been reported
in the literature addressing these issues. A few
models have been proposed to counter the effect
of these failures by adopting proactive to reactive
solutions. A reliability analysis of grid computing
systems has been done in (Dai, Xie, & Poh, 2002).
An agent oriented fault tolerant framework has
been proposed in (Huda, Schmidt & Peake, 2005)
to use agents to monitor the system and in case
of any threat appropriate measures may be taken
beforehand to prevent failures. A checkpoint-based
mechanism has been adopted for recovery from
failures from the last saved state as a reactive mea-
sure (Mujumdar, Bheevgade, Malik & Patrikar,
2008). Introduction of redundancy is a popular
means to safeguard the application, as reported
in many models in the literature. A study of the
tradeoff between performance and availability
has been carried out suggesting a file replication
strategy (Zhang & Honeyman, 2008). The use of
replication by determining the number of replicas
required and then suggesting a scheduling strat-
egy for the tasks submitted is reported in (Li &
Mascagni, 2003). Another fault tolerant strategy
using replication is proposed in (Liu, Wu, Ma, &
Cai, 2008) whereas a model using database centric
approach for static workload for data grid has been
proposed in (Desprez & Vernois, 2007; Sathya,

Kuppuswam & Ragupathi, 2006). Many more
similar models are also available in the literature.

THE REPLICA BASED CO-
SCHEDULER (RBS)

Replication can be applied in many ways for grid
constituents to induce fault tolerance in the system.
Depending on the requirements and availability it
could be used at hardware or the software level.
These techniques do well irrespective of the al-
location strategy used by the scheduler but with
the increased cost of execution both in terms of
computational power and money. The degree and
type of replication introduced, thus depends on
the acceptable amount of failures the system can
digest. Since grid is a heterogeneous environ-
ment, the failures may occur at many levels viz.
the job may fail during the time of submission,
the computational resource may fail while job is
being scheduled or even after being scheduled,
the network links may fail while the job is inter-
acting with the user or within itself. Among all
these failures, those accounting to failed resources
or application before scheduling does not have
a serious effect as they can be taken up again
for scheduling. The problem is serious when
the resources fail while executing the jobs. The
most disastrous failure could be the node failure
on which the job is getting executed. Robustness
towards application failure and network failures
is difficult to attain but the node failure can be
handled a bit more easily if we have the informa-
tion about the allocation of various modules (jobs)
allocated on that node.

The proposed Replica Based Co-Scheduler
(RBS) helps in the reliable execution of the modu-
lar job by replicating the modules allocated to the
nodes with high failure rates (sick nodes) to the
ones with a lower failure rates (healthy nodes).
The reallocation is done only once for a module
based on the random selection of nodes out of all
the healthy nodes. This results in having duplicate

104

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

copies of the modules on more than one node.
In case of a node failure, the duplicate copies of
the modules continues for the job execution. The
duplicate copies are used only when a node fails
otherwise the job is executed as per the originally
scheduled allocation. The job of the RBS starts
when the job of the main scheduler in allocating
the job modules to various nodes has finished.
It is then that the RBS takes control to provide
robustness and fault tolerance to the cluster con-
taining the computational resources. The RBS can
be used along with any scheduler available in the
grid middleware. The inclusion of RBS enables
the grid to respond graciously to the node failures
with the cost of compromising the performance of
the grid, which is unavoidable since the replicated
modules have an altered sequence of execution as
compared to the original schedule. RBS strategy
provides an important backup in absence of which
the job needs to be scheduled afresh again result-
ing in consumption of computational energy that
proves very costly for the high traffic environment
such as grid. For the real time jobs the problem
becomes much more severe as the failures may
impact he grid performance thus hitting the fi-
nancial prospects of the grid.

INTEGRATION OF RBS WITH TSM

To analyze the performance of the co-scheduler
RBS it is essential to have a scheduler, which
schedules the job submitted to the grid on ap-
propriate resources based on certain optimiza-
tion parameter. These parameters may vary e.g.
turnaround time, reliability, security, Quality of
Service (QoS) etc. Minimizing the turnaround time
for the job submitted is often a desired parameter
and has been addressed in the Turnaround Based
Scheduling Model (TSM) for computational grids
using Genetic Algorithm (GA) in [8]. The TSM
model uses GA to schedule a modular job on a
cluster based grid to suggest an allocation pattern
in such a way that the turnaround time of the job is

minimized. In the present work, the performance
of the RBS has been analyzed by integrating it
with a TSM scheduler.

The TSM model considers the grid as collec-
tion of many clusters, each with a specialization,
consisting of a number of nodes for job execution.
This is a multipoint entry grid in which the job can
be fired at any node of the constituent clusters.
The main scheduler (TSM) searches for the ap-
propriate cluster matching the job’s requirements
and offering the minimum turnaround time to the
job, on which the job is eventually scheduled. The
job is submitted for execution along with its Job
Precedence and Dependence Graph (JPDG) in
which the position of each module of the job indi-
cates its order of execution. It also depicts degree
of parallelism and the interaction dependence of
that module with the preceding modules in terms
of the communication requirements.

The allocation status of the various jobs is
maintained with each cluster in a data structure
known as the Cluster Table (CT), which is updated
periodically to reflect updated allocations. The CT
consists of the following attributes

Cn (Sn, Pk, fk, λlt, Mij, Tprkn)

Where Cn refers to the cluster under consider-
ation with specialization Sn, number of nodes Pk,
the clock frequency of each node fk, failure rate
of each node λlt, modules assigned on the nodes
Mij and the time to finish existing modules Tprkn
on the nodes. As obvious, the CT provides the
information regarding the cluster constituents
e.g. the specialization of the cluster nodes to help
allocating the jobs to appropriate resources as
per its requirements and specifications, number
of nodes in the cluster, their clock frequency, the
failure rate of nodes, present allocation, and the
time taken to finish the existing modules already
allocated on the nodes. The main scheduler in this
case is TSM but it can be any scheduler proposing
a scheduling strategy for the modular job. Since the
objective of the TSM is to minimize the turnaround

105

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

time of the job, the resultant allocation pattern
corresponds to a chromosome suggesting the al-
location of job modules on the appropriate nodes
[8]. This information is helpful as it is eventually
used by the RBS. Taking this allocation of the job
modules as suggested by TSM as the prerequisite,
RBS replicates the modules of the sick nodes to
the healthy nodes as a precautionary measure to
overcome the loss due to possible node failures
thus increasing the fault tolerance of the system.

For the job submitted for execution, TSM
generates a population of chromosomes populated
randomly. This is done by dynamic generation of
the chromosomes of size (number of genes) equal
to the number of modules of the job such that
each gene represents the allocation of a module
to a node. Starting from the left hand side, the
first gene corresponds to the node allocation for
the first module, the second gene referring to the
node allocation for the second module and so on
till the last gene corresponding to the last module
as shown in Table 1.

Table 2 presents an example of a job with five
modules on a cluster with six nodes. The gene
positions here can be read as module 1 being al-
located to node 6, module 2 on node 2, module 3
on node 6, module 4 on node 1 and module 5 on
node 5.

For the population, TSM uses GA to evolve
towards a chromosome offering the minimum

turnaround time using operators selection, cross-
over and mutation. This chromosome gives us the
allocation pattern using which the job can be
scheduled to minimize the turnaround time of the
job. This process is done for all the clusters match-
ing the specialization of the job resulting in a
chromosome generated for each cluster offering
the minimum turnaround time to the job. These
costs are compared to select the cluster offering
the least turnaround time corresponding to some
allocation pattern responsible for it [8].

For any cluster of the grid, the allocation of
modules to the individual nodes depends on three
factors viz. processing speed of the node, time to
finish execution of already allocated modules to a
node and the communication cost in terms of the
bytes exchange required between the modules.
This cost becomes the fitness function for the
allocation of a job with M modules and can be
represented as

NEC = E w B D x x Tkin ijk ihj kln ijk hjl

h=1

i-1

prknijkn.x + . . +()

 ∑

∑
 i=1

M

(i)

Here Eijkn represents the processing time of the
node Pk under consideration calculated for node Pk
for module mi of size Ii of job Jj on cluster Cn as

Table 1. Chromosome Structure

Node No. for Module1 Node No. for Module2 Node No. for Module3 Node No.
for

Module 4

Node No. for Module5

Table 2. A Sample Allocation of Nodes to the Modules

6 2 6 1 5

106

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

Eijkn = Ii * (1/fk) + n * α (ii)

xijk is the vector indicating the assignment of
module mi of job Jj on node Pk. It assumes a bi-
nary value. It is 1 if the module is allocated to the
node and is 0 otherwise. Tprkn is the time to finish
execution of the present modules on the node Pk.

The factor w B D x xihj k ijk hjl

h

i

. .ln()
=

−

∑
1

1

 represents the

communication cost between a module mh with
the previous modules mi as per the JPDG, Bihj
being the number of bytes that need to be ex-
changed between modules mi and mh and Dkl is
the hamming distance between nodes Pk and Pl
involved in data exchange. w is the scaling factor

to scale the term B D x xihj k ijk hjl

h

i

. .ln()
=

−

∑
1

1

 into time

unit.
The reliability offered by the cluster of the grid,

ClusReljn, as per the allocation pattern suggested by
the chromosome can be written as shown in Box
1, where ModRelik is the reliability offered by the
grid when module mi has been assigned on node
Pk. Introduction of replicated modules increases
the reliability of the job execution. At any time,
the reliability offered to the job with replication,
ClusRelRepjn, can be written as

ClusRelRep = ClusRel C * ClusReljn jn
K

I jn+
(v)

Here, ClusReljn as stated in eq. (iii) is the reli-
ability offered to the job Jj without node failure
and KCI accounts for the failure of ‘I’ nodes out
of the available ‘K’ nodes on which original al-
location has been made.

RBS Algorithm

The TSM essentially schedules the job on the clus-
ter offering the minimum turnaround from a group
of clusters with matching specialization of the job.
Once the cluster is selected for job allocation, its
Cluster Table (CT) is updated to accommodate
the new job. The job of the RBS begins where the
job of TSM finishes. For the cluster selected, the
RBS evaluates the vulnerability of the nodes on
which an allocation has been done by comparing
their failure rates λlt with some threshold failure
rate λth which depends on the domain knowledge
of the cluster along with the acceptance level of
the failures. Accordingly the nodes are judged as
healthy and sick nodes. For the sick nodes, CT is
referred to check for any allocations made. These
modules are then duplicated on some healthy node,
selected randomly. The algorithm for the same is
shown in the box.

Now if a failure is detected the system does
not fail completely as copies of the modules on
the failed node are still available on some other
nodes. The execution of the job still follows the
JPG with the penalty of increase in the turnaround
time. It is due to some nodes waiting for the pre-

ClusRel = ModRel jn ik

i=1

M

Õ (iii)

ClusRel =

exp - () E .x +(+) w(B D

jn

ij+ kn ijkn ijk ij kl ihj.µ λ µ ξ

 kkln ijk hjl

h=1

i-1

kn prkn)x .x + T∑

 λ

∏
i=1

M

 (iv)

Box 1.

107

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

vious modules reallocated on other nodes to get
executed. The RBS thus works as a supplement
to the main scheduling algorithm by increasing
the clusters fault appetite.

ILLUSTRATIVE EXAMPLE

To elaborate the working of the RBS an example
has been illustrated using one of the results of
the simulation study with other job as detailed
in Table 3 and Table 4. The parameters taken
are scaled down for the purpose of illustration.
All the data values are generated randomly and
conform to the similar studies. Table 5 and Table
6 represents the CT and the hamming distance
between nodes respectively for cluster C0, which
is the selected cluster on which the job has been
finally allocated by the TSM scheduler. Table 7
represents the processing time matrix for cluster

Algorithm 1.

Replica (Job)

{

On the selected cluster C
n
, for the submitted job J

j

 do

 Set the threshold failure rate λ
th.

 Get the failure rates λ
lt
 of each node on which allocation has been made

 For each node, if λ
lt
 > λ

th

 do

 {

 Get all modules M
ij
 allocated on node P

k

 For each module

 do

 {

 Randomly allocate it to any processor with λ
lt
 > λ

th

 }

Table 3. Job J0

Module
(mij)

Job Specialization
(Jj)

Number of Instructions
(Ii)

m00 J0 150

m10 J0 200

m20 J0 175

m30 J0 100

m40 J0 200

Table 4. Matrix Bih0 for Job J0

m00 m10 m20 m30 m40

m00 0 3 3 0 0

m10 3 0 0 2 3

m20 3 0 0 0 2

m30 0 2 0 0 0

m40 0 3 2 0 0

108

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

C0 for the given job. Final allocation of the job
to the cluster selected considering allocation of
individual modules by TSM is shown in Table 8.

Here, BECik should be read as the Best Execu-
tion Cost for mi module offered by node Pk and
interpreted as the best turnaround time offered by
a node to a module being considered for alloca-
tion. This becomes the best turnaround time offered
by any node and results in allocation of the mod-
ule to this node, which can then execute it in the
minimum possible time.

The turnaround time for the above allocation
is found to be

Turnaround Time

= max (NECikn) for ‘k’ on which allocation has
been made

= max (38, 29.75, 24, 13, 29.5) = 38

Therefore, the final allocation of the modules
for cluster C0 is represented in Table 9.

As can be seen from Table 5, the failure rates
of the nodes are determined and the sick (S) and
healthy nodes (H) are marked accordingly by
comparing it with the threshold failure rate λth

Table 5. Cluster table for C0

Node Number
(Pk)

Clock Frequency
(fk in MHz)

Specialization
(Sn)

Time to finish
(Tprkn in μS)

Modules allocated
(Mij)

Node Failure
rate (λlt)

P0 10 J0 10 00 0.001

P1 20 J0 12 10 0.002

P2 10 J0 10 31 0.003

P3 10 J0 13 33 0.008

P4 20 J0 12 43 0.007

Table 6. Matrix Dkl for Cluster C0

P0 P1 P2 P3 P4

P0 0 1 2 3 2

P1 1 0 3 2 3

P2 2 3 0 1 2

P3 3 2 1 0 1

P4 2 3 2 1 0

Table 7. Ei0k0 on cluster C0 for Job J0

m00 m10 m20 m30 m40

P0 15 20 17.5 10 20

P1 7.5 10 8.75 5 10

P2 15 20 17.5 10 20

P3 15 20 17.5 10 20

P4 7.5 10 8.75 5 10

109

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

which is 0.005 in this case. This is shown in Table
10 along with the random replacements for the
modules on the sick nodes.

So the new allocation becomes as shown in
Table 11.

The node numbers shown in the brackets are
the duplicate copies of the modules lying on the

sick nodes, which becomes active as soon as the
corresponding node fails. Assuming all the sick
nodes fail, the new allocation becomes Table 12.

For the new allocation, now, the turnaround
time can be calculated in the same way as shown
in Table 8 as per equation (i). The new turnaround
time calculation is shown in Table 13 for thresh-

Table 8. Allocation of modules for Cluster C0

m00

P0 P1 P2 P3 P4

Eijkn 15 7.5 15 15 7.5

Tprkn 10 12 10 13 12

∑ (Bihj* Dkl) 0 0 0 0 0

NECikn 25 19.5 25 28 19.5 (BEC04)

m10

P0 P1 P2 P3 P4

Eijkn 20 10 20 20 10

Tprkn 10 12 10 13 19.5

∑ (Bihj* Dkl) 6 9 6 3 0

NECikn 36 31 36 36 29.5
(BEC14)

m20

P0 P1 P2 P3 P4

Eijkn 17.5 8.75 17.5 17.5 8.75

Tprkn 10 12 10 13 29.5

∑ (Bihj* Dkl) 6 9 6 3 0

NECikn 33.5 29.75
(BEC21)

33.5 33.5 38.25

m30

P0 P1 P2 P3 P4

Eijkn 10 5 10 10 5

Tprkn 10 29.75 10 13 29.5

∑ (Bihj* Dkl) 4 6 4 2 0

NECikn 24 40.75 24(BEC32) 25 34.5

m40

P0 P1 P2 P3 P4

Eijkn 20 10 20 20 10

Tprkn 10 29.75 24 13 29.5

∑ (Bihj* Dkl) 8 9 12 7 6

NECikn
38

(BEC40)
48.75 56 40 45.5

110

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

old failure rate as λth =0.005. Since node P3 and
P4 has been marked as a sick nodes these will not
be considered for future allocation. Since the new
allocation has suggested the allocation of modules

in the order P2, P0, P1, P2 and P0 for the modules
m00, m10, m20, m30 and m40, the turnaround time
offered for various modules by the corresponding
nodes is as shown in Table 13.

The total turnaround time for the new alloca-
tion can thus be calculated as

Turnaround Time

= max (NECikn) for ‘k’ on which allocation has
been made

= max (58, 12, 65.5) = 65.5

As evident from Table 13, with node failures
the turnaround time has increased from 38 to 65.5
but still the program overcomes the glitches of
the node failures to finish the current execution
and the job execution is guaranteed. Later these
failed nodes can be eliminated from the CT of the
respective clusters, which is C0 in this case and will
not be used for future allocation unless repaired.

Table 9. Final allocation of the job to the nodes

Node on which allocation has been made

m00 P4

m10 P4

m20 P1

m30 P2

m40 P0

Table 10. Detection of sick and healthy nodes

Node on which allocation has been made Replacement Node

m00 P4(S) P2

m10 P4(S) P0

m20 P1(H) P1

m30 P2(H) P2

m40 P0(H) P0

Table 11. New allocation of the job to the nodes

Node on which allocation has been
made

m00 P4(P2)

m10 P4(P0)

m20 P1

m30 P2

m40 P0

Table 12. Modified allocation after node failure

Node on which allocation has been made

m00 P2

m10 P0

m20 P1

m30 P2

m40 P0

111

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

EXPERIMENTAL STUDY

Simulation experiments were carried out to ob-
serve the behavior of the model. Using equation
(i), the turnaround time of the job is observed
corresponding to the different number of failing
nodes. For each allocation pattern, reliability with
which the job can be executed is also calculated

using equation (iii). The effect of the number of
failed nodes on the turnaround time for varying
number of modules of the job and cluster architec-
ture is presented in Figure 1. For the same job and
cluster architecture, effect on the reliability of the
job execution is shown in Figure 2. Result of the
experiment with 15 number of modules resulted in
reliability values as low as 0.021. Since the value

Table 13. Turnaround time for the modified allocation for Cluster C0

m00

P0 P1 P2 P3 (×) P4 (×)

Eijkn 15

Tprkn 10 12 10

∑ (Bihj* Dkl) 0

NECikn 25

m10

P0 P1 P2 P3 (×) P4 (×)

Eijkn 20

Tprkn 10 12 25

∑ (Bihj* Dkl) 6

NECikn 36

m20

P0 P1 P2 P3 (×) P4 (×)

Eijkn 8.75

Tprkn 36 12 25

∑ (Bihj* Dkl) 9

NECikn 29.75

m30

P0 P1 P2 P3 (×) P4 (×)

Eijkn 10

Tprkn 36 29.75 25

∑ (Bihj* Dkl) 4

NECikn 39

m40

P0 P1 P2 P3 (×) P4 (×)

Eijkn 20

Tprkn 36 29.75 39

∑ (Bihj* Dkl) 2

NECikn 58

112

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

is too low, the result could not be accommodated
along with other results shown in Figure 2. Figure
1 and Figure 2 corresponds to the experimental
results without using any replication.

It is observed that the turnaround time keeps
on increasing with increase in the number of fail-
ing nodes. In addition, replication of modules
increases the reliability of job execution. This
reliability is minimum when maximum number
of nodes has failed and increases with reducing
number of failing nodes. Thus, in spite of the node
failures jobs gets executed with an increased
turnaround time adhering to the purpose of the
RBS.

Figure 3 and Figure 4 present the effect on
grid reliability due to replication. It presents a
comparison of the turnaround time and reliabil-
ity obtained with and without node replication
keeping the same grid environment and jobs.
The experiments were set to have no node failure
when no replication is there. The turnaround time
and reliability values are observed. Also, experi-
ment incorporated node failure feature along with
module replication and the experiments were run
again in the same grid environment for the same
job. The turnaround time and reliability values

with replication incorporated as reported here
correspond to the ones with minimum nodes failed
in each experiment.

It is evident from Figure 3 that the turnaround
time increases with the introduction of replication
owing to the cost of node failures resulting in
execution of the job from the replicas. Thus the
job gets executed though with some inflated
turnaround time. Since, the job is getting execut-
ed due to the presence of replicas; it results in an
increased reliability for the job as conspicuous in
Figure 4. Thus the presence of replica ensures an
increased reliability for the job execution. Same
pattern, as reported in Figure 1 to Figure 4 is
noticed in many more experiments validating the
performance of the model.

CONCLUSION

The proposed Replica Based co-scheduler (RBS)
helps in the reliable execution of the modular job
by replicating the modules allocated to the nodes
with high failure rates (sick nodes) to the ones with
a lower failure rates (healthy nodes). In place of
having full redundancy, partial redundancy has

Figure 1. Turnaround Time v/s Number of Failed Nodes

113

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

been introduced resulting in better fault tolerance
on moderate cost. So a better cost-performance
ratio is achieved.

The job of the RBS begins when the job of the
main scheduler, responsible for selection of the
cluster for job execution, finishes. Performance
of RBS is analyzed by considering its integration
with the TSM, which is a GA based scheduler

proposing an allocation for the job modules which
results in the minimum turnaround time offered to
the job. For the cluster, selected by the TSM, the
RBS evaluates the vulnerability of the nodes on
which an allocation has been made by comparing
their failure rates λlt with some threshold failure
rate λth. Selection of the thresholds depends on the
domain knowledge of the cluster along with the

Figure 2. Reliability v/s Number of Sick Nodes Failing

Figure 3. Turnaround Time With and Without Node Replication

114

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

acceptance level of the failures. Accordingly, the
nodes are judged as healthy or sick nodes. For the
sick nodes, information from the cluster database
is used to check if any allocations for the job has
been made on them. if it is then the allocated
modules are replicated on the healthy nodes. The
reallocation is done based on a random selection
of nodes out of all the healthy nodes. This results
in duplicate copies of the modules on more than
one node. In case of failure of any sick node, the
duplicate copies of the modules allocated to that
node can be found on the other healthy nodes
for the continuation of the job execution. This
operation results in allocation of modules on the
nodes as per the original schedule and as well
the duplicate copies of the modules lying on the
failure prone nodes. Now if no failure occurs the
job gets executed as planned but if node failures
are detected, the system does not succumb to
these failures rather it gracefully recovers with
some additional computational cost. The model
doesn’t replicate all the modules of all the nodes
rather only the modules on susceptible nodes.

Thus, saving the overall cost of execution which
would have been there with, full replication.

The RBS can therefore be used along with any
scheduler available with the grid middleware as a
co-scheduler to increase the fault tolerance. The
inclusion of RBS enables the grid to respond gra-
ciously to the node failures with a little increase in
cost and a little compromise in the performance of
the grid. This is unavoidable since the replicated
modules have an altered sequence of execution
as compared with the original schedule.

Use of such a co-scheduler is an added advan-
tage for the grid system as without this the job
needs to be scheduled afresh upon encountering
failures. This results in consumption and wastage
of computational energy which may prove very
costly for the high traffic environment like grid.
For the real time jobs the problem becomes much
more severe as the failures may impact the grid
performance and thus hitting the financial pros-
pects of the grid. The use of RBS does not affect
the objective of the main scheduler allocating
the job. Instead it helps it by providing necessary
support towards failures. Experimental study

Figure 4. Reliability With and Without Replication

115

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

reveals that the proposed RBS model works well
under various conditions resulting in a graceful
degradation of the grid performance.

ACKNOWLEDGMENT

The authors would like to thank Ms. Sayma Khan
for her assistance in some of the experiments
conducted for the study of the model.

REFERENCES

Baker, M., Buyya, R., & Laforenza, D. (2002).
Grids and Grid technologies for wide area distrib-
uted computing. SP&E. John Wiley and Sons, Ltd.

Casanova, H. (2002). Distributed computing re-
search issues in Grid computing. ACM SIGACT
News, 33(3), 50–70. doi:10.1145/582475.582486

Dai, Y. S., Xie, M., & Poh, K. L. (2002). Reliability
analysis of Grid computing systems. Proceedings
of the 2002 Pacific Rim International Symposium
on Dependable Computing (PRDC’02), IEEE
(pp. 97-104).

Desprez, F., & Vernois, A. (2007). Simultaneous
scheduling of replication and computation for
data-intensive applications on the Grid. Kluwer
Academic Publishers.

Ernemann, C., Hamscher, V., & Yahyapour, R.
(2002). Benefits of global Grid computing for
job scheduling. Proceedings of the Fifth IEEE/
ACM International Workshop on Grid Computing
(GRID’04) (pp. 374-379).

Grid Computing. (2008). Info centre. Retrieved
from www.gridcomputing.com

Huda, M. T., Schmidt, W. H., & Peake, I. D.
(2005). An agent oriented proactive fault-tolerant
framework for Grid computing. Proceedings of
the First International Conference on e-Science
and Grid Computing (e-Science’05), IEEE (pp.
304-311).

Li, Y., & Mascagni, M. (2003). Improving
performance via computational replication on
a large-scale computational Grid. Third IEEE
International Symposium on Cluster Computing
and the Grid (CCGrid’03), Tokyo, Japan (pp.
442-448).

Liu, L., Wu, Z., Ma, Z., & Cai, Y. (2008). A dy-
namic fault tolerant algorithm based on active
replication. Seventh International Conference
on Grid and Cooperative Computing, China (pp.
557-562).

Mujumdar, M., Bheevgade, M., Malik, L., & Patri-
kar, R. (2008). High performance computational
Grids - fault tolerance at system level. International
Conference on Emerging Trends in Engineering
and Technology (ICETET) (pp. 379-383).

Raza, Z., & Vidyarthi, D. P. (2008). Maximizing
reliability with task scheduling in a compu-
tational Grid. Second International Confer-
ence on Information Systems Technology and
Management(ICISTM), Dubai, UAE.

Raza, Z., & Vidyarthi, D. P. (2009). GA based
scheduling model for computational Grid to
minimize turnaround time. International Journal
of Grid and High Performance Computing, 1(4),
70–90. doi:10.4018/jghpc.2009070806

Sathya, S. S., Kuppuswami, S., & Ragupathi, R.
(2006). Replication strategies for data Grids.
International Conference on Advanced Comput-
ing and Communications ADCOM, India (pp.
123-128).

Tarricone, L., & Esposito, A. (2005). Grid com-
puting for electromagnetics. Artech house Inc.

116

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

Vidyarthi, D. P., Sarker, B. K., Tripathi, A. K.,
& Yang, L. T. (2009). Scheduling in distributed
computing systems. Springer. doi:10.1007/978-
0-387-74483-4

Zhang, J., & Honeyman, P. (2008). Performance
and availability tradeoffs in replicated file sys-
tems. Eighth IEEE International Symposium on
Cluster Computing and the Grid, Lyon, France
(pp. 771-776).

Section 3
Security

118

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

Wolfgang Hommel
Leibniz Supercomputing Centre, Germany

A Policy-Based Security
Framework for Privacy-

Enhancing Data Access and
Usage Control in Grids

ABSTRACT

IT service providers are obliged to prevent the misuse of their customers’ and users’ personally identifi-
able information. However, the preservation of user privacy is a challenging key issue in the management
of IT services, especially when organizational borders are crossed. This challenge also exists in Grids,
where so far, only few of the advantages in research areas such as privacy enhancing technologies and
federated identity management have been adopted.

In this chapter, we first summarize an analysis of the differences between Grids and the previously
dominant model of inter-organizational collaboration. Based on requirements derived thereof, we
specify a security framework that demonstrates how well-established policy-based privacy management
architectures can be extended to provide the required Grid-specific functionality. We also discuss the
necessary steps for integration into existing service provider and service access point infrastructures.
Special emphasis is put on privacy policies that can be configured by users themselves, and distinguishing
between the initial data access phase and the later data usage control phase. We also discuss the chal-
lenges of practically applying the required changes to real-world infrastructures, including delegated
administration, monitoring, and auditing.

DOI: 10.4018/978-1-60960-603-9.ch008

119

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

INTRODUCTION

Using compute and storage services starts with
selecting an appropriate IT service provider (SP).
Within their terms of use and privacy statements,
SPs define which information about a customer
(and, if the customer is an organization, its users)
they require in order to provide the selected ser-
vice. It also must be specified for which purposes
the collected data will be used, and how long it
will be retained. Typically, customer and user
information is required for accounting and billing
purposes as well as for service personalization.
Generally, it thus includes personally identifiable
information (PII), i.e., data that can be used to
uniquely identify a single person.

In order to prevent any misuse of such sensitive
data, e.g., selling email addresses to marketing
agencies, legislative regulations exist; they restrict
how PII may be used on an organizational level
and must be mapped to technical solutions, which
often have been neglected in the past, resulting
in potential vulnerabilities. Although privacy and
data protection laws differ between countries and
dedicated regulations exist for industrial sectors
such as finance and healthcare, one classic and
common principle is that data must only be used
for purposes which the user has been informed
about and agreed to.

As intra-organizational solutions so-called
privacy management systems have successfully
been implemented and deployed over the past
few years. They are tightly coupled with the IT
services used by the customers as well as with
other management systems, such as billing and
invoice management tools. Whenever a user’s or
customer’s data is about to be accessed, rule sets
are evaluated to determine whether the current
access attempt is in accordance with the privacy
policy the user has agreed to. Basically, such sys-
tems can be viewed as an extension of traditional
access management systems in order to enforce the
purpose limitation principle: They also take into
consideration for which specific purpose someone

is trying to access the data; formally specifying
such policies requires extensive modeling of the
involved roles, the acceptable purposes, and the
available PII itself.

In inter-organizational service usage scenarios,
such as Grid computing, privacy protection be-
comes an even more complicated issue, because
multiple organizations – typically also located in
different countries – are involved and SPs need
to retrieve the required user data from the user’s
home organization in an automated manner.

Instead of a single organization’s privacy
policy, multiple heterogeneous demands must now
be fulfilled regarding PII handling. For example,
there usually will be Grid-wide privacy policies,
such as those specified by a virtual organization
(VO); they must often be adequately combined
with SP-specific or user home organization spe-
cific policies, as well as policies eventually speci-
fied by the users themselves. Combining policies
requires the handling of conflicting policy parts
in a transparent manner.

In general, privacy management – intention-
ally with a strong focus on the user – becomes a
two-tiered process: First, users must decide which
of their data may be submitted to an SP at all, and
second they must be able to monitor and control
how their data is being used later on.

In the research areas of privacy enhancing
technologies (PET) and federated identity manage-
ment (FIM), various solutions to these issues have
been suggested, with many of them already being
used in production environments by commercial
as well as academic SPs; a short overview will
be given in the next section.

However, these solutions were originally
not suitable for certain characteristics of Grid
environments, such as the concept of VOs, and
cover only the PII of the users themselves; thus,
they neglect sensitive data submitted along with
Grid jobs, such as medical records used as input
data for those programs. In this article, we first
discuss these differences of Grid environments and

120

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

point out the relevant shortcomings of previous
approaches regarding Grid-specific requirements.

Furthermore, we advocate that existing policy-
based privacy management approaches can be
adapted to provide the additional functionality
required in Grids. Then, the architecture of our
specifically privacy-aware security framework,
which is based on the policy language XACML and
intended to be applied by Grid architects and SPs’
IT-security personnel, is presented. Afterwards,
the integration of the discussed privacy manage-
ment components into existing infrastructures
along with its challenges in real-world projects
are discussed. An outlook to our future research
concludes the article.

PRIVACY MANAGEMENT IN LARGE-
SCALE DISTRIBUTED SYSTEMS

The privacy management issues sketched above
are, even on an inter-organizational level, neither
a new nor a Grid-specific research issue. For this
reason, we confine the following discussion of
the state of the art to those approaches that are
appropriate to build the base of a Grid-specific
solution. To put the related work discussed below
into the big picture, we simplify by stating that
FIM provides an inter-organizational framework
for the exchange of user data, while PET focus on
the user-centric view of privacy management op-
tions; this means that PET puts the user in control
of how her personal data is used by the involved
organizations, which in turn use FIM protocols to
actually exchange this data technically. In practice,
FIM and PET must always go hand-in-hand due
to regulatory requirements w.r.t. IT compliance.

From this legislative perspective, regulations
regarding privacy and data protection become
relevant as soon as personal data is being acquired
by an organization, i.e., before the data is actually
being used, e.g., for the personalization of the IT
service ordered by the user. For distributed col-
laborative environments spanning several orga-

nizations, this implies that as a first step it must
be decided which user PII is made available to
which of the multiple involved organizations at
all. Obviously, users must express their consent
to such a distribution of their data adequately, i.e.,
either explicitly on a per-organization basis, or
implicitly, e.g., based on a framework agreement
or service contract. As an example, the acceptable
use policies (AUP), which many Grid projects
require their users to sign, typically include such
consent. Privacy requirements have also been
gathered for specific application domains, such as
the use of Grids in medical research (see Manion,
Robbins, Weems, & Crowley, 2009).

Once an organization has gained access to
a user’s data, there must be technical means to
control and influence how the data may – or may
not – be used in order to prevent the misuse of PII;
this so-called usage control phase, which is typi-
cally parameterized with specific usage purposes
along with the initial transmission of the data,
ends with the deletion of the acquired data, e.g.,
after service usage as well as the accounting and
billing processes have finished. These two phases
will be discussed in the following subsections.

Managing Initial Data Access

All major federated identity management tech-
nologies, such as the Security Assertion Markup
Language (SAML) (see Hughes & Maler, 2005),
the Liberty Alliance (also known as the Kantara
Initiative) specifications (see Wason, 2004), and
the Web Services Federation Language (WS-
Federation) (see Kaler & Nadalin, 2003), as
well as several of the Grid middleware imple-
mentations that are currently in operation, use
request-response-based protocols for the retrieval
of information about the current user. As a con-
sequence, decisions about which user data an SP
is allowed to retrieve are often treated similarly
to classic access control issues, and thus access
control languages and suitable management tools
for them are the most widely deployed solutions.

121

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

As shown in Figure 1, the user’s home organization
has the role of a FIM identity provider (IDP). All
user data is stored in a local identity repository; this
repository is usually realized as an LDAP-based
enterprise directory, but for smaller deployments
also relational database management systems
(RDBMS) are being used in practice. A policy
decision point (PDP) is used to determine which
user attributes, such as name or email address,
may be released to which service provider; this
workflow has coined the terms attribute release
policies (ARPs) and attribute release filtering
(ARF).

Common to most current research approaches
in this area is, in fact, the use of policy-based
management. Thus, the technical architectures
are quite similar and involve, among other com-
ponents, policy repositories, policy decision
points, and policy enforcement points (PEP). They
differ, however, in the policy language that is

actually being used: On the one hand, the lan-
guage’s expressiveness is relevant, e.g., whether
and which usage purposes and obligations, for
example concerning data retention limits, can be
specified. On the other hand, arithmetical proper-
ties, such as efficiently calculating policy set
intersections, are of major concern. Well-known
approaches include Tschantz and Krishnamurthi
(2006) and Spantzel, Squicciarini, and Bertino
(2005), which put an emphasis on efficient nego-
tiation handling and policy evaluation. A more
detailed overview can be found in our previous
work (Hommel, 2005a).

However, these approaches require the a
priori definition of policies, which may be too
complicated for many users. Thus, interactive
solutions have been proposed by both research
(e.g., Pfitzmann, 2002; Pettersson et al., 2005) and
industry, e.g., the Liberty Alliance interaction ser-
vice (Aarts, 2004). To enhance these approaches,

Figure 1. Managing data access at the home site / identity provider

122

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

research focuses on usability issues, such as how
to avoid that users grow tired of repeatedly giving
their interactive consent to the transmission of
their personal data to various service providers.
Those usability aspects can be compared to how
web browser users are asked about previously
unknown server certificates for HTTPS access
to web servers: The users must be made aware
of security and privacy issues without harassing
them when asking for their informed consent.

Controlling Data Usage

Complementary to the privacy management com-
ponents on the IDP side, which have been described
in the previous section, the SP, which retrieves
the user data, also needs a privacy management
infrastructure to ensure that such personal data is
only used for the purposes agreed to by the user.
Enhanced solutions additionally provide interfaces
to the users, so that they can look up how their PII

has been used. However, because an SP may not
log all data access or eventually even lie about
how the PII has been used, it is hard to reliably
verify whether all privacy preferences have really
been met from the user’s perspective, which often
remains a weak spot of technical implementations.

Privacy management systems, such as EPAL
(Powers & Schunter, 2003), are typically also
policy-based. Access to user data by any appli-
cation is handled by a privacy PEP as shown in
Figure 2. A PDP decides whether the application
and its operator are allowed to access a particular
user attribute for a given purpose. Thus, the key
difference to traditional access control is the ad-
ditional consideration of the purpose behind the
data access. For example, an employee in the
billing department may retrieve the user’s postal
address to send an invoice, while the marketing
department must not access the address in order
to avoid unsolicited advertisements.

Figure 2. Controlling data usage at the service provider

123

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

Furthermore, so-called obligation monitors
can be used to trigger the fulfillment of obligations
which are part of privacy policies. Obligations
can, among other goals, be used to restrict the PII
data retention, so, e.g., all user data has to be
deleted 90 days after the service usage has finished
and all invoices have been settled. Some imple-
mentations also allow the users to specify obliga-
tions, e.g., to be notified by email whenever one’s
credit card is being charged by the SP, i.e., when
the credit card detail attributes are being accessed
for a purpose such as billing.

As an organization’s privacy policies may
change over time, it is vital for the privacy man-
agement system to keep track of which version
of the policy was in use when a user signed up
for a service. The sticky policy paradigm (Mont,
Pearson, & Bramhall, 2003) glues the relevant
policies to the user data so they cannot be sepa-
rated anymore.

Protocols and log files of data access and us-
age are kept to support the organization’s internal
auditing processes, which are a mandatory part of
legislative IT governance, risk management, and
compliance regulations. Parts of this information
can be made available to the user to prove that her
data has only been used for the intended purposes.
However, unless additional measures are taken, the
usefulness and reliability of this information for
the user is very limited, because malicious service
providers could arbitrarily falsify the presented
data. Thus, all recent approaches are based on
certified software running on trusted computing
platforms in order to guarantee the genuineness
of the information given to the users (see Mont
(2004)) as well as Bramhall and Mont (2005)).
However, the complexity and costs of such solu-
tions have so far impeded their wide-spread use.
In Grids, trusted computing has already been ap-
plied to user management from the SP perspective
(see Mao, Martin, Jin, & Zhang, 2009), but not
yet vice versa to rate the SP trustworthiness from
the users’ perspective. Thus, having to trust SPs

regarding their claims about what they use (or do
not use) the PII for still remains a major challenge
in research and in practice. For this reason, man-
aging the initial data access phase and avoiding
to transfer user data to untrusted SPs a priori is
of high importance.

GRIDS AND THEIR REQUIREMENTS
FOR PRIVACY MANAGEMENT

On the technical level, Grid computing is based
on a Grid middleware which provides the required
transparency layers and tools for submitting Grid
jobs. Various Grid middleware implementations,
such as the Globus Toolkit (Sotomayor & Childers,
2006), exist and are in practical use. In the first
decade of Grid computing, the development of
Grid middleware has focused on the core function-
ality. However, with increasing use in production
environments and based on the goal of creating
an environment that is also attractive to industry,
the security and privacy properties finally get the
required attention (see also Demchenko, de Laat,
Koeroo, & Groep, 2008).

Because most of the organizations involved
in Grid projects have identity management sys-
tems deployed nowadays, there is an increasing
real-world demand to leverage the existing local
infrastructure when participating in Grid projects.
Concerning privacy management, however, this
is not just a programming interface and imple-
mentation effort issue regarding the middleware.
Grids have several characteristics and thus specific
requirements which were not yet met by the ap-
proaches discussed in the previous section; we
will discuss them next.

Starting with the technical aspects, which are
– unlike the organizational issues discussed be-
low – applicable to all Grids in general, it must be
considered that using a Grid infrastructure differs
from using other distributed systems and services
in the concept of Grid jobs. When submitting a

124

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

Grid job, the user cannot only provide input data to
a pre-defined service provided by an SP. Instead,
the user lets own program code make use of the
CPU and storage capacities provided by the SPs
that are involved in the Grid.

This immediately leads to the consequence
for privacy and data protection in Grids that any
data related to a user’s Grid job must be treated
similarly to the user’s PII:

• The Grid job’s code, independent of wheth-
er it is being distributed in source or binary
format, should be considered intellectual
property of the Grid user. Especially in
commercial Grid environments it must ob-
viously be avoided that program code sub-
mitted by one user is redistributed by the
service provider or made available to other
users. However, this also affects whether
an SP may modify the program code, e.g.,
in order to optimize it for the local comput-
ing architecture.

• Input data for the Grid job may contain
sensitive data, e.g., when Grid-based data
mining is performed on large sets of medi-
cal data. In this case, both the Grid user
and the SP share a couple of responsibili-
ties. On the one hand, the Grid user must
have the permission to submit the data to
the SP; this is a non-trivial organizational
task because the utilized Grid service pro-
viders are, in general, unknown at the point
in time when the input data is being col-
lected. On the other hand, the SP to which
a Grid job has been submitted is typically
not allowed to make any use of the input
data other than feeding it into the Grid
job’s code. Thus, similarly to the handling
of PII, the user and the SP must agree on a
set of purposes for which the data may be
used. Obviously, there must be technical
means to enforce this binding.

• On the SP side, the considerations for the
input data must also be applied to the Grid
job’s output data. Depending on the Grid
job, the output data may be even more
sensitive than the input data. As an ex-
ample, consider data mining on medical
data which derives a set of potentially ter-
minally ill patients. Thus, there must be an
agreement about how the output data must
be treated, both while the Grid job is run-
ning and after it has finished. This affects,
for example, whether the output data has
to be deleted from the service provider’s
systems after the user has retrieved it, or
whether it should be kept, e.g., as input
data for a subsequently submitted follow-
up Grid job.

Additional aspects, such as whether the SP is
allowed to backup or even archive these Grid job
components, must also be taken into consideration.
As an obvious resulting requirement, services
which are shared by multiple or all organizations in
the Grid, such as globally distributed file systems,
must provide sufficient access control mechanisms
to prevent organizations, which are not involved in
a particular Grid job, from accessing its code, input
data, and output data to achieve confidentiality
and a separation of concerns on an organizational
level (see also Cunsolo, Distefano, Puliafito, and
Scarpa (2010)). In this context, it should be noted
that encryption of input and output data would
hardly increase security, as long as a potentially
malicious SP runs the Grid job and thus gains
access to the data in clear text.

Privacy and data protection settings may also
vary with each Grid job, independent of the us-
ers’ preferences regarding their own PII. As a
consequence, the logical separation between PII
and Grid job privacy management must be ac-
counted for. This is not only relevant for Grid job
execution engines, but also, e.g., for the design
of (graphical) user interfaces.

125

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

Because the use of Grid middleware does
not depend on the existence of an appropriate
inter-organizational contractual framework, it is
impossible to fully automate all privacy relevant
decisions on the technical level. If the organiza-
tions involved in a Grid project decide to form
a VO that becomes a legal entity, managing
privacy preferences can be greatly simplified
by treating the resulting Grid environment like
a single organization. However, the technical
approaches discussed in the previous section do
not fully support the concept of VOs; a solution
is discussed below.

Unless privacy-related contractual agreements
can be arranged for all organizations participating
in a Grid project, such as in VO scenarios, the vi-
sion of a Grid middleware offering total location
transparency to the user is actually contradictory to
the privacy management goal that users get to know
exactly by whom their data is being processed.
Thus, the traditional approach that users can define
privacy preferences on a per-organization basis
must be complemented by means to define what
we call property-based privacy policies (PBPP).
As an example, certain PII such as the user’s
email address should only be distributed to SPs
which guarantee to only use it for contacting the
users in case of technical problems, but not for
other purposes such as sending marketing emails.
Hence, this allows modeling the situation that it
would not matter to the user which SP will actu-
ally execute the Grid job, as long as it is assured
that all of the user’s privacy preferences are met.
In this regard, PBPPs can be seen as a contribu-
tion for attribute-based access control applied to
organizations (cp. (Kuhn, Coyne, & Weil, 2010)).

We will discuss how previously established
policy-based privacy management approaches
need to be extended and enhanced to fulfill these
new requirements in the next section.

ARCHITECTURE OF A POLICY-
BASED SECURITY FRAMEWORK
FOR PRIVACY-ENHANCING
DATA ACCESS AND USAGE
CONTROL IN GRIDS

The primary motivation for using a policy-based
privacy management approach in Grids is to
leverage existing identity and privacy manage-
ment infrastructure components, which in turn
is motivated by the goal to reduce the IT service
management overhead and costs of solutions
specific to the Grid domain. The basic suitabil-
ity and applicability of policy-based approaches
for privacy and data protection management has
been pointed out by the previous work referred
to above and is not discussed here, because the
discussed Grid-specific requirements are by no
means fundamental challenges to the policy-based
management paradigm.

In this section, we motivate how policy-based
privacy management can be used in Grids and
demonstrate how the existing approaches can be
extended and enhanced to fulfill the discussed
Grid-specific requirements in a general manner,
with the overall goal of protecting privacy relevant
data from being misused by the SPs. The concrete
application of this methodology to a selected
privacy management architecture is discussed
afterwards. As a first step, we need to consider
that for any transmission of sensitive data, more
than one policy may be relevant; in practice, there
typically are four layers of policies:

1. Users can specify their personal privacy
preferences, i.e., the conditions and obliga-
tions under which they are willing to share
their data with an SP. This is also an effective
way to delegate the management of dynamic
policies to the users in order to reduce the
overhead for home site and SP administra-
tors. However, it also requires adequate,
user-friendly management front-ends for
policy creation, testing, and maintenance;

126

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

furthermore, trainings or introductory
courses should be provided.

2. The user’s home site (IDP) has privacy
policies in place which typically provide
default settings for all of its users. These
defaults must be crafted carefully and are
primarily intended to protect the privacy
of the lesser privacy concerned users (see
Berendt, Günther, and Spiekermann (2005)
for an analysis of privacy-related user clas-
sifications). In general, these policies can
be re-used for several Grid projects, VO
memberships, and other external services.

3. Also each SP has its own privacy policies,
which are not necessarily Grid-specific. For
example, many academic supercomputing
centers restrict access to their computing
resources to users from selected countries.
Thus, they can offer their service only to
users whose nationality is revealed. If a
user is unwilling to share her nationality,
she will not be allowed to use the service.
Similar to the home site policies, these SP
policies can be re-used for external users
from different Grid projects, VOs, or other
inter-organizational collaborations.

4. Grid projects and VOs may have privacy
policies which must be honored by all par-
ticipating organizations and applied to all
users (Schiffers et al., 2007), i.e., the imple-
mentation and management is delegated to
the organizations participating in the project
or VO.

In most approaches and implementations, the
number of layers may vary with scenario-specific
requirements, such as additional service-specific
policies on top of SP-wide policies. There can be
multiple policies in each layer, and it needs to be
determined for each individual data request which
policies are relevant. There may be conflicting
policies, e.g., if an SP’s privacy policy requires
a user attribute such as the nationality when the
user’s personal privacy preference prohibits its

release. In practice, sufficiently disjoint policies
are ensured only on the same layer, usually by
user-friendly management front-ends; thus, for
example, administrators on the SP side are forced
to formulate consistent SP policies. However,
conflict resolution across the layers is often subject
to a scenario-specific configuration, i.e., it can-
not be defined in general whether, for example,
user-specified policies override VO-wide policies
or vice versa. Once such priorities have been
defined, however, policy conflict resolution can
be automated using PDP engines.

As discussed above, we must distinguish be-
tween privacy policies for PII and for Grid jobs
on the user layer:

• The user’s personal privacy preferences
will usually stay the same over a certain
period of time and are independent of the
submitted Grid jobs to a certain (usually
high) degree.

• While it must be possible to configure pri-
vacy policies for individual Grid jobs, there
often is the situation that multiple Grid jobs
belong to the same research project or are
otherwise closely related. Thus, to reduce
the management overhead, privacy poli-
cies must be applicable to groups of Grid
jobs, which may arbitrarily be submitted
sequentially or in parallel. Furthermore,
if multiple Grid users are involved in the
same research project, an additional Grid
project policy layer contributes to simpli-
fying the sharing of policies among all us-
ers submitting related Grid jobs.

However, the inter-organizational sharing of
policies adds yet another layer of complexity and
thus can often only be realized in later project
stages. Enabling users to specify their privacy
preferences locally at their home site usually is a
good starting point.

Figure 3 shows the resulting modular privacy
management architecture for the user’s Grid

127

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

home site. Although each technical component
is only shown once, high availability require-
ments can be fulfilled, e.g., based on hardware
redundancy and clustering. Compared to previ-
ously used architectures as depicted in Figure 1,
a logically separated management user interface
is provided as part of the self services, which al-
lows to configure project- and Grid-job-specific
privacy policies. Furthermore, not only Grid-wide
applicable policies must be exchanged between
the involved organizations, but also the policies
of those research projects whose users are spread
among multiple organizations. The same policy
distribution mechanisms are used for both use
cases. However, it must be ensured that they
provide metadata support to restrict a) to which
organizations the policies are transferred to and b)
which other users may access and modify them.

The components used in the architecture usu-
ally have multi-tenancy capabilities, i.e., they can
be used for an arbitrary number of other services,

Grid projects, VO memberships, and users, with-
out requiring additional instances. They also often
provide code hooks for site-specific extensions,
so additional workflows can be triggered, e.g., in
the policy evaluation process. At each home site,
the Grid-specific components also can be com-
bined with other security and privacy measures
that are deployed locally.

The expressiveness of the used policy language
is, in general, sufficient to handle the additional
Grid job policies and groups thereof, so no in-
depth modifications of PDPs and PEPs or other
Grid-specific technology adaption are required.
However, the syntactical basis for identifying
and naming objects, often referred to as policy
namespace, must be extended as follows:

• Instead of targeting a policy to a single SP,
it must be possible to specify policies for
arbitrary groups of organizations, up to a
Grid environment such as a VO as a whole.

Figure 3. Privacy management architecture for the user’s Grid home site

128

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

• Additional identifiers for projects, Grid
jobs, and their components, such as code,
input data, and output data are required.
Similarly to user modeling, i.e., the defi-
nition of which information can be stored
and retrieved about users, it is impractical
to stick to a predetermined set of elements;
instead, the involved organizations must
agree on the granularity of the policies
and on a common vocabulary to be used in
these policies.

• New conditions and obligations are re-
quired, for example to state that a Grid
job’s code may be modified by the SP for
optimization purposes. Also, obligations
such as data retention limits will typically
differ between personal data and Grid job
data: For example, a Grid job’s input data
often shall be deleted after the job has fin-
ished, while the user’s billing address can
only be deleted after the invoice has been
settled. Again, the complete definition of
the necessary vocabulary is a task that is
specific to each Grid environment, and
standardization is required to provide a
common subset of the vocabulary.

On the service provider side, no extensions
to the privacy management architecture are re-
quired, with exception of support for any newly
defined obligations. However, in practice so far
only a limited number Grid SPs supports privacy
management at all; the challenge of integrating
the described privacy management components
into Grid-specific workflows is discussed below.

APPLICATION OF THE
SECURITY FRAMEWORK TO
A XACML-BASED PRIVACY
MANAGEMENT ARCHITECTURE

In order to show the feasibility of the presented
approach, we have applied the extensions and

adaptations described in the previous section to
a privacy management framework which was
designed for use in real-world FIM scenarios (see
Hommel, 2005b; Boursas & Hommel, 2006). It is
based upon the eXtensible Access Control Markup
Language (XACML) (Moses, 2005) and uses a
URI-style namespace for SP and user attribute
specification. It has been implemented for the
Shibboleth FIM software and thus is also suitable
for use in Grid middleware projects such as Grid-
Shib (Welch, Barton, Keahey, & Siebenlist, 2005).

Like most modern policy languages, XACML
supports scenario-specific vocabulary, e.g., for the
specification of obligations, without the necessity
to extend the internal PDP workflows; thus, any
standard compliant XACML PDP can be used
also for our Grid job policies. We have extended
the previously used namespace in order to support

• the definition of and referring to arbitrary
groups of service providers as well as VO
identifiers (for VO management approach-
es, see Kirchler, Schiffers, & Kranzlmüller,
2009).

• the specification of Grid projects as groups
of Grid jobs, the Grid jobs themselves, and
their components; the granularity chosen
for the components is code, input, and out-
put. This granularity is a trade-off between
very fine grained control and the imple-
mentation effort required at each involved
SP.

• new conditions, such as (allow/disallow)
optimization (of code) and (allow/disal-
low) backup (of code, input, or output), as
well as new obligations, e.g., delete-after-
execution (of input or code).

Figure 4 shows an example of a Grid job policy,
which allows all Grid service providers to modify
the code for the purpose of optimizations w.r.t.
the local computer architecture. Note that XML
namespaces have been omitted in the example
to improve the readability of the XML fragment.

129

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

Such a policy must be complemented by
other policies for restricting the selection of suit-
able SPs and excluding other usage purposes in
practice, which usually is a home site administra-
tor task to be performed for all local users as a
whole. Whether only few but complex, or many
simple policies are used, depends on the manage-
ment user interface; in real-world application,
intuitive usability and the re-use of modular
policies have so far proven to be of higher relevance
than performance issues: Given the overall low
number of policies and the average run-time of
Grid jobs, evaluating the described policies does
not cause any latency which the user would notice,
and thus performance optimizations are cur-
rently not a priority, because more than sufficient
scalability is already achieved.

INTEGRATION OF THE SECURITY
FRAMEWORK’S PRIVACY
MANAGEMENT COMPONENTS ON
THE SERVICE PROVIDER SIDE

While the integration of privacy management
components into the user’s home site is straight-
forward, especially if an privacy-enhancing
identity management system is already in use, the
adaptation of Grid SPs is a challenging task. It also
must be kept in mind that especially in scientific
Grids, such as the European DEISA consortium
(Niederberger & Alessandrini, 2004), often all
involved organizations are both, home site and SP.

The use of FIM protocols, which are also typi-
cally being used for other aspects of user man-
agement, e.g., authentication and authorization,
ensures that personal and Grid job data is only
distributed to Grid SPs that are suitable from the
privacy management perspective. Thus, privacy
management on the SP side primarily pursues
three goals:

Figure 4. Example XACML Grid job policy to allow code optimization

130

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

1. All personal and Grid job data may only be
used in accordance with the privacy poli-
cies specified by the SP; it is safe to assume
that these policies match the user’s privacy
preferences if all required data has been
received via FIM protocols.

2. All user and Grid job specific obligations
must be fulfilled. This necessitates the use
of an obligation monitoring component.

3. It shall be possible for the user to verify
whether the obligations have been fulfilled
and that the user’s PII has not been used for
any other than the agreed purposes.

Figure 5 shows the resulting modular privacy
management architecture with the required inter-

faces between the technical components and the
Grid middleware. Clearly, protecting any personal
and Grid job data from direct access by channel-
izing all data read, update, and delete attempts
through the privacy PEP requires adequate hooks
in the middleware on the data persistence layer,
as well as additional error handling for privacy
violation exceptions. Similarly to the home site
architecture, the component’s high availability can
be achieved, e.g., through hardware redundancy.

For many supercomputing SPs, this also neces-
sitates that the existing batch scheduling systems,
which queue Grid as well as regular jobs to be
run on the machines according to a local job
execution policy, also contact the privacy PDP
and honor the decision about whether the data

Figure 5. Privacy management architecture for the Grid service provider

131

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

may be accessed. Because many scheduling sys-
tems are proprietary or not available as open
source, usually simple wrapping mechanisms have
to be implemented; they can also be used to trig-
ger obligation handling actions after the execution
of a Grid job. To this extent, it is important to
distinguish between the successful execution of
a Grid job and errors (e.g., machine or job crash).
The same mechanism can be used to extend the
available components with site-specific addi-
tional workflows.

For the fulfillment of Grid-specific obliga-
tions, additional functionality is required within
the local obligation monitor (OM). So far, the
OMs in place have mostly been used to purge
outdated user records from relational database
management systems or enterprise directories,
and to send emails to users or administrators to
notify them about the status of their obligations.
With privacy relevant data no longer stored only
in databases and enterprise directories, additional
workflow mechanisms are required to delete
Grid job components from the involved compute
platforms, including local as well as global or
Grid-wide file systems. As this obligation handling
typically requires site-specific implementation
efforts, it is a good starting point to accept Grid
jobs only without obligations first, and then add
obligation support later on.

While the overall framework clearly has a
preventive character, i.e., privacy policy violations
shall be averted before they actually happen, there
is also a demand for detecting irregularities and
appropriately reacting to them. However, granting
the users reliable insight into how their data has
been used by the SP as a first step is still challeng-
ing: Grid users presently typically have terminal
access via GridSSH or can manage their job files
through Grid web portals. Both ways provide a
suitable feedback channel, which can be used to
make, for example, SP log file excerpts available
to the user. However, there still is no guarantee
that the logged information is sound and complete.
The complexity to technically ensure that all data

access is being logged and to prevent even admin-
istrators from tampering with the logs is incom-
parably higher than for single-SP services. Thus,
until secure and trusted operating systems are
used for Grid resources, the user’s informational
self-determination can already be supported, but
the guaranteed enforcement of privacy policies
cannot be verified in an absolute objective manner.
Besides such information requests performed by
the users themselves, there also must be an internal
auditing and reporting process that checks the SP
infrastructure for privacy policy violations on a
regular basis in a pro-active manner. This process
can often be supported and automated to a large
degree with the available PMS, logfile correlation
engines, or security information and event manage-
ment systems. Reports should include, e.g., the
number of successfully fulfilled privacy policies,
detected policy conflicts, unfulfilled obligations,
etc. The resulting figures are important feedback
for different enterprise roles, such as privacy
officers, policy writers, and service administra-
tors. In general, selected events, such as policy
violations, should also be used to trigger real-time
alerting mechanisms. Policy violations and other
undesired behavior should also be considered to
serve as key performance indicators (KPIs) and,
e.g., their maximum number per reporting period
may become a service level parameter in contracts
between home sites and SPs. They also should be
used as a basis to identify and plan further security
and privacy measures as a part of a continuous
improvement process.

Given the number of additional components
required at both the home sites and the SPs, suitable
measures for ensuring the infrastructure availabil-
ity and reliability must be taken. Because standard
components are used on both sides, integration
into existing monitoring systems is a tedious, but
straight-forward task. For a better overview of the
Grid-wide status, Grid Information Systems based
monitoring solutions can be adopted as suggested
by (Baur et al., 2009).

132

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

SUMMARY AND OUTLOOK

In this article, we have first motivated the necessity
of privacy management in Grids. After sketching
the state of the art, based on current research in
the areas of federated identity management and
privacy-enhancing technologies, we analyzed the
characteristics of Grids, derived their specific
requirements, and demonstrated that previous
approaches fell short of fulfilling these require-
ments. We then presented in a security framework
how policy-based privacy management can be
adapted to Grid environments, and applied this
methodology to a XACML-based management
architecture. Finally, we discussed that the real-
ization of a policy-based privacy management
approach is a straight-forward task for Grid home
sites, but very complex and challenging for Grid
service providers.

Our ongoing work focuses on challenges with
the practical application of the presented security
framework, especially concerning its process-
driven adaption to arbitrary SP infrastructures
and long-term operational aspects, such as a
tighter integration with the IT service management
processes and an operational cost analysis. The
research questions presented are also highly rel-
evant for Cloud Computing infrastructures, which
require an adaption of the solution components to
Cloud technology, because they usually are not
based on Grid middleware and target, e.g., virtual
machines instead of high performance computing
resources.

ACKNOWLEDGMENT

The authors wish to thank the members of the
Munich Network Management (MNM) Team
for helpful discussions and valuable comments
on previous versions of this article. The MNM-
Team, directed by Prof. Dr. Dieter Kranzlmüller
and Prof. Dr. Heinz-Gerd Hegering, is a group
of researchers of the University of Munich, the

Technische Universität München, the University
of the Federal Armed Forces Munich, and the
Leibniz Supercomputing Centre of the Bavarian
Academy of Sciences. The team’s web-server is
located at http://www.mnm-team.org/.

REFERENCES

Aarts, R. (Ed.). (2004). Liberty ID-WSF inter-
action service specification. Liberty Alliance
document. Retrieved from http://www.project-
liberty.org/

Baur, T., Breu, R., Kalman, T., Lindinger, T., Mil-
bert, A., Poghosyan, G., … Rombert, M. (2009).
An interoperable Grid Information System for
integrated resource monitoring based on virtual
organizations. Journal of Grid Computing, 7(3).
Springer.

Berendt, B., Günther, O., & Spiekermann, S.
(2005). Privacy in e-commerce. Communications
of the ACM, 48(4). ACM Press.

Boursas, L., & Hommel, W. (2006). Policy-based
service provisioning and dynamic trust manage-
ment in identity federations. In [). IEEE Computer
Society.]. Proceedings of the IEEE International
Conference on Communications, ICC, 2006.

Bramhall, P., & Mont, M. (2005). Privacy man-
agement technology improves governance. In
Proceedings of the 12th Annual Workshop of the
HP OpenView University Association.

Cunsolo, V. D., Distefano, S., Puliafito, A., &
Scarpa, M. L. (2010). GS3: A Grid storage system
with security features. Journal of Grid Comput-
ing, 8(3). Springer.

Demchenko, Y., de Laat, C., Koeroo, O., & Groep,
D. (2008). Re-thinking Grid security architecture.
In Proceedings of Fourth International Conference
on eScience. IEEE Computer Society.

133

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

Hommel, W. (2005a). Using XACML for privacy
control in SAML-based identity federations. In
Proceedings of the 9th Conference on Commu-
nications and Multimedia Security (CMS 2005).
Springer.

Hommel, W. (2005b). An architecture for privacy-
aware inter-domain identity management. In
Proceedings of the 16th IFIP/IEEE Distributed
Systems: Operations and Management (DSOM
2005). Springer.

Hughes, J., & Maler, E. (2005). OASIS security
assertion markup language (SAML), V2.0 techni-
cal overview. OASIS Security Services Technical
Committee Document.

Kaler, C., & Nadalin, A. (Eds.). (2003). Web ser-
vices federation language (WS-Federation). Web
Services Specifications Document.

Kirchler, W., Schiffers, M., & Kranzlmüller, D.
(2009). Harmonizing the management of virtual
organizations despite heterogeneous Grid middle-
ware – assessment of two different approaches.
In Proceedings of the Cracow Grid Workshop.

Kuhn, D. R., Coyne, E. J., & Weil, T. R. (2010).
Adding attributes to role-based access control.
IEEE Security, June 2010.

Manion, F. J., Robbins, R. J., Weems, W. A.,
& Crowley, R. S. (2009). Security and privacy
requirements for a multi-institutional cancer re-
search data grid: An interview-based study. BMC
Medical Information and Decision Making, 9(31).

Mao, W., Martin, A., Jin, H., & Zhang, H. (2009).
Innovations for Grid security from trusted comput-
ing – protocol solutions to sharing of security re-
source. LNCS 5087. Springer. Mont, M., Pearson,
S., & Bramhall, P. (2003). Towards accountable
management of identity and privacy: Sticky poli-
cies and enforceable tracing services. (Report No.
HPL-2003-49). Bristol, UK: HP Laboratories.

Mont, M. (2004). Dealing with privacy obliga-
tions in enterprises. (Report No. HPL-2004-109).
Bristol, UK: HP Laboratories.

Moses, T. (Ed.). (2005). OASIS eXtensible access
control markup language 2.0, core specification.
OASIS XACML Technical Committee Standard.

Niederberger, R., & Alessandrini, V. (2004).
DEISA: Motivations, strategies, technologies. In
Proceedings of the International Supercomputer
Conference 2004.

Pettersson, J. S., Fischer-Hübner, S., Danielsson,
N., Nilsson, J., Bergmann, M., Clauss, S., et al.
Krasemann, H. (2005). Making PRIME usable. In
Proceedings of the Symposium on Usable Privacy
and Security (SOUPS). ACM Press.

Pfitzmann, B. (2002). Privacy in browser-based
attribute exchange. In Proceedings of the ACM
Workshop on Privacy in Electronic Society (WPES
2002). ACM Press.

Powers, C., & Schunter, M. (2003). Enterprise
privacy authorization language. W3C member
submission. Retrieved from http://www.w3.org/
Submission /2003/SUBM-EPAL-20031110/

Schiffers, M., Ziegler, W., Haase, M., Gietz, P.,
Groeper, R., Pfeiffenberger, H., et al. Grimm,
C. (2007). Trust issues in Shibboleth-enabled
federated Grid authentication and authorization
infrastructures supporting multiple Grid middle-
ware. In Proceedings of IEEE eScience 2007 and
International Grid Interoperability Workshop
2007 (IGIIW 2007). IEEE Computer Socienty.

Sotomayor, B., & Childers, L. (2006). Globus
toolkit 4 - programming Java services. Morgan
Kaufmann Publishers.

Spantzel, A., Squicciarini, A., & Bertino, E.
(2005). Integrating federated digital identity
management and trust negotiation. (Report No.
2005-46). Purdue University.

134

A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids

Tschantz, M. C., & Krishnamurthi, S. (2006). To-
wards reasonability properties for access-control
policy languages. In Proceedings of SACMAT
2006. ACM Press.

Wason, T. (Ed.). (2004). Liberty identity federation
framework ID-FF architecture overview. Liberty
Alliance Specification. Retrieved from http://
www.project-liberty.org/

Welch, V., Barton, T., Keahey, K., & Siebenlist, F.
(2005). Attributes, anonymity, and access: Shib-
boleth and Globus integration to facilitate Grid
collaboration. In Proceedings of the Internet2 PKI
R&D Workshop.

135

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-60960-603-9.ch009

INSTRUCTION

Volunteer computing (Anderson, 2004) uses
Internet-connected individual computers to solve
computing problems. The pioneering research
projects, including GIMPS (The Great Internet

Mersenne Prime Search, http://www.mersenne.
org), SETI@home (Anderson, 2004) and Distrib-
uted.net (http://www.distributed.net) are rather
successful. GIMPS has already found a total of 9
Mersenne primes, each of which was the largest
known prime number at the time of discovery.
SETI@home has identified several candidate
spots for extraterrestrial intelligence. Distributed.

Hong Wang
Tohoku University, Japan

Yoshitomo Murata
Tohoku University, Japan

Hiroyuki Takizawa
Tohoku University, Japan

Hiroaki Kobayashi
Tohoku University, Japan

Adaptive Control of Redundant
Task Execution for Dependable

Volunteer Computing

ABSTRACT

On the volunteer computing platforms, inter-task dependency leads to serious performance degradation
for failed task re-execution because of volatile peers. This paper discusses a performance-oriented task
dispatch policy based on the failure probability estimation. The tasks with the highest failure probabili-
ties are selected for dispatch when multiple task enquiries come to the dispatcher. The estimated failure
probability is used to find the optimized task assignment that minimizes the overall failure probability of
these tasks. This performance-oriented task dispatch policy is evaluated with two real world trace data
sets on a simulator. Evaluation results demonstrate the effectiveness of this policy.

136

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

net has successfully provides the solutions of the
DES, RC5-32/12/7 (“RC5-56”), and RC5-32/12/8
(“RC5-64”) of the RSA secret-key challenge.

Nowadays, there are several well-known
volunteer computing platforms such as Fold-
ing@home (http://folding.stanford.edu), BOINC
(Berkeley Open Infrastructure for Network
Computing, http://boinc.berkeley.edu), Xtrem-
Web (Cappello, 2005), Entropia (Chien, 2003),
Alchemi (Luther, 2005), and JNGI (Verbeke,
2005) to name a few. The volunteer computing
platforms are providing more computing power
than any supercomputers, clusters, or grid, and
the disparity will grow over time. It is because
of a large number of Internet-connected personal
computers and latest generation game consoles.
By November 2010, the most powerful volunteer
computing platform - Folding@home achieved
about 4 Petaflops computing power by connect-
ing more than 5,700,000 CPUs (http:////fah-web.
stanford.edu/cgi-bin/main.py?qtype=osstats). In
contrast, the fastest supercomputer, Tianhe-1A
achieves 2.566 Petaflops for the high-performance
LINPACK benchmark (http://www.top500.org).

Despite the massive computing power offered
by the existing volunteer computing platforms,
they are lacking support for inter-task depen-
dency. Our previous work solved this issue with
a workflow management mechanism (Wang,
2007). However, inter-task dependency results in
a status that none of the un-dispatched tasks can
be dispatched, because these un-dispatched tasks
require the results of one or several of the tasks
that are being executed. This status may lead to
serious performance degradation, because of the
frequent task failures of volatile peers in volunteer
computing platforms. Therefore, a redundant task
dispatch policy (Wang, 2007) has been proposed
to mitigate the performance degradation. Although
the redundant task dispatch policy shown a sig-
nificant performance improvement compared to
the non-redundant one, it has a major limitation:
the average failure rate model is not the best fit
for the volunteer peers in the real world. Thus,

this paper extends the policy so as to address the
limitation.

This paper discusses a performance-oriented
task dispatch policy for volunteer computing
platforms. A heuristics-based mechanism for
failure probability estimation is proposed based
on a life cycle model of volunteer peers and the
statistical data. The tasks with the highest failure
probabilities are dispatched when multiple task
enquiries come to the dispatcher. The estimated
failure probability is used to find the optimized
task assignment that minimizes the overall failure
probability of these tasks. Once the optimized
assignment is found, the dispatched tasks are
sent to the workers. At the same time, the failure
probabilities and other runtime information of the
tasks are updated. While multiple types of workers
exist in the real world, their different availability
characteristics have to be considered. Thus, this
work also studies the performance impact of
identifying multiple worker types.

The rest of the paper is organized as follows.
Section 2 reviews related work. Section 3 proposes
a heuristics-based failure probability estimation
method. Section 4 introduces the design of the
least failure probability dispatch policy. Section
5 evaluates the proposed policy using a simula-
tor, in terms of the total process time. Section 6
concludes and summarizes this paper.

RELATED WORK

The failure probability is estimated based on the
analysis of peer availability data. The resource
availability problem has been studied a lot for
clusters, servers, PCs in a corporate network, grid,
and volunteer computing systems.

137

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Statistical Resource
Availability Characterizing

There have been a large number of works on the
problem of statistically characterizing resource
availability.

Root Cause Analysis of Failures

Root cause analysis of failures has been stud-
ied in (Gray, 1990; Kalyanakrishnam, 1999;
Oppenheimer, 2003; Schroeder, 2006). The
software-related failure is reported to be around
20% (Oppenheimer, 2003), 50% (Gray, 1990,
Kalyanakrishnam, 1999), and from 5% to 24%
(Schroeder, 2006). The percentage of hardware-
related failure is from 10% to 30% in (Gray, 1990;
Kalyanakrishnam, 1999; Oppenheimer, 2003),
and from 30% to over 60% (Schroeder, 2006).
The network-related failure is significant in some
of those works, while it accounts for around 20%
(Kalyanakrishnam, 1999) and 40% (Oppenheimer,
2003) of the failures. Human errors also lead to
10% - 15% (Gray, 1990) and 14% - 30% (Op-
penheimer, 2003) of the failures. These works
reported different breakdown of failures, because
of the different systems they studied.

Fitting Distribution to
Empirical Availability Data

Some other works studied statistical distributions
of empirical availability data such as Time-to-Fail
(TTF) and Down Time (DT). Such methods find
the best fitted theoretical distribution for a given
empirical data set, by estimating the parameters
of the theoretical distributions with techniques
such as Maximum Likelihood Estimation (MLE)
(Aldrich, 1997). Several distributions have been
used to model the peer availability, including log-
normal, Weibull, exponential, hyper-exponential,
and Pareto distributions. The detail of these
distributions and their properties can be found in
(Patel, 1976).

Exponential distribution and hyper-exponen-
tial distribution have been used to investigate
the availability behaviors of software, operat-
ing system, workstation, and peer-to-peer file
sharing system in (Goel, 1985; Iyer, 1985; Lee,
1993; Mutka, 1988; Plank, 1998; Tian, 2007). For
the research such as process lifetime estimation
(Harchol-Balter, 1997) and network performance
(Paxson, 1997), Pareto distribution has been used
a lot. Weibull distribution is another distribution
widely used for modeling the resource availabil-
ity. Xu et al.(1999) applied it to the modeling of
network-connected PCs.

Several studies (Schoeder, 2006; Nurmi, 2005;
Iosup, 2007; Nadeem, 2008) compared different
distributions for the modeling. Nurmi (2005)
and Brevik (2004) used exponential, hyper-
exponential, Weibull, and Pareto distributions to
model the TTF availability data gathered from
student lab computers, a cycle-harvesting distrib-
uted computing system - Condor (Litzkow, 1988;
Thain, 2005), and an early survey of Internet hosts
(Long, 1995). Goodness-of-fit analysis indicated
that hyper-exponential and Weibull distributions
fit the empirical data more accurately. Schroeder
et al.(2006) studied the distribution fitting of TTF
in high-performance computing (HPC) systems
with 4750 machines, using Welbull, lognormal,
gamma, and exponential distributions. The results
pointed out that Weibull distribution is a better fit.
Iosup et al.(2007) found Weibull the best fitted
among several distributions for Mean Time Be-
tween Failure (MTBF) and failure duration data of
Grid’5000 (Bolze, 2006; http://www.grid5000.fr).

More recently, Nadeem et al.(2008) also ap-
plied several distributions to the analysis of grid
resource availabilities. It introduced the class
level modeling method by identifying three types
of resources in the Austrian Grid (http://www.
austriangrid.at). Based on the administration
policy, it categorized the resources into three
classes: dedicated resources, temporal resources
and on-demand resources. The distribution fitting
and goodness-of-fit tests are done separately for

138

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

each class’s availability (TTF) and unavailability
(Mean Time to Reboot (MTR)) data. While other
works found one or two best fitted distributions,
this work found different best fitted distributions
for different class.

Availability Prediction

Brevik et al. (2004) assumed a homogeneous en-
vironment, and proposed an availability prediction
method on top of the found Weibull distribution.
This method answered the question what is the
largest availability duration for a given confidence
value and a desired percentile. Iosup et al. (2007)
proposed a resource availability model that con-
sidered the failure distribution among clusters, the
TTF distribution, failure duration distribution, and
the distribution of the failure size, which is the
number of failed processors. This model is used to
predict the failures in a multi-cluster grid system.

Some other works (Ren, 2006; Rood, 2007)
utilized the availability pattern on weekdays and
weekends to predict the availability. Nadeem et
al. (2008) used Bayes Rule and Nearest Neighbor
Rule to predict the resource availability. Mickens et
al.(2006) proposed saturating counter predictors,
state-based history predictors, a linear predictor,
and a hybrid predictor that dynamically selects
the best predictor. These predictors have been
evaluated with trace data sets of distributed serv-
ers, peer-to-peer network, and corporation PCs.

A HEURISTICS-BASED FAILURE
PROBABILITY ESTIMATION

The prediction methods of resource available
status reviewed in Section 2 provide a different
accuracy for their selected environments. Since
this paper targets at finding optimized task as-
signment with estimated task failure probabilities,
the distribution of empirical availability data can
provide enough information. Here, a simple and
straight heuristics-based failure probability esti-
mation method is employed.

Life Cycle of a Volunteer Peer

The life cycle of a volunteer peer can be modeled
as shown in Figure 1. TTF is the time between a
peer’s start/restart and the next failure/shutdown.
DT is the time between a failure and the next peer
restart. Given a statistical distribution of TTF,
the cumulative distribution function (CDF) of
this distribution’s value at each uptime x is the
probability that a peer’s TTF is smaller than or
equal to x, which equals to the failure probability
at uptime x. The failure probability monotonously
increases with time. Since none of a single distri-
bution can characterize the resource availability
accurately for any systems in large scale comput-
ing environments (Nurmi, 2005; Nadeem, 2008),
a heuristics-based mechanism is proposed to
estimate the failure probability at runtime with
gathered TTF data.

Figure 1. Life cycle of a volunteer peer

139

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Failure Probability Estimation

Volunteer computing platforms have two kinds of
peers: dispatchers and workers. A task dispatcher
is a specific server that controls a volunteer com-
puting platform. Workers are volatile peers that
compute tasks and send back the task results to
the dispatcher. To estimate the failure probability
of each worker, runtime TTF data are required.
To gather such runtime data, a worker availability
status list is maintained by the dispatcher. The list
stores the start time of each worker. If a worker
is currently unavailable, it is marked as offline in
the list. The list is maintained as follows:

A Worker Goes Online

As shown in Figure 2(a), when a worker goes on-
line, it sends an online notification message to the
dispatcher. Once the notification is received, the
dispatcher updates the worker availability status
list as shown in Figure 2(b). The current time is
stored as the start time of this worker.

Find Offline Worker

To gather the runtime TTF data, the dispatcher
also checks the availability status of workers pe-
riodically. As shown in Figure 3(a), the dispatcher
sends status checking messages to the workers
that are marked online in the worker availability
status list. Once the message is received by an
alive worker, the worker sends a reply message
back to the dispatcher as shown in Figure 3(b). If
a worker is offline, it cannot reply the checking
message. Then, it is marked as offline in the list.
As an example, before the periodical status check,
worker 4 in Figure 3 had been marked as online
with a start time in the list, and then went offline.
Thus, it does not reply the checking message. The
dispatcher then updates the worker availability
status list, and marks worker 4 to be offline. It also
calculates the TTF of the worker 4’s last online
session. Given the current time and start time of

the last online session, the TTF is 680 minutes
(from 2010/11/23 3:10 to 2010/11/23 14:30).

With this simple periodical availability status
checking mechanism, the runtime TTF data are
gathered on the dispatcher. Thus, the TTF distri-
bution can be found at runtime. Suppose the
gathered TTFs are {ttf1, ttf2, ttf3, ..., ttfn}, where n
is the number of gathered TTFs. The failure prob-
ability F(x) of a worker (x is the time after a
worker went online) can be estimated as shown
in Equation (1):

F x
n

n
x() ,= (1)

where nx is the number of TTFs that are less than
or equal to x.

LEAST FAILURE PROBABILITY
DISPATCH POLICY

With the failure probability estimation, this paper
proposes a performance-oriented task dispatch
policy - Least Failure Probability Dispatch
(LFPD) for volunteer computing platforms. The
assumptions are slightly different from the ones in
our previous work (Wang, 2007). While the previ-
ous work assumes a homogeneous environment,
this paper assumes that the volunteer computing
platform is a heterogeneous environment, in which
all the workers have different performances and
different bandwidths to the dispatcher.

An Enhanced Workflow
Management Mechanism

A workflow management mechanism has been
proposed in our previous work (Wang, 2007). It
is responsible for directing the workflow control
and the task information update. It cannot fully
satisfy the requirement of the LFPD, because it

140

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

assumes the same task failure probability for all
the dispatched tasks. Thus, an enhanced workflow
management mechanism is proposed to assist
the LFPD.

To support the LFPD, the following informa-
tion of each task i is stored and updated by the
dispatcher.

• Status: ``undispatched’’, ``dispatched’’,
and ``finished.

• Redundancy rate that records how many
workers process the task i at the same time:
RRi.

• The list of worker IDs that process the task
i: workerIDi[RRi].

• The list of estimated failure probability for
each copy of task i: EFPsi[RRi].

Figure 2. Worker i goes online

141

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Figure 3. Checking worker availability status, gathering TTF data

142

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

• The overall failure probability: FPi.

The overall failure probability is calculated as:

FP EFPs k
i i

k

RRi

=
=

[].
1

 (2)

Similar to the original workflow management
mechanism, the enhanced workflow management
mechanism uses the status information to analyze
whether an ̀ `undispatched’’ task can be dispatched
or not. An ``undispatched’’ task can only be dis-
patched when all the tasks that it depends on are
``finished.’’ A workflow has two kinds of status:
``blocked’’ and ``unblocked.’’ While there is no
such ̀ `undispatched’’ task, the workflow manage-
ment mechanism uses the redundant task dispatch
to reduce the performance degradation. Such status
of a workflow is defined as ``blocked.’’

The initial workflow information of each task
i is as follows:

• Status: ``undispatched.’’
• Redundancy rate: RRi = 0.
• The overall failure probability: FPi = 1

which means that a task will never finish
before it is dispatched

When the dispatcher dispatches a task i to a
worker j, it provides the required input values from
the preceding tasks, and then changes the task i’s
status to ``dispatched’’ if it was ``undispatched,’’
and increases RRi by one. The worker j is stored
in the workerIDi[RRi]. The failure probability of
this assignment {task i → worker j } is estimated
and stored in EFPsi[RRi]. The overall failure prob-
ability is calculated again.

When the dispatcher receives the result of a
task i from a worker j, it changes the status of task
i to ``finished’’, and sends a ``cancel’’ message
to the workers in workerIDi[RRi], except worker
j. The function to cancel duplicate copies after

the task finish can reduce the overhead due to
redundant task dispatch.

When a worker j is found to be offline by the
periodical available status check, RRi of this task
is decreased by one. The worker ID is removed
from workerIDi[RRi]. Finally, the overall failure
probability of the task is updated.

The Task Selection and
Dispatch Policies

While the workflow management mechanism
controls the process of a job workflow, it requires
policies to select the tasks for dispatch, and find
the task-to-worker assignment when the task
enquiries come.

Task Selection Policy

In our previous work (Wang, 2007), the least-
RR-selected policy has been proposed to equally
reduce the failure rate of all the ``dispatched’’
tasks. It selects a task with the least redundancy
rate and dispatches the task to an idle worker. As
the least-RR-selected policy assumes a constant
task failure rate, it cannot be applied directly to the
LFPD. In this paper, therefore, a highest-failure-
probability-selected policy is proposed to provide
the similar function for LFPD. It selects the task
with the highest overall failure probability.

Furthermore, the failure probabilities of a task
on different workers are different in a heteroge-
neous environment. By considering the task as-
signment of multiple tasks to multiple workers, a
lower overall failure probability can be achieved.
Thus, the idea of dispatch window is introduced.
The dispatch window is the number of tasks that
will be dispatched together. Given a window
size w, the dispatcher waits for task enquiries
from workers until the dispatch window is full,
then it selects w tasks with the highest-failure-
probability-selected policy.

143

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Dispatch Policy

After getting w tasks to dispatch, the dispatcher
finds the optimal task-to-worker assignment that
minimizes the overall failure probability of the
w tasks.

Suppose that each task i has its computation
cost (cmpi) and communication cost (commi) in-
formation, and each worker j has its performance
(Perfj) and bandwidth (Bandj) information. This
information is available for the dispatcher. Given
a task i and worker j, the estimated process time
of task i on worker j is:

T
cmp

Perf

comm

Bandi j
EPT i

j

i

j
,

.= + (3)

Thus, the estimated failure probability of this
assignment is:

EFP F T CurrentTime StartTime
i j i j

EPT
j{ } ,

(),→ = + −
(4)

where F(x) is the CDF of TTF’s distribution; Start-
Timej is the start time of worker j in the worker
availability status list.

Suppose that the window size is w, the selected
tasks are { t1, t2, t3, ..., tw }, and the worker peers in
the dispatch windows are {p1, p2, p3, ..., pw }. For
each permutation of { p1, p2, p3, ..., pw }, there is
an assignment. For example, the following assign-
ment is for the permutation { p’1, p’2, p’3, ..., p’w }:

t p

t p

t p

t p
w w

1 1

2 2

3 3

→
→
→

→

'

'

'

'

. (5)

For each of the assignments, the estimated
failure probability (EFP) of each task-to-worker
pair is calculated with Equation (4). Then, the
overall failure probability of the assignment is:

OFP EFP
t p

k

w

k k
= →

=
∏ { ' }

.
1

 (6)

There are w! possible assignments. The dis-
patcher calculates each assignment’s OFP, and
compares them. The assignment with the least
OFP is used for the task dispatch. The dispatcher
sends tasks to the workers in the dispatch window,
using the decided assignment. The workflow in-
formation is updated using the enhanced workflow
management mechanism proposed in Section 4.1.

EVALUATION RESULTS

The effectiveness of the proposed LFPD is evalu-
ated using a simulator that has been developed on
a discrete event simulation environment - OM-
NeT++ (www.omnetpp.org). The purposes of this
simulation are as follows:

1. To prove the effectiveness of the LFPD
policy.

2. To verify the effect of the task dispatch
window.

3. To study the effect of different parameters.
4. To analyze the effect of identifying multiple

worker types.

Baseline Policies

To discuss the effectiveness of the LFPD policy,
two baselines are used.

144

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Simple Redundant Task
Dispatch Policy

The window-size-1 is a special case of the LFPD
policy, because there is only one (1!) task-to-work
assignment. Thus, the window-size-1 LFPD
policy can be considered as an extension of the
original redundant task dispatch policy that uses
the proposed heuristics-based failure probability
estimation model. This simple redundant task
dispatch policy is used as a baseline to discuss
the effectiveness of the LFPD policy.

Greedy Dispatch Policy

The proposed LFPD policy selects a task-to-
worker assignment with the least overall failure
probability. Thus, the effectiveness of the LFPD
policy highly depends on the estimation accuracy
of the failure probabilities. If the dispatcher can
predict task failures perfectly, it can eliminate
all the task failures. In such case, an intensively
optimized dispatch policy for volunteer computing
platforms can be achieved. The comparison be-
tween such a dispatch policy and the LFPD policy
can demonstrate the effectiveness of the LFPD
policy. Therefore, in this paper, a greedy dispatch
policy that can predict failure perfectly is used
as another baseline in the following evaluation.

The greedy dispatch policy assumes that the
dispatcher knows the perfect knowledge of the
workers’ future availability status. Using such
knowledge, the dispatcher can perfectly predict
whether a task can be finished on a worker without
failure. The way to find the best task-to-worker
assignment is similar to the LFPD policy. Instead
of using the assignment with the least overall
failure probability, the greedy dispatch policy uses
the assignment with the least number of failures.

Using the LFPD policy, the computing power
is wasted in some cases. These cases can be found
in advance with the knowledge of the worker’s
future availability status. The greedy dispatch

policy adopts new rules to handle such cases as
follows:

1. A task copy will incur a failure on a worker.
The computing power of this worker is
wasted. The greedy dispatch policy does not
dispatch such tasks that will incur failures.
A ``sleep’’ message is sent to the worker.
The worker sleeps for a pre-defined period
after receiving the message.

2. A task copy will finish on a worker. Multiple
copies of this task are running on different
workers. However, this copy will finish later
than some other copies (larger estimated fin-
ish time). A task copy’s estimated finish time
can be calculated when it is dispatched as:
EFT = TEPT + CurrentTime. The computing
power of this worker is also wasted, because
it does not contribute to the process of the
job. Therefore, instead of dispatching dupli-
cate task copies, the greedy dispatch policy
insures that there is only one copy of any
task. This old copy of a task is continually
replaced with a new copy that has a smaller
EFT value, whenever a new task-to-worker
assignment is found for the workers in the
dispatch window. When an old task copy
is replaced with a new one, the old copy is
canceled on the worker that executes it. If
the new task copy has a larger EFT value,
a ``sleep’’ message is sent to the worker.

The Simulator Configuration

The dispatcher and worker modules are imple-
mented with the OMNeT++ to simulate the LFPD
policy, the simple redundant task dispatch policy
(the window-size-1 LFPD policy), and the greedy
dispatch policy. To study the effectiveness of the
policies in a real world environment, two sets of
real world resource availability trace data are used
to generate the worker failures. The Skype trace
data set (Guha, 2006) has application-level re-
source availability data of 2,081 Skype supernodes

145

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

for about 28 days. Skype is a peer-to-peer VoIP
software that connects thousands of volatile peers.
The Microsoft PCs trace data set (Bolosky, 2000)
stores the availability data of 51,662 desktop PCs
within the Microsoft corporation network for 35
days. The volatile peers in the peer-to-peer network
and desktop PCs in the corporation network are
two typical worker types for volunteer computing.

In a heterogeneous environment, the perfor-
mance of each worker is different. To simulate such
an environment, worker’s performance parameters
are generated with a power-law distribution. As
this work focuses on the computation-intensive
problems that satisfy ``computation time ≫ data
transfer time,’’ the communication cost is not
considered in the simulation.

The simulation parameters are as follows:

• Number of Workers: the number of work-
ers in the platform. It is the number of
peers in the trace data sets.

• Number of Tasks: the number of tasks for
the computing job.

• Mean Task Process Time: mean process
time of a task. The process time of a task
on a worker depends on the performance
parameter of his worker.

• Idle Worker Inquire Interval: an inquire
interval of idle workers that received the
``sleep’’ message. The ``sleep’’ message is
only used in the greedy dispatch policy.

• Number of Task Groups: the number of
task groups in the computing job. It is the
factor of inter-task dependency.

The simulation parameters are listed in Table 1.
Since the same mean task process times are

used to evaluate the two trace data sets, the dif-
ferent availability characteristics make it hard to
compare the evaluation results of these two trace
data sets. Thus, the Microsoft PCs trace data set
is modified to have the same mean TTF as the
Skype trace data set. The basic statistical proper-
ties of these two trace data sets are shown in
Table 2.

Performance Evaluation

The two dispatch policies are evaluated with
different parameters and different resource avail-
ability trace data sets. The total process time of
the computing job for different combinations are
compared and discussed. To simply the discussion,
all the results are normalized with the correspond-

Table 1. Simulation parameters for LFPD policy and the greedy dispatch policy

Skype Trace Microsoft PCs Trace

Number of Workers
Number of Tasks

2,081
80,000

51,663
2,000,000

Mean Task Process Time
Number of Task Groups

Idle Worker Inquire Interval

1250, 2500, 5000, 10000 seconds
5, 10, 20

200 seconds

Table 2. Summary of the basic statistical properties of the data sets

Skype Trace Microsoft PCs Trace

Mean TTF (seconds)
Mean Down Time (seconds)

Average percentage of online node

55,125
51,509
33.15%

55,125
15,906
81.24%

146

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

ing total process time of the simple redundant
task dispatch policy.

Figure 4 shows how the normalized total
process time changes with the dispatch windows
size and the mean task process time, using the
Skype trace data set. The results with Microsoft
PCs trace data set are shown in Figure 5.

Comparison with the Simple
Redundant Task Dispatch Policy

The results indicate that the LFPD policy outper-
forms the simple redundant task dispatch policy
(window-size-1 LFPD). The improvement is more
significant for a larger number of task groups. A
smaller mean task process time also leads to a
slightly better improvement. For 20 task groups
and the mean task process time of 1250 seconds,
LFPD delivers up to 6% and 12% improvements
for the Skype trace data set and Microsoft PCs
trace data set, respectively.

The number of task groups is related to how
many times a workflow is blocked during the
process of the workflow. The ``blocked’’ status
introduces a serious performance overhead, be-
cause the computing power is used for re-execution
of the failed tasks. The LFPD policy reduces the
number of task failures, and thus mitigates this
performance overhead. It explains the reason why
the LFPD policy is more efficient for a larger
number of task groups.

For a given trace data set, a larger mean task
process time leaves less rooms for the LFPD
dispatch to find a better assignment. As shown
in Equation (4), the EFP of any task-to-worker
assignment depends on the task process time, the
current time, and the start time of the worker. Be-
cause the latter two values are given while finding
a better task assignment, the EFP is decided only
by the task process time. For example, there are two
workers in the dispatch window, and two selected
tasks. Given any assignment, a larger mean task
process time leads to a longer task process time
on both workers. Therefore, the EFP increases for

both the two tasks. This EFP increment makes
the overall failure probability (OFP) of both two
possible assignments higher. The LFPD policy
is designed to reduce the number of failures, by
finding proper task-to-worker assignments. How-
ever, if all the assignments provide a high overall
failure probability, the LFPD policy becomes less
efficient. As a result, the LFPD policy delivers
less improvement in the case of a larger mean task
process time. In both of these two trace data sets,
the mean TTF is 55125 seconds. The large mean
task process time (10000 seconds) enlarges the
tasks failure probability. Thus, the LFPD dispatch
is less efficient, compared to the ones with a small
mean task process time.

The results with two trace data sets are slightly
different for their different availability character-
istics. It is because of an overhead introduced by
the dispatch window. When the dispatch window
is not full, the workers that are waiting in the win-
dow are idle. Their computing power is wasted.
Thus, the less time to fill a dispatch window, the
better performance can be achieved. In the case of
these two trace data sets, the average number of
online workers in the Microsoft PCs trace is much
larger. Thus the time of the Microsoft PCs trace
data set to fill a dispatch window can be expected
to be much shorter than that of the Skype data
set. Therefore, the LFPD policy delivers a better
performance improvement with the Microsoft PCs
trace data set for all the parameter combinations.

Comparison with the
Greedy Dispatch

As shown in both Figures 4 and 5, the greedy
dispatch policy beats the LFPD policy for a large
mean task process time (10000 seconds). The rea-
son is that the greedy dispatch policy eliminates
all the task failures with its perfect knowledge
of the worker availability status. While both the
simple redundant task dispatch policy and the
LFPD policy suffer from the inefficiency for the
high failure probabilities, the performance of the

147

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Figure 4. Compare the LFPD policy and the greedy dispatch policy for different mean task process time
(Skype Trace)

148

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Figure 5. Compare the LFPD policy and the greedy dispatch policy for different mean task process time
(Microsoft PCs Trace)

149

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

greedy dispatch policy is not affected. Therefore,
the normalized process time with the greedy dis-
patch policy decreases while increasing the mean
task process time.

These two figures also show that the LFPD
policy is more efficient than the greedy dispatch
policy for a small mean task process time. It is
because of the ̀ `sleep’’ message used in the greedy
dispatch policy. The greedy dispatch policy lets a
worker sleep if it finds this dispatch to be a waste
of computing power. It happens when the existing
copy of a task has a smaller EFT than this new
copy. This mechanism boosts the performance in
most cases. However, it also introduces a possible
overhead, for letting workers sleep even when
the workflow is no longer ``blocked’’ and ``un-
dispatched’’ tasks are available. When the mean
task process time is small, the failures occur less
frequently. Therefore, the greedy dispatch policy’s
advantage for eliminating task failures becomes
less significant. In such cases, this particular
overhead becomes more obvious and leads to
worse efficiency.

Effects of Window Size
on the Process Time

As shown in both Figures 4 and 5, a larger window
size results in a shorter process time for the LFPD
policy in most cases. This is because the LFPD
policy is likely to find a better task-to-worker as-
signment with a larger window size, especially for
the smaller mean task process time. As discussed
earlier, a smaller mean task process time results
in less frequent failures. Thus, the LFPD policy
has a higher probability to find an assignment
with less failures.

The overhead introduced by the ``blocked’’
status is not serious when the number of task
groups is small. Thus, the improvement achieved
with the LFPD policy is small. Therefore, while
the window size increases, the overhead for the
dispatch window becomes obvious. The overhead
is more serious when the number of online workers

is small. It explains why the process time with the
LFPD increases when the window size exceeds a
certain value in Figures 4(b) and 4(c). With a much
larger number of online workers, the overhead
for the dispatch window is not significant. Thus,
the results with the Microsoft PCs trace are not
affected by a small number of task groups and a
large window size.

Improvement of the Performance
by Identifying Worker Types

In the real world, multiple types of workers
exist. A different type of workers has different
availability characteristics. Nadeem et al.(2008)
introduced the class level modeling method by
pre-identifying three types of resources in the
Austrian Grid (http://www.austriangrid.at). The
TTF distribution of different types of resources
is largely different across the three types. The
heuristics-based failure estimation relies on the
empirical distribution, and assumes that all the
workers have similar availability behavior. Gather-
ing multiple types of workers’ TTF into a single
TTF distribution leads to a low estimation accu-
racy. The low estimation accuracy will degrade
the performance, because the LFPD policy cannot
find the optimal task-to-worker assignments with
the inaccurate failure estimations.

To improve the failure estimation accuracy, the
worker type is considered. Two types of workers
are selected from the two real world trace data
sets. First, the two trace data sets are clustered
into several types, using a K-Means clustering
algorithm in the Weka toolkit (Witten, 2005). By
extracting the TTF and the down time pair from the
original trace data sets, two dimensional data are
generated. The number of clusters is four, based on
the assumption that four kinds of workers (diur-
nal, weekly, long TTF, and long downtime) exist.
The clustering results are shown in Table 3. Each
cluster shows different characteristics. Cluster 3
of Microsoft PCs trace shows a diurnal pattern,
while Cluster 3 of Skype trace is highly volatile.

150

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

5,000 peers are selected from each cluster of
major clusters of both trace data sets to form a
new 2-type trace data set. Thus, this 2-type trace
data set is considered to consist of two types of
workers. This trace data set is used in the simula-
tion to study the effect of identifying worker types.

The simulation parameters are listed in Table
4. The LFPD policy with and without the ability
to identify two worker types are simulated. If
two types of workers are identified, each type of
worker’s TTF data is gathered separately. When
failure probability estimation is needed for a task-
to-worker assignment, the dispatcher selects the
corresponding TTF distribution for each worker
and then estimates the failure probability of the
worker.

Figure 6 shows improvement achieved by
identifying worker types. The vertical axis repre-
sents the normalized total process time with
identifying worker types. These results are nor-
malized by the total process time without identi-
fying worker types. The results with the worker
type identification show an average improvement
of 0.7% (ranges from 0.1% to 1.5%). The results
also indicate that the improvement is more sig-
nificant for a larger mean task process time, a
larger number of task groups, and a larger dispatch

window size. As discussed in Section 5.3.1, a
larger mean task process time leaves less rooms
for the LFPD dispatch to find a better assignment.
Therefore, the accuracy of failure estimation has
a bigger impact on the performance. It has also
been discussed that a larger number of task groups
makes the performance degradation more serious.
Thus, accurate failure estimation offers a higher
improvement. The larger the dispatch window is,
the more possible task-to-worker assignments
exist. If failure estimation is not accurate, the
LFPD policy cannot find the optimal assignment
from these assignments. Therefore, the accuracy
of the failure estimation is more critical.

CONCLUSION

The redundant task dispatch policy proposed in
our previous work (Wang, 2007) has a major
limitation: the average failure rate model is not
the best fitted for the volunteer peers in the real
world. To address this limitation, this paper has
proposed a heuristics-based mechanism for failure
probability estimation based on a life cycle model
of volunteer peers and the statistical data. Then,
the LFPD policy has been introduced. Instead of

Table 3. Clustering results (node distribution, mean uptime/mean downtime)

Skype Trace Microsoft PCs Trace

Cluster 1
Cluster 2
Cluster 3
Cluster 4

4.0%, 8 days/6.68 hrs
6.3%, 9.49 hrs/4.40 days
79.6%, 6.73 hrs/8.72 hrs

10.1%, 2.75 days/6.50 hrs

18.4%, 20.66 days/13.97 hrs
5.7%, 28.68 hrs/4 days

62.2%, 16.1 hrs/6.76 hrs
13.7%, 7.97 days/8.99 hrs

Table 4. Simulation parameters for the 2-type trace data set

2-type Trace Data

Number of Workers 5,000(Volatile) + 5,000(Diurnal)

Number of Tasks
Mean Task Process Time
Number of Task Groups

Window Size
Idle Worker Inquire Interval

400,000
1250, 2500, 5000, 10000 seconds

5, 10, 20
1, 2, 3, 4, 5, 6, 7, 8

200 seconds

151

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Figure 6. The improvement archived by identifying multiple worker types

152

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

dispatching a task whenever a task enquiry comes,
this dispatch policy waits for several task enquiries
from different workers, and then dispatch tasks
to them at once. It uses a heuristics-based failure
probability estimation method to find an optimized
task-to-worker assignment that minimizes the
overall failure probability of the tasks.

The LFPD policy has been evaluated with real
world trace data sets on a simulator. The evalua-
tion results have been compared with those of two
selected baseline policies. The comparison results
indicate the effectiveness of the LFPD policy.
The results also prove that the LFPD policy can
beat the greedy dispatch policy when the mean
task process time is much smaller than the mean
TTF of the workers. The difference between the
results with two trace data sets is also discussed.
To study how the different type of workers in
the real world may affect the effectiveness of the
LFPD, a trace data set that consists of two types
of workers has been generated from the two real
world trace data sets. The LFPD policy has been
simulated with and without the ability to identify
different type of workers. The results indicate that
worker type identification can provide additional
performance improvement.

ACKNOWLEDGMENT

This research was partially supported by Grant-
in-Aid for Scientific Research on Priority Areas
#18049003 and Strategic Information and Com-
munications R&D Promotion Program (SCOPE-
S) #061102002.

REFERENCES

Aldrich, J. (1997). R. A. Fisher and the making of
maximum likelihood 1912-1922. Statistical Sci-
ence, 12(3), 162–176. doi:10.1214/ss/1030037906

Anderson, D. P. (2004). BOINC: A system
for public-resource computing and storage. In
Proceedings of Fifth IEEE/ACM International
Workshop on Grid Computing, (pp. 4-10).

Anderson, D. P., Cobb, J., Korpela, E., Lebof-
sky, M., & Werthimer, D. (2002). Seti@home:
an experiment in public-resource computing.
Communications of the ACM, 45(11), 56–61.
doi:10.1145/581571.581573

Bolosky, W. J., Douceur, J. R., Ely, D., &
Theimer, M. (2000). Feasibility of a serverless
distributed file system deployed on an exist-
ing set of desktop PCs. ACM SIGMETRICS
Performance Evaluation Review, 28(1), 34–43.
doi:10.1145/345063.339345

Bolze, R., Cappello, F., Caron, E., Dayd’e, M.,
Desprez, F., & Jeannot, E. (2006). Grid’5000: A
large scale and highly reconfigurable experimental
grid testbed. International Journal of High Perfor-
mance Computing Applications, 20(4), 481–494.
doi:10.1177/1094342006070078

Brevik, J., Nurmi, D., & Wolski, R. (2004). Au-
tomatic methods for predicting machine avail-
ability in desktop grid and peer-to-peer systems.
In Proceedings of the 2004 IEEE International
Symposium on Cluster Computing and the Grid
(CCGRID04), (pp. 190–199).

Cappello, F., Djilali, S., Fedak, G., Herault, T.,
Magniette, F., & N’eri, V. (2005). Computing
on large-scale distributed systems: Xtrem web
architecture, programming models, security, tests
and convergence with grid. Future Generation
Computer Systems, 21(3), 417–437. doi:10.1016/j.
future.2004.04.011

Chien, A. A., Calder, B., Elbert, S., & Bhatia, K.
(2003). Entropia: Architecture and performance
of an enterprise desktop grid system. Journal
of Parallel and Distributed Computing, 63(5),
597–610. doi:10.1016/S0743-7315(03)00006-6

153

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Goel, A. (1985). Software reliability models: As-
sumptions, limitations, and applicability. IEEE
Transactions on Software Engineering, 11(12),
1411–1423. doi:10.1109/TSE.1985.232177

Gray, J. (1990). A census of tandem system
availability between 1985 and 1990. IEEE
Transactions on Reliability, 39(4), 409–418.
doi:10.1109/24.58719

Guha, S., Daswani, N., & Jain, R. (2006). An
experimental study of the Skype peer-to-peer
VoIP system. In The 5th International Workshop
on Peer-to-Peer Systems. Retrieved from http://
saikat.guha.cc/pub /iptps06-skype.pdf

Harchol-Balter, M., & Downey, A. B. (1997).
Exploiting process lifetime distributions for
dynamic load balancing. ACM Transac-
tions on Computer Systems, 15(3), 253–285.
doi:10.1145/263326.263344

Iosup, A., Jan, M., Sonmez, O., & Epema, D.
(2007). On the dynamic resource availability in
grids. In Proceedings of 8th IEEE/ACM Interna-
tional Conference on Grid Computing, (pp. 26-33).

Iyer, R. K., & Rossetti, D. J. (1985). Effect of
system workload on operating system reliabil-
ity: A study on IBM 3081. IEEE Transactions
on Software Engineering, 11(12), 1438–1448.
doi:10.1109/TSE.1985.232180

Kalyanakrishnam, M., Kalbarczyk, Z., & Iyer, R.
(1999). Failure data analysis of a LAN of Windows
NT based computers. In Proceedings of the 18th
IEEE Symposium on Reliable Distributed Systems
(SRDS99), (pp. 178-187).

Lee, I., Tang, D., Iyer, R., & Hsueh, M.-C. (1993).
Measurement-based evaluation of operating sys-
tem fault tolerance. IEEE Transactions on Reli-
ability, 42(2), 238–249. doi:10.1109/24.229493

Litzkow, M., Livny, M., & Mutka, M. (1988).
Condor - a hunter of idle workstations. In Pro-
ceedings of the 8th International Conference of
Distributed Computing Systems, (pp. 104–111).

Long, D., Muir, A., & Golding, R. (1995). A
longitudinal survey of internet host reliability. In
Proceedings of the 14th Symposium on Reliable
Distributed System (SRDS95), (pp. 2-9).

Luther, A., Buyya, R., Ranjan, R., & Venugopal,
S. (2005). Alchemi: A. netbased enterprise grid
computing system. In International Conference
on Internet Computing, (pp. 269-278).

Mickens, J. W., & Noble, B. D. (2006). Exploiting
availability prediction in distributed systems. In
Proceedings of the 3rd Conference on Networked
Systems Design & Implementation (NSDI06),
(pp. 6-19).

Mutka, M. W., & Livny, M. (1988). Profiling
workstations’ available capacity for remote ex-
ecution. In Proceedings of the 12th IFIP WG 7.3
International Symposium on Computer Perfor-
mance Modelling, Measurement and Evaluation,
(pp. 529–544).

Nadeem, F., Prodan, R., & Fahringer, T. (2008).
Characterizing, modeling and predicting dynamic
resource availability in a large scale multi-purpose
grid. In Proceedings of the 2008 8th IEEE Inter-
national Symposium on Cluster Computing and
the Grid (CCGRID08), (pp. 348-357).

Nurmi, D., Brevik, J., & Wolski, R. (2005).
Modeling machine availability in enterprise and
wide-area distributed computing environments. In
Proceedings of the 11th International Euro-par
Conference, (pp. 432-441).

Oppenheimer, D., Ganapathi, A., & Patterson, D.
A. (2003). Why do internet services fail, and what
can be done about it? In Proceedings of USENIX
Symposium on Internet Technologies and Systems
(USITS 03), (p. 1).

154

Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing

Patel, J. K., Kapadia, C. H., & Owen, D. B. (1976).
Handbook of statistical distributions. Marcel
Dekker, Inc.

Paxson, V., & Floyd, S. (1997). Why we don’t
know how to simulate the Internet. In Proceed-
ings of the 29th Conference on Winter Simulation,
(pp. 1037–1044).

Plank, J., & Elwasif, W. (1998). Experimental as-
sessment of workstation failures and their impact
on checkpointing systems. Twenty-Eighth Annual
International Symposium on Fault-Tolerant Com-
puting, (pp. 48-57).

Ren, X., & Eigenmann, R. (2006). Empirical
studies on the behavior of resource availability in
fine-grained cycle sharing systems. In Proceed-
ings of 2006 International Conference on Parallel
Processing, (pp. 3-11).

Rood, B., & Lewis, M. (2007). Multi-state grid
resource availability characterization. In Proceed-
ings of 8th IEEE/ACM International Conference
on Grid Computing, (pp. 42-49).

Schroeder, B., & Gibson, G. A. (2006). A large-
scale study of failures in high-performance com-
puting systems. In Proceedings of the International
Conference on Dependable Systems and Networks
(DSN06), (pp. 249-258).

Thain, D., Tannenbaum, T., & Livny, M. (2005).
Distributed computing in practice: The Condor
experience. Concurrency and Computation, 17(2-
4), 323–356. doi:10.1002/cpe.938

Tian, J., & Dai, Y. (2007). Understanding the
dynamic of peer-to-peer systems. In Sixth In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS2007).

Verbeke, J., Nadgir, N., Ruetsch, G., & Sharapov,
I. (2002). Framework for peer-to-peer distributed
computing in a heterogeneous, decentralized en-
vironment. In Proceedings of Third International
Workshop on Grid Computing, (pp. 1-12).

Wang, H., Takizawa, H., & Kobayashi, H. (2007).
A dependable peer-to-peer computing platform.
Future Generation Computer Systems, 23(8),
939–955. doi:10.1016/j.future.2007.03.004

Witten, I. H., & Frank, E. (2005). Data mining:
Practical machine learning tools and techniques
(2nd ed.). Morgan Kaufmann.

Xu, J., Kalbarczyk, Z., & Iyer, R. (1999). Net-
worked Windows NT system field failure data
analysis. In Proceedings of 1999 Pacific Rim
International Symposium on Dependable Com-
puting, (pp. 178-185).

155

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

DOI: 10.4018/978-1-60960-603-9.ch010

Shreyas Cholia
Lawrence Berkeley National Laboratory, USA

R. Jefferson Porter
Lawrence Berkeley National Laboratory, USA

Publication and Protection
of Sensitive Site Information

in a Grid Infrastructure

ABSTRACT

In order to create a successful grid infrastructure, sites and resource providers must be able to publish
information about their underlying resources and services. This information enables users and virtual
organizations to make intelligent decisions about resource selection and scheduling, and facilitates ac-
counting and troubleshooting services within the grid. However, such an outbound stream may include
data deemed sensitive by a resource-providing site, exposing potential security vulnerabilities or private
user information. This study analyzes the various vectors of information being published from sites to
grid infrastructures. In particular, it examines the data being published and collected in the Open Science
Grid, including resource selection, monitoring, accounting, troubleshooting, logging and site verifica-
tion data. We analyze the risks and potential threat models posed by the publication and collection of
such data. We also offer some recommendations and best practices for sites and grid infrastructures to
manage and protect sensitive data.

156

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

INTRODUCTION

Grid computing has become a very successful
model for scientific collaborations and projects to
leverage distributed compute and data resources.
It has also offered the research and academic
institutions that host these resources an effective
means to reach a much larger community. As grid
computing grows in scope, and as an increasing
number of users and resources are plugged into
the grid, there is an increasing need for metadata
services that can provide useful information about
the activities on that grid. These services allow
for more sophisticated models of computing, and
are fundamental components of scalable grid
infrastructures. The scope of these services is
fairly broad and covers a variety of uses includ-
ing resource selection, monitoring, accounting,
troubleshooting, logging, site availability and site
validation. This list could grow, as grids evolve
and other types of metadata become interesting
to users and administrators. This means that it
becomes important for a grid infrastructure to
provide central collection and distribution points
that can collate information gathered from mul-
tiple sources.

The typical publication model involves push-
ing data from site based informational end points
to central collectors, using streaming feeds or
periodic send operations. The central collec-
tors then make this data available to interested
parties using standard interfaces and protocols
in the form of web services and database query
engines. The usability of the grid depends on the
widespread availability of this information. Given
the increasingly open nature of grid computing
these collectors and information services generally
present publicly accessible front-ends.

Now consider the implications of this model
for a site providing grid resources. Being included
in a grid infrastructure means that a large amount
of site information suddenly enters the public
domain. This could include information deemed
as sensitive or private from the perspective of the

site, the user or the grid collaboration as a whole.
It becomes very important then, to have controls
on the access and flow of this data, so that the
information sources can decide what data they
want published and what data they want restricted.
Since these models of informational flow are still
evolving in today’s grids, these controls are still
in the process of being designed into the software
infrastructure. As such, there isn’t a standard way
to control this flow of information. We think there
is an urgent need to study the various vectors of
information being provided by sites to grid infra-
structures. This includes an analysis of the nature
of the information itself, as well as the software
publishing this information.

In our work, we use the Open Science Grid
(OSG) (“Open Science Grid Consortium,”) as a
case study for this model of information flow,
looking at the five major information collection
systems within the OSG, and analyzing the se-
curity implications of this infrastructure. We also
provide some recommendations on improving the
current infrastructure to preserve the privacy and
security of sensitive information.

THE OPEN SCIENCE GRID

The OSG offers a shared infrastructure of dis-
tributed computing and storage resources, inde-
pendently owned and managed by its members.
OSG members provide a virtual facility available
to individual research communities, who can add
services according to their scientists’ needs.

It includes a wide selection of resource pro-
viders, ranging from small universities to large
national laboratories. This broad range of sites
results in a diverse set of security requirements.
Reconciling these diverse security priorities is a
challenge, and requires close interaction between
the sites and the OSG managers. One approach to
addressing this issue is to provide the necessary
tools in the grid middleware stack, so that sites
can configure security policies directly into the

157

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

software. The OSG provides a software distribu-
tion called the Virtual Data Toolkit (VDT) (“Virtual
Data Toolkit,”). This includes a packaged, tested
and supported collection of middleware for par-
ticipating compute and storage nodes, as well as
a client package for end-user researchers.

The OSG also provides support and infra-
structure services to collect and publish infor-
mation from participating sites, and to monitor
their resources. These services are provided by
the OSG Grid Operations Center (GOC) (“OSG
Grid Operations Center,”). The GOC provides a
single point of operational support for the OSG.
The GOC performs real time grid monitoring and
problem tracking, offers support to users, devel-
opers and systems administrators, maintains grid
services, and provides security incident responses.
It manages information repositories for Virtual
Organizations (VOs) and grid resources.

INFORMATION COLLECTION IN OSG

There are currently five major information collec-
tion systems in the OSG, which rely on informa-
tion feeds from sites to centralized servers. The
following is a description of each of these services,
and an analysis of the information being published
by them from a site security perspective.

Resource Selection Information

In the OSG framework, the Generic Information
Provider (GIP) (Field, 2008) gathers site resource
information. GIP aggregates static and dynamic
resource information for use with LDAP-based
information systems. Information published is
based on the Glue Schema (Glue Working Group,
2007). The CEMon (Compute Element Moni-
tor) (Sgaravatto, 2005) service is responsible for
publishing this information to a central OSG
information collector service called the CEMon
Consumer. CEMon connections are authenticated

and encrypted (using GSI). This information is then
made public in two ways (Padmanabhan, 2007):

1. Class-ads are published to a Condor match-
maker service called the Resource Selection
Service (ReSS), which allows Condor cli-
ents to select appropriate resources for job
submission.

2. The Berkeley Database Information Index
(BDII) collects this information for resource
brokering. It tracks status of each participat-
ing cluster in terms of available CPUs, free
CPUs, supported VOs, etc.

The Glue Schema provides a more detailed
list of attributes supported in this scheme. For the
purposes of this study, we concentrate on those
attributes published by GIP that may be deemed
sensitive by certain sites. This includes:

• Operating System version/patch
information

• Authentication method (grid-mapfile,
GUMS)

• Underlying job-manager and batch system
information

• Internal system paths

In some sense, publication of this information
is essential to a site’s successful participation in
the grid. However, a site must understand the
implications of making this information public.
Prior to joining the grid, much of this information
was inherently under the control of the site, and
limited to people under its own administrative
domain. As such, administrators must be aware of
any conflicts with the current site security policy
and requirements that may have been drafted prior
to participation in the grid.

Additionally, a site may only want to provide
this information up to a desired level of detail.
Since the GIP software will publish all available
information in its default mode, a site may want

158

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

to consider limiting, or overriding some of the
attributes being published.

Another consideration is the public nature
of this information, once it has been sent to the
CEMon Consumers. Given that this information
is only useful to actual users of the grid, it might
be useful to provide some minimal restrictions so
that the information is only accessible to current
members of the OSG (or collaborating grids).

Accounting

The Gratia software provides the accounting
framework for the OSG (Canal, Constanta,
Green & Mack, 2007). Gratia consists of two
components:

1. The Gratia probes that run on the site re-
source and interface with the site-specific
accounting and batch systems. These probes
extract resource usage information from the
underlying infrastructure and convert it into
a common Usage Record-XML (Global Grid
Forum, 2003) based format. This is then sent
to a central collector.

2. The Gratia collector is a central server oper-
ated by the OSG GOC that gathers informa-
tion from the various probes, and internally
stores this in a relational database. It makes
this information publicly available through a
web interface, in certain pre-defined views.
The web interface also allows viewers to
create their own reports and custom SQL
queries against the usage data.

The Gratia records include information that
might be considered sensitive by both the sites
and the grid users. Specifically, we identified the
following information as potentially sensitive:

• User account names
• User DN information
• Job file and application binary names

Given that this information can be accessed
through a public SQL interface, all user activity
on the OSG can be traced and analyzed in fairly
sophisticated ways, by anyone with a web browser.

User account and DN information could be used
by an attacker that has compromised an account
on one site to query a list of sites with the same
user account/DN, thus increasing the scope of the
attack. It is not being suggested that masking this
information will protect a site from a compromised
account on another system. Certainly, once an ac-
count has been compromised, any other site that
uses a common set of login credentials should
be considered vulnerable. However, making this
information less accessible to an attacker could
mitigate the scope of the attack.

Job file or application names would be less
useful to attackers, but could reveal information
about the nature of the jobs being run. There is
the potential for a rival project to gain valuable
clues about the research being done from this
information. A researcher may want to restrict
this information to a limited set of people. On the
other hand, from an accounting standpoint, the
underlying file descriptions may not be as inter-
esting as the actual resource consumption being
measured. In most cases, the accounting software
only needs to be able to uniquely identify a job,
and doesn’t care about the specifics of underlying
job or application names.

For these reasons, it is recommended that ac-
cess to this data be restricted along user and VO
lines using grid certificates as the mechanism
for controlling this. Sites can also mask sensitive
information by modifying the probe software to
apply filters to the records.

Logging

The OSG uses Syslog-ng (“Syslog-ng Logging
System,”) to provide centralized logging of user
activity on the Grid. Syslog-ng is an extension to
the Syslog protocol that provides more flexible

159

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

support for distributed logging and richer content
filtering options.

Currently OSG resources optionally log all
information related to Grid processes using
syslog-ng, and send this to a central collector
managed by the GOC. The primary uses for this
information are:

1. Troubleshooting – Being able to trace the
workflow of a distributed job is very useful
as a debugging tool for failures. It makes it
significantly easier to detect how and why
a job might be failing, especially when
multiple sites are involved. The OSG GOC
has a troubleshooting team to deal with such
cases.

2. Security Incident Response – Having cen-
tralized logs available to the OSG security
team, makes it very useful to be able to
analyze the scope and extent of a security
compromise. It allows the GOC to identify
compromised sites or users, and to judge the
nature of the compromise. Affected sites can
then be notified for rapid incident response.

In the troubleshooting case, there is the need
to protect failure modes from becoming publicly
available, as this could reveal possible avenues for
attack. For example, a poorly configured site may
have vulnerabilities in the execution path. While
not apparent through the standard client software,
these may be exposed through syslog informa-
tion. In general, logging information should only
be available to authorized personnel within the
OSG administrative domain, or to specific users
when debugging problems. Another approach to
this issue involves the level of logging performed
by the site, so that only a minimal amount of in-
formation is logged by default. This translates to
logging only the start and stop times for jobs and
data transfers for a given user. In the event of a
failure, the site can increase the level of logging,

and work in conjunction with the troubleshooting
team and the user to diagnose the specific problem.

Security incident information is perhaps even
more sensitive, and syslog information revealing
incident details must have tight access controls.
Once again, this points to restricting the informa-
tion to an authorized set of security personnel.

Syslog-ng allows for collectors on a per site
basis (Tierney, Gunter & Schopf, 2007), which
can then filter out the information getting passed
to the OSG wide collector. This would allow
sites to collect detailed information internally,
while filtering the information sent to the OSG.
Any information sent to the OSG GOC should be
encrypted. As long as there is enough information
being sent to identify a failure or compromise at
a central level, the relevant sites can be notified
of this. The sites can then address the specifics of
the problem, and provide more information to the
OSG GOC and security team, as necessary. This
is the model that is expected to go into production
for future OSG deployments.

Site Availability and Validation Data

The OSG GOC performs site availability and
validity tests on participating compute and storage
elements, and publishes these results online. These
tests are run at regular intervals, either using a Perl
script (site_verify.pl) or using a customizable set
of probes called RSV (Resource and Service Vali-
dation) (“OSG Resource and Service Validation
Project,”). The basic aim is to validate the services
being advertised through the resource selection
and monitoring modules (CEMon). Much of the
information being collected here is analogous to
CEMon information, and subject to the same is-
sues. The RSV probes use a push model, similar
to the Gratia service. The site_verify.pl script takes
the form of a remote grid job run by the GOC at
individual sites, relaying information back using
the standard Globus data movement protocols

160

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

(GASS, GridFTP) (“Globus Toolkit,”). Possibly
sensitive information being reported includes:

• Account Names
• Historical system availability information
• Currently running software information
• Internal System Paths

Given that site validation data is both being
collected at regular intervals, and being archived,
it offers the ability to track the state of a system
over time. This may provide information about
regular system downtimes, when a system may be
in a transitional state and particularly susceptible
to an attack.

Moreover, the archived nature of this informa-
tion suggests that the site is subject to a “Google
Hack” (Acunetix, “Google Hacking,”), even if
system data is no longer been published. An at-
tacker can use standard search-engine technology
to scan the Internet for systems that match certain
keywords. This can be used to scope out systems
with known vulnerabilities based on advertised
software levels. This is compounded by the fact
that modern search-engines like Google do their
own external caching and archiving of informa-
tion, creating a situation where anything that is
published on the web has the chance of persist-
ing, despite a site no longer wishing to make that
information publicly available. There are known
methods to prevent a site form being listed in a
search engine, and it is recommended to use these
for this kind of data.

Monitoring

The OSG uses the CEMon software for monitoring
sites. An analysis of this has already been included
in the “Resource Selection Information” section.

The OSG also supports an optional package
called MonALISA (MONitoring Agents using
a Large Integrated Services Architecture) to
monitor system availability and load. Sites using
MonALISA send system information to a central

MonALISA service, which allows general users to
query site information from a web-based clickable
map interface. It monitors the following informa-
tion (Legrand, 2007):

• System information for computer nodes
and clusters.

• Network information (traffic, flows, con-
nectivity, topology) for WAN and LAN.

• Performance of applications, jobs and
services.

• End user systems, and end-to-end perfor-
mance measurements.

Since this includes performance and load in-
formation for systems and networks, it could be
used to determine whether a machine is susceptible
to a Denial-Of-Service attack. In other words, it
could be used to target systems that are running
close to their maximum capacity.

This type of information is, however, ex-
tremely useful to legitimate users of a grid - it
helps them determine the optimal locations for
their workloads. If possible, it should only be
made available to grid users, without exposing it
to the outside world.

SUMMARY OF SECURITY RISKS

So far we have identified the following pieces of
information, that are published to the OSG, as
being potentially sensitive to a site:

1. Operating system and software level
information

2. Local account names
3. Supported grid user DNs
4. Underlying authentication methods
5. Job-manager / batch-system information
6. Internal system paths
7. Job names
8. Error and failure information
9. System load and performance information

161

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

10. User activity at the site
11. Historical system availability data

While much of this data is very important to
users and VOs on the grid, and essential in cre-
ating a robust and flexible grid architecture, it is
important to design the systems that publish this
information such that they can support the desired
level of protection for the data. In other words,
information should be restricted to legitimate users
of the grid, and sites should have ultimate control
over what information they wish to publish, and
at what level of detail.

RECOMMENDED GRID
MIDDLEWARE CONFIGURATION

While software may evolve, and the specific
methods for configuring software may change, the
general goals for proper middleware configuration
remain the same. The following recommendations
will help provide some amount of control to sites
that wish to protect sensitive data:

1. Override attributes that are considered sensi-
tive with alternate values that can convey the
equivalent information. For example the GIP
allows named attributes to be overwritten
by specifying them in a special file (alter-
attributes.txt). This could allow a site to
replace detailed software levels with more
generic information.

2. Use site level collectors for multi-resource
sites. This will allow the site to filter sensi-
tive data at this level before forwarding it to
OSG. Syslog-ng is designed with this sort
of architecture in mind.

3. Turn down level of detail for the published
information to the minimum required –
during troubleshooting efforts, this can be
turned up for more diagnostic information.
This limits the overall exposure of the site.

4. Always use encrypted data streams and se-
cure protocols to send information, instead
of using clear text. Many OSG services,
such as Gratia or Syslog-ng, offer both SSL
and clear-text options to send data to their
respective collectors. Sites should always
use the former, when given a choice.

RECOMMENDATIONS FOR
DATA PROTECTION

Additionally, it is in the best interest of the grid
provider (OSG), to provide methods for protect-
ing this data. This protection must happen in
multiple ways:

1. All grid infrastructure software that transmits
or collects data from public networks should
support secure and encrypted communica-
tion protocols.

2. The software design should allow sites to
override arbitrary attributes being published.

3. Information collectors should endeavor to
authenticate the machines that publish site
data – only machines whose identities can be
verified should be allowed to publish their
information. This prevents third parties from
publishing fake or invalid data for a given
site. GSI host certificates are an effective
way to achieve this kind of authentication.
CEMon already uses this, and the model
could easily be extended to other OSG col-
lection services.

4. Use of grid certificates to restrict access to
data where possible. Web servers should at-
tempt to verify the identity of the user before
allowing access to grid resource information.
Current technologies, (e.g. mod_gridsite
(“Gridsite,”) for Apache based web servers)
provide the ability to control access based
on the user certificates. Additionally, this
information could be restricted along VO

162

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

lines, so that a VO is only authorized to ac-
cess its own data.

5. Prevent indexing or caching of dynamic
site information on web servers by search
engines. This can be done by using files like
robots.txt to prevent search engines from
storing this information.

6. In the long run, there should be a concerted
effort to consolidate software systems col-
lecting similar information, so that site
administrators and security officers have a
single point of control for protecting such
information. For example the Teragrid’s Inca
monitoring system consolidates resource
validation, troubleshooting and monitoring
functionality under a single engine (“Inca:
User Level Grid Monitoring,”; “TeraGrid,”).

Some of these features already exist in the OSG
software, but there also needs to be a compre-
hensive effort to integrate these types of features
across the middleware and collector infrastructure.

APPLICABILITY TO OTHER GRIDS

While our work has largely been a case study on
the OSG, the general principles of securing site
information are applicable to any major grid infra-
structure. Collection and publication of resource
information is a common feature across grids,
and results in similar requirements and goals with
respect to protection of such information.

Indeed, many of the discussed software sys-
tems are currently deployed in other grid infra-
structures as well. e.g. CEMon and MonALISA
at various EGEE sites (“MonALISA Repository
for Alice,”; “Enabling Grids for E-Science,”).
Other grids have their own information services
providing equivalent functionality. The Teragrid
uses the Inca monitoring system for resource
availability, validation and monitoring purposes,
collecting and publishing similar site information
as that discussed in the “Information Collection

in OSG” section. These systems face similar risks
with respect to sensitive site information, and we
expect the general techniques for protecting this
information to be applicable as well.

There is an increasing trend towards interoper-
ability among grids, with international collabora-
tions and VOs driving usage and infrastructure
requirements. There is a shift away from cen-
tralized grid providers, towards integrated VO
architectures, where a given VO frames its own
usage model. This points to cross-grid collection
services that operate on a per-VO basis. Since VOs
work in close collaboration with the major grid
providers, many of the current technologies dis-
cussed have uses cases for such VO based services.
For example, the ALICE VO uses MonALISA to
provide integrated monitoring of its supporting
resources. This means that VOs must also take
site security requirements into consideration as
they build their grid information frameworks.

FUTURE WORK

The focus of this work has been on the OSG, and
its tools, infrastructure and metadata. It would be
useful to extend this analysis to other major grid
infrastructures such as the Teragrid or EGEE, to
understand how they approach issues pertaining
to sensitive site-related information. This would
highlight common problems and solutions, and
provide alternative approaches towards protect-
ing site data.

Also, given that scientific collaborations are
increasingly adopting the VO model of grid com-
puting, where a VO maintains a certain amount of
control over its own users and metadata, it would be
interesting to analyze how VOs manage sensitive
information, and how they publish and integrate
this data across one or more grid infrastructures.

163

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

CONCLUSION

While a bulk of this article has been devoted to the
importance of protecting information that might
reveal weaknesses in a site’s security infrastruc-
ture, this should not be taken as an endorsement
of the “security by obfuscation” philosophy. We
recognize that there is no substitute for hard se-
curity – regular fixing and patching of software,
intelligent system monitoring, and strong security
polices and practices are essential for a truly secure
platform. However, practical security consider-
ations demand that administrators account for the
fact that not all vulnerabilities may be known at
a given time. There may also be delays between
the discovery and the patching of a vulnerability.
Thus, it is prudent to minimize the amount of
information available to a malicious entity and
limit the extent of a compromise. While it is
necessary to make certain kinds of information
public for the success of open grid computing, it
is also in the resource provider’s best interest to
understand the risks involved in doing so. Since
grid architectures tend to be as generic as pos-
sible, some of the published information may be
extraneous. The site must find a balance between
how much information it seeks to publish about
itself, and how much information it wishes to
protect. It may also want to limit the consumers
of this information to a controlled set of persons.

We believe that this article would serve as a
useful tool for sites that wish to identify these chan-
nels of information, so that they can determine the
appropriate level of protection they wish to apply
to their published data. We also hope to motivate
further study and discussion on the protection of
site information across various grid infrastructure
and middleware providers.

ACKNOWLEDGMENT

Supported by the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

REFERENCES

Acunetix. Google Hacking. from http://www.acu-
netix.com/websitesecurity/google-hacking.htm.

Canal, P., Constanta, P., Green, C., & Mack, J.
(2007). GRATIA, a resource accounting system
for OSG. CHEP’07, Victoria, British Columbia,
Canada. Sep 2007. Enabling Grids for E-Science.
from http://www.eu-egee.org/.

Field, L. (2008). Generic Information Provider.
EGEE Middleware Support Group. from http://
twiki.cern.ch/twiki/bin/view/EGEE/GIP.

Global Grid Forum. (2003). Usage Record – XML
Format. Globus Toolkit. from http://globus.org.

Glue Working Group. (2007). GLUE Schema
Specification version 1.3 Draft 3. Gridsite. from
http://www.gridsite.org/.

Inca: User Level Grid Monitoring. from http://
inca.sdsc.edu/drupal/.

Legrand, I. (2007). MonALISA: An Agent Based,
Dynamic Service System to Monitor, Control and
Optimize Distributed Systems. CHEP’07, Victoria,
British Columbia, Canada. Sep 2007. MonALISA
Repository for Alice. from http://pcalimonitor.
cern.ch/map.jsp.

Open Science Grid Consortium. from http://www.
opensciencegrid.org/.

OSG Grid Operations Center. from http://www.
grid.iu.edu/.

OSG Resource and Service Validation Project.
from http://rsv.grid.iu.edu/documentation/.

164

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

Padmanabhan, A. (2007). OSG Information Ser-
vices – A Discussion. Presentation at OSG Site
Administrators Meeting, Dec 2007.

Sgaravatto, M. (2005). CEMon Service Guide.
from https://edms.cern.ch/document/585040.

Syslog-ng Logging System. from http://www.
balabit.com/network-security/syslog-ng/.

Teragrid. from http://www.teragrid.org/.

Tierney, B. L., Gunter, D., & Schopf, J. M. (2007).
The CEDPS Troubleshooting Architecture and
Deployment on the Open Science Grid. J. Phys.:
Conf. Ser. 78 012075, SciDAC 2007. Virtual Data
Toolkit (VDT). from http://www.cs.wisc.edu/vdt/.

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1,
Issue 2, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 45-55, copyright 2009 by IGI Publishing (an imprint of IGI Global).

165

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

DOI: 10.4018/978-1-60960-603-9.ch011

Massimiliano Pala
Dartmouth College, USA

Shreyas Cholia
Lawrence Berkeley National Laboratory, USA

Scott A. Rea
DigiCert Inc., USA

Sean W. Smith
Dartmouth College, USA

Federated PKI Authentication
in Computing Grids:
Past, Present, and Future

ABSTRACT

One of the most successful working examples of virtual organizations, computational Grids need authen-
tication mechanisms that inter-operate across domain boundaries. Public Key Infrastructures (PKIs)
provide sufficient flexibility to allow resource managers to securely grant access to their systems in such
distributed environments. However, as PKIs grow and services are added to enhance both security and
usability, users and applications must struggle to discover available resources-particularly when the
Certification Authority (CA) is alien to the relying party. This chapter presents a successful story about
how to overcome these limitations by deploying the PKI Resource Query Protocol (PRQP) into the grid
security architecture. We also discuss the future of Grid authentication by introducing the Public Key
System (PKS) and its key features to support federated identities.

166

Federated PKI Authentication in Computing Grids

AUTHENTICATION IN VIRTUAL
ORGANIZATIONS

Computational grids provide researchers, institu-
tions and organizations with many thousands of
nodes that can be used to solve complex com-
putational problems. To leverage collaborations
among entities, users of computational grids are
often consolidated under very large Virtual Or-
ganizations (VOs).

Participants in VOs need to share resources,
including data storage, computational power and
network bandwidth. Because these resources
are valuable, access is usually limited, based on
the requested resource and the requesting user’s
identity. In order to enforce these limits, each grid
has to provide secure authentication of users and
applications.

Erroneously granting access to unauthorized
or even malicious parties can be dangerous even
within a single organization---and is unacceptable
in such large VOs.

Moreover, the dynamic nature of grid VOs
requires the authentication mechanisms to be
flexible enough to easily allow administrators to
manage trust and quickly re-arrange resource-
sharing permissions. Indeed, VOs are usually born
from the aggregation of already existing organiza-
tions and constitute an umbrella that groups the
participating organizations rather than replacing
them. For example, large VOs like the ATLAS
and CMS Large Hadron Collider collaborations
may be distributed across multiple organizational
and national boundaries. Authentication must al-
low individual organizations to maintain control
over their own resources.

The Problem. When participating in a VO, an
organization must solve the problem of securely
identifying resource requesters that come from
outside its boundaries. PKIs offer a powerful and
flexible tool to solve the potential authentication
nightmare. Nonetheless, grid and VO administra-
tors are still striving to find an acceptable solution
to address interoperability issues that originate

from the way VOs differ in policies, infrastructures
and resource control.

Consider the situation where access to grid
resources is managed via a Web portal. The portal
can use SSL to provide strong mutual authentica-
tion, between client and server, based on grid-
approved PKI credentials. To do this, the portal
administrator needs to set up the SSL Trust List
to only allow credentials from approved CAs;
the portal also needs to know how to validate the
entire trust chain for that credential (that is, the
end entity certificate presented, its issuer and the
issuer’s issuer, and so forth) up to the approved
self-signed grid trust anchor.

To do this validation, the portal needs to know
how to access services such as the location of
the CA certificate and revocation data for each
of these intermediate CAs. However, the portal
cannot count on having pre-configured details
for them. Even if it did—or if the information
was packaged in each end entity certificate—this
information may change over time, rendering this
critical data stale. Having some way to dynami-
cally discover service entry points of interest for
grid-approved authorities (or indeed, the very
authorities themselves) would solve a number of
issues and would also provide for more flexible
implementation options for the grid authorities,
potentially lowering the costs of future service
changes, and facilitating the future offering of
additional services.

Our Solution Path. In order to help VOs to
more efficiently address PKI interoperability
issues we have started a collaboration with the
TACAR project to foster the adoption of the
PKI Resource Query Protocol (PRQP) which
enables discovery of resources and services in
inter-PKI and intra-PKI environments. Although
PRQP provides a viable solution for immediate
deployment, in this paper we extend this solution
by advocating for the adoption of a Public Key
System (PKS) in order to provide support for VO
authentication over the Internet.

167

Federated PKI Authentication in Computing Grids

PAST AND PRESENT OF
AUTHENTICATION IN GRIDS

According to Ian Foster, a grid is a system that
“coordinates resources that are not subject to
centralized control, using standard, open, gen-
eral-purpose protocols and interfaces, to deliver
nontrivial qualities of service” (Foster, 2002). In
order for the grid computing model to be success-
ful, users and VOs must access a wide variety of
resources using a uniform set of interfaces. Given
that most resource providers have their own se-
curity policies and schemes to begin with, grids
must overcome the challenge of integrating a wide
variety of authentication mechanisms to achieve
this kind of resource sharing. Without a common
authentication layer, Virtual Organizations and
resource providers are forced to adopt ad hoc
schemes to achieve integrated resource sharing.
However, the adoption of arbitrary schemes dis-
courages information sharing and collaboration
among researchers, and essentially makes the grid
model unworkable.

The Grid Security Infrastructure (GSI) has
become the de facto security layer in scientific,
research and academic grids. It provides applica-
tions, VOs and resource providers with a secure
and standard means to perform authentication
across organizational boundaries. GSI is built
on top of a PKI layer and uses standard X509
v3 certificates for authenticating principals
and granting access to local resources. Several
major grid infrastructures, including Open Sci-
ence Grid (OSG), European Grid Infrastructure,
TeraGrid and Earth Systems Grid (ESG) rely on
GSI for managing authentication between users
and services.

In a distributed environment, it is important
to maintain traceability back to the individual
entity matching a given certificate. The task of
identifying users is distributed across various
grid CAs throughout the world. These CAs are
accredited and audited by the International Grid
Trust Federation and its three regional Policy
Management Authorities. A list of accredited

CAs is maintained by the IGTF and distributed
to relying parties throughout the world.

Grid CAs issue users a PKI certificate, includ-
ing a public key linked to the private key con-
trolled by the grid subscriber. These certificates
may either be long-lived (typically issued by
classic grid CAs) or short-lived (typically issued
by online CAs such as SWITCH (SWITCH,
2008) or MyProxy-based CAs (NCSA, 2008))
depending on the use case. The IGTF maintains
different authentication profiles to manage CAs
with different qualities of service, for the benefit
of relying parties.

A resource provider or virtual organization
relies on these CAs to be able to identify a given
user. As such, if an end entity is able to present a
valid certificate that is signed by a CA trusted by
the relying party, the entity can be authenticated
(of course, the end entity also needs to prove
knowledge of the private key). GSI authentication
is mutual (GLOBUS, 2008)—if a user wishes to
access a service, both the user and the service
must be able to present signed certificates to each
other. The respective signing authorities must be
trusted by the entity on each side of the transac-
tion. Allowing the user and the service to have
certificates signed by different CAs is the key to
establishing cross-realm trust in grids. This also
eases usability and scalability—the user need
maintain only a single individual credential (single
point of identity) no matter how many services
she wishes to use. In order to improve usability, a
user of grid services can sign a Proxy Certificate
(PC) on his or her own behalf.

In general these proxies contain a slightly
modified version of the user’s identity (to indicate
that it is a proxy certificate), a new public key,
and a very short lifetime. These proxy credentials
can then be used to access applications, or further
delegated to application servers to perform actions
on behalf of that user, without having to expose
the user’s original long-lived credential and pri-
vate key—thus practicing the security principle
of “least privilege.”

168

Federated PKI Authentication in Computing Grids

Most GSI-based grid applications can recog-
nize PCs and will trust the credential as long as
the chain of trust leads back to the original user
and a trusted CA. A detailed scheme of the whole
chain of certificates involved in identity verifica-
tion is shown in Figure 1.

Additionally, grids and VOS may use special
authorization services to handle fine-grained roles
based access control. For example, OSG VOs use
a Virtual Organization Management Service
(VOMS) (Ciaschini, 2004) service to generate and
sign an Attribute Certificate that contains one or
more Fully Qualified Attribute Name (FQAN)
strings, linked to the user’s subject DN. This
FQAN is embedded in the user’s proxy certificate
as an X.509v3 extension and defines that user’s
role within the VO. VOMS proxies can be used
to manage roles and levels of access to resources,
while using the same identity principal (user
certificate) across the grid.

PKI RESOURCE
DISCOVERY IN GRIDS

To use these more general PKIs, applications must
be capable of finding and using services and data
repositories provided by Certification Authori-
ties. Unfortunately, even the retrieval of the list
of revoked certificates (CRLs) is still a problem
when dealing with CAs from different hierarchies
or loosely coupled PKI meshes.

Grid PKIs can become rather complex, and
the number of grid CAs accredited by the Policy
Bodies (which are relatively young) is expected
to grow in the near future. Indeed, as long as poli-

cies and common practices are established and
well understood, the number of accredited CAs
should increase in the number of hundreds, thus
increasing the need for a standardized solution
for a PKI resource discovery system.

Current Data Distribution. Currently, the
mechanism for querying the trusted providers is
fairly simple: administrators and users download
a trusted CA distribution. This can either happen
as part of a manual process, or it can be included
within the grid software distribution (such as the
Open Science grid software stack). This packaged
data consists of a set of accredited CAs. (Ac-
creditation is done by peer review in the various
policy bodies.)

Because of the need to provide users and ad-
ministrators with additional data besides the CA
certificates, the downloaded package includes
extra files. In particular, for a given CA, the
package typically includes the following static
information: the CA certificate, the .info file, a
CRL URL file, a namespaces file, and a signing
policy file.

The .info file contains general CA informa-
tion along with contact information (including
a URL). Applications can use information in
the .info file to contact the CA. An example of a
distributed .info file is shown in Figure 2. Some
of the information distributed in this file (e.g.
url, email or status) is required by applications
and users to find details about the CA. The CRL
URL file contains a URL pointer from where one
would download the CRL. All accredited IGTF
classic CAs provide this file. Sites and users build
revocation lists by periodically querying the in-
formation in the CRL URL file and downloading

Figure 1. Chain of Trust in grids environment. The usage of Proxy Certificates allows the user to del-
egate tasks without exposing her private key—since each Proxy Certificate has its own unique keypair

169

Federated PKI Authentication in Computing Grids

revocation lists from the CRL url for each CA.
This means that many grid software installations
in the world are downloading these large CRLs
from the CA providers at regular intervals. From
what we have seen, this has often created denial
of service conditions for certain CAs.

The namespaces file defines the Distinguished
Names (DN) namespace that the CA is authorized
to use; the signing policy file defines the rules for
the signing policy of that CA. The namespaces
file and the signing policy file may contain over-
lapping information from a policy point of view
(although only the signing policy file has an imple-
mentation in software). Although this information
could be embedded into a CA’s certificate, the
need for updating this data periodically led to the
creation of the .info file and bundling it together
with the certificate.

TACAR (Terena Academic CA Repository)
and IGTF register and distribute this information
to users and sites as follows. The accredited CA
sends the trust anchor information directly to the
IGTF/TACAR through a TERENA officer or a
TERENA TACAR trusted introducer.

The IGTF packages and distributes the of-
ficial CA package. Relying parties download the
IGTF package every time there is a new release
(approximately once a month). Relying parties
are encouraged to verify this against the TACAR
repository. Then, based on the information within

the downloaded package, relying parties download
the CRL from the CRL URL on a daily basis.

Ultimately, in most cases, this relies on a very
static “cron-based” process. There are several im-
provements to this that can be made by PRQP that
would replace this type of static file and crontab
based access with something more dynamic, and
query driven.

Other Solutions. To publish pointers to data,
a CA could use certificate extensions such as
the Authority Information Access (AIA) and the
Subject Information Access (SIA) (R. Housley, W.
Polk, W. Ford, and D. Solo, 2002). Regrettably
the lack of support built into applications and the
difficulties in updating extensions in certificates
clash with the need for flexibility required by
today CAs.

To overcome the problem with updating the
pointers, it is possible to use SRV records (A.
Gulbrandsen, P. Vixie, and L. Esibov, 2000) in
DNS (P. Mockapetris, 1987). Although interesting,
the problem with this solution resides in the lack
of correspondence between the DNS structure,
which is built on a strictly hierarchical namespace,
and PKIs where there are no requirements for the
used namespace.

Other solutions are either overly complicated to
solve our problem---e.g., Web Services (F. Curb-
era, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,
and S. Weerawarana, 2002) uses SOAP (A. Kar-
markar, M. Hadley, N. Mendolsohn, Y, Lafon, M.

Figure 2. Example of distributed info file within grid communities. Notice how some of the distributed
information have no equivalent pointers in standard X509 certificates

170

Federated PKI Authentication in Computing Grids

Gudgin, J.-J. Moreau, H. Nielsen, 2007), WSDL
(E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, 2001; R. Chinnici, M. Gudgin, J.-J.
Moreau, and S. Weerawarana, 2005) and UDDI
(L. Clement, A. Hately, C. von Riegen, and T.
Rogers, 2004) or they are specifically targeted
to local area networks---e.g., Jini (W. Edwards,
2000; K. Arnold, 2000) UPnP (UPnP Forum,
2008; M. Jenronimo and J. Weast, 2003) or SLP
(E. Guttman, C. Perkins, and J. Kempf, 1999; E.
Guttman, 1999).

TRUST AND CERTIFICATION
POLICIES

The use of a standardized and well-established
technology such as public key certificates has
enabled applications such as browsers to facilitate
ease of use within grids. However, especially when
integrating credentials from different authorities,
an important aspect to consider is the policies
under which those credentials have been issued.
Although a PKI potentially provides the benefit
of strong binding of identities to public keys, the
strength of that binding is really dependent on
the policies and practices followed by the issuing
authority, and the subscribers.

A CA is a trusted third party entity which is-
sues digital certificates for use by relying parties.
In a certificate, the CA attests that the public key
matches the identity of the owner of the corre-
sponding private key, and also that any other data
elements or extensions contained in the certificate
match the subject of the certificate. The obliga-
tion of a CA (and its registration authorities) is to
verify an applicant’s credentials, so that relying
parties can trust the information contained in the
certificates it issues. If a relying party trusts the
CA and can verify the CA’s signature, then it can
also verify that a certain public key does indeed
belong to whoever is identified in the certificate (as
long as they accept this, the end entity is fulfilling
its responsibilities with respect to protecting the

private key). If the CA can be subverted, then the
security of the entire system is lost; likewise, if
an end entity is negligent, then the security and
trust associated with their particular credential
could be lost.

The degree to which a relying party can trust the
binding embodied in a digital certificate depends
on several factors. These factors can include the
practices followed by the certification authority
in authenticating the subject; the CA’s operating
policy, procedures, and security controls; the scope
of the subscriber’s responsibilities (for example,
in protecting the private key); and the stated re-
sponsibilities and liability terms and conditions of
the CA (e.g warranties, disclaimers of warranties,
and limitations of liability). The processing of
information contained in these multiple complex
documents for the purpose of making a trust
decision about each PKI involved is too onerous
for the average user. Relying parties therefore
usually accept recommendations from trusted
accreditation bodies about the relative trustwor-
thiness and suitability of credentials being issued
by a particular CA. For grids, those accreditation
bodies are the three regional PMAs that constitute
the IGTF. TAGPMA is the accreditation authority
for the Americas (covering a geographical region
from Canada to Chile).

TAGPMA conducts peer reviews of grid CA
operations. A grid CA can be accredited as a grid
credential issuer after TAGPMA reviews their
Certificate Policy (CP) and Certification Prac-
tices Statement (CPS) to ensure that the practices
implement the policies and that the policies are
equivalent to standard approved grid profiles. Once
approved, the CA and associated information is
packaged for official distribution for IGTF rely-
ing parties. Re-review of a CA is conducted on a
periodic basis to ensure they are still compliant
with the standard grid profiles.

Not all grid CA accreditation applicants are
able to map their existing policies and practices
to an approved IGTF profile. However, a relying
party may still wish to accept the credentials of

171

Federated PKI Authentication in Computing Grids

such a CA operator based upon their own assess-
ment of trustworthiness of the CA. In order for
the relying party to make a local trust decision,
they should consider the statements by the CA
published in their CP and CPS and also review
any other relevant security or trust-related docu-
mentation. Currently this information is gener-
ally not readily available to a relying party from
the CA’s certificate, nor can a relying party or
potential subscriber easily find the URI for the
application or revocation of credentials from such
CAs. A mechanism for publishing and updating
this information would greatly enhance the flex-
ibility, and usability of potential grid PKIs. The
PRQP is a perfect candidate for providing such
functionality.

INTEROPERABLE GRID
PKIS: FIRST STEPS

Effective authentication frameworks that make use
of certificates potentially require many different
services such as OCSP servers, CRL repositories,
or timestamping to validate certificates issued by
accredited CAs. As a consequence, certification
authorities need to be able to provide these ser-
vices and to enable applications to discover them.

Because the need to distribute PKI related
data and pointers to services is of primary con-
cern in grids, each grid environment defines its
own specific format and solution. Although this
might temporarily solve specific issues within a
specific grid community, it does not encourage
the exchange of information and interoperability
with other organizations.

It is to be noted that because of the customized
nature of current solutions, specific extensions to
applications must be developed in order to be able
to operate in such environments.

The PKI Resource Discovery Protocol.
The notion of a discovery protocol for PKIs first
appeared in our earlier paper (M. Pala and S. W.
Smith, 2007), which proposed the PKI Resource

Query Protocol (PRQP)1 to provide pointers to
any available PKI resource from a particular CA.

The PRQP (M. Pala, 2008) has been already
discussed in the IETF PKIX working group. The
updated version of the PRQP specification, which
includes grid-specific enhancements proposed in
this paper, is published as an Experimental-Track
Internet Draft. In PRQP, the client and a Resource
Query Authority (RQA) exchange a single round
of messages where the client requests a resource
token by sending a request to the server. The
server replies back by sending a response to the
requesting entity.

The client can request the address of one or
more specific services by embedding one or more
Object Identifiers (OIDs) into the request. The
resources might be items that are (occasionally)
embedded in certificates today—such as URLs
for CRLs, OCSP, SCVP or CP/CPS locations-
--as well as other items, such as addresses for
the CA website, the subscription service, or the
revocation request.

Alternatively, the client may ask for the loca-
tion of all the services provided by a CA by not
specifying any identifier in the request.

The Resource Query Authority. In PRQP,
the server is called the Resource Query Authority
(RQA). An RQA can play two roles. First, a CA
can directly delegate an RQA as the party that can
answer queries about its certificates, by issuing a
certificate to the RQA with a unique value set in the
extendedKeyUsage (i.e. prqpSigning). The RQA
will provide authoritative responses for requests
regarding the CA that issued the RQA certificate.
Alternatively, an RQA can act as Trusted Authority
(TA) (“trusted” in the sense that a client simply
chooses to trust the RQA’s recommendations and
assertions). In this case, the RQA may provide
responses about multiple CAs without the need
to have been directly certified by them.

In this case, provided responses are referred
to as non-authoritative, meaning that no explicit
trust relationship exists between the RQA and
the CA. To operate as a TA, a specific extension

172

Federated PKI Authentication in Computing Grids

(prqpTrustedAuthority) should be present in the
RQA’s certificate and its value should be set to
TRUE. In this configuration the RQA may be
configured to respond for different CAs which
may or may not belong to the same PKI as that
of the RQA.

Security Considerations. The PRQP provides
URLs to PKI resources, therefore it only provides
locators to data and services, and not the real
data. It still remains the client’s job to access the
provided URLs to gather the needed data, and
to validate the data (e.g., via signatures or SSL).

Because of this consideration, both the NONCE
and the signature are optional in order to provide
flexibility in how requests and responses are
generated.

Also, it is then possible to provide pre-comput-
ed responses in case the NONCE is not provided
by the client. If an authenticated secure channel
is used at the transport level between the client
and the RQA (e.g. HTTPS or SFTP) signatures
in requests and responses can be safely omitted.

Distribution of RQA addresses. The distribu-
tion of the RQA’s address to clients is still an open
issue. There are four possible approaches. A first
option would be to use the AIA and SIA exten-
sions to provide pointers to RQAs. We believe
that by using these extensions in certificates to
locate the RQA, one could provide an easy way
to distribute the RQA’s URL. The size of issued
certificates would be smaller than embedding all
the pointers for CA’s resources, thus providing a
more space efficient solution.

The second option is applicable mostly for
LANs, and consists of providing the RQA’s ad-
dress by means of DHCP. This method would be
mostly used when a trusted RQA is available on a
local network. These two techniques can then be
combined together. Although the service number
for DHCP and DHCPv6 for PRQP have not yet
been assigned by IANA, the official protocol draft
describes how to provide local RQAs addresses
via dynamic host configurations.

The third option—which could be successfully
applied in special-purpose application environ-
ments like Grid Computing—is to embed the
RQA’s address directly into application software
distributions. This approach could be adopted
in grids and VOs where a centralized software
distribution system is in place. At each software
update, the RQA network address can be updated
as well. If the distributed software is not digitally
signed by a trusted authority, this approach could
be subject to serious security threats, e.g. distribu-
tion of an altered package by a malicious attacker
where the configured RQAs are not the “official”
ones. Besides the security considerations already
discussed above, the trust level in the application’s
RQA configuration should be not less then that put
into browser or operating system certificate stores.

Ultimately, the RQA address can be retrieved
by querying the DNS for specific service records.
The SRV records—or Service records—technique
was meant as a way to provide pointers to serv-
ers directly in the DNS. As defined in RFC 2782
(A. Gulbrandsen, P. Vixie, and L. Esibov, 2000),
the introduction of this type of record allows ad-
ministrators to perform automatic discovery for
local network services. The core idea behind SRV
records is to have the client query the DNS for a
specific SRV record. For example if an SRV-aware
OCSP client wants to discover an OCSP server
for a certain domain, it performs a DNS lookup
for ocsp.tcp.example.com (the “ tcp” means the
client requesting a TCP enabled OCSP server).
The returned record contains information on the
priority, the weight, the port and the target for the
service in that domain.

Although used for many different network-
related configurations (e.g., printing services), this
approach has not been successfully deployed for
PKI-related services. Besides the issues related to
relying on not authenticated services for discover-
ing the network addresses of specific resources,
the main issues are related to the fact that there
is no correspondence between DNS structure
and data contained in the certificates. The only

173

Federated PKI Authentication in Computing Grids

exception being when the Domain Component
(DC) attributes are used in the certificate’s Sub-
ject. Fortunately, with the recent deployment of
DNSSEC (Arends, R.; Austein, R.; Larson, M.;
Massey, D. & Rose, S., 2005; Weiler, S. & Ihren,
J., 2006) services and their integration with current
OSes, some of the trust considerations related to
the local service discovery via DNS records will
be soon solved.

However, this approach can be successfully
adopted in VOs where the centralized policy body
authority could provide the RQA configurations
on behalf of the whole VO.

Finally, we want to point out that other mecha-
nism will be available to discover LAN provided
services in IPv6 (Deering, S. & Hinden, R., 1998)
based on simple ping of reserved IP addresses in
the local segment.

INTEGRATING PRQP INTO GRIDS

In our work toward a dynamic discovery of PKI-
related services for Computing Grids, we analyzed
the security requirements and the current chal-
lenges in distributing pointers to authentication
data. To ease the administrators’ burden and to
provide a more efficient way to distribute resource
locators, we extended the PRQP specification
with grid-specific support. In particular, these
extensions provide an interoperable method to
distribute information about provided services.
Although some solutions already exist in the com-
puting grid environment (e.g. the monthly IGTF/
TACAR update), our work addresses the problem
by providing a more standardized solution that
would allow for better interoperability between
organizations (as discussed earlier).

OpenCA’s LibPKI (OpenCA, 2008a) provides
an updated implementation of the full PRQP proto-
col. At present, a PRQP server is also available as
a stand-alone application (OpenCA Labs, 2008c)
and freely downloadable2. The GSI based security
layer, used across several major grids and VOs,

is built on top of the OpenSSL library, a widely
used open-source library. Since GSI is based on
standard PKI mechanisms, it plugs nicely into the
PRQP model. A PRQP client can be implemented
at the GSI layer using callouts – we plan to imple-
ment this in the future.

Grid-Specific Resources. In order to better
leverage PRQP in the Grid environment, we de-
fined a set of object identifiers (OIDs) that enhance
PRQP with the ability to provide grid-specific data
distribution. Because grid communities organize
themselves in VOs that accept common authenti-
cation profiles (such as those of the IGTF), it has
been easy to analyze the requirements and identify
the needed enhancements to PRQP.

Besides identifying the OIDs for general PKI
operations (e.g., HTTP based or browser-specific
services, CA “communication gateways”, etc.)3,
we also defined some Grid-specific pointers (see
Table 1).

The accreditationBody and the accreditation-
Policy pointers can be used to specify the bodies
and the policies (or profiles) under which a CA
has been accredited. In addition to these, we also
defined the commonDistributionUpdate and the
accreditedCACertificates OIDs. These identifiers
can carry information about pointers to the most
recent Grid distribution data (the former) and to
the set of accredited CA certificates (the latter).

One interesting feature of PRQP is its flex-
ibility. It can provide CA management with a
dynamic model to add services or, if needed, to
switch to newer and more efficient ones. This
feature becomes of primary concern in grids
where currently grid-specific services have not
been standardized yet.

CAs can leverage PRQP flexibility properties
in order to provide dynamically updated informa-
tion about its accreditation status to applications
via the accreditationStatus pointer. The set of grid-
specific pointers we introduced facilitates more
flexible trust options from the VO’s perspective,
in the set of CAs it chooses to trust. For instance,
besides the generally accepted IGTF distribution,

174

Federated PKI Authentication in Computing Grids

these pointers also allow a VO to specify a set of
additional CAs that the VO wishes to trust locally
(that the VO has vetted itself for use within the
community), by simply specifying an additional
local distribution maintained by the VO or any
entity it delegates this responsibility to (e.g. refer
to the additional non-IGTF accredited CAs that
are accepted by TeraGrid).

PRQP AND TACAR: A REAL
WORLD DEPLOYMENT

An interesting aspect of the grid trust model is the
presence of a central authority, often embodied
by the grid policy management authority. Usu-

ally this authority is represented by a federation
of authentication providers and relying parties
responsible for accreditation of CAs willing to
participate in the organization.

The presence of such an authority eases the
deployment of PRQP in that it provides a central
point where the RQA can be deployed. In this
section, we discuss the real-world experience
in deploying the PRQP service for the TACAR
project. To speed up the service deployment and
ease CA administrators from running an additional
service, we deployed a centralized RQA service
that serves the entire grid community.

Trusting a Central RQA. In the TACAR
PRQP deployment, we adopted a trust model that
utilizes a centralized Resource Query Authority

Table 1. Newly Identified OIDs for Grid Operations. Of particular interest are the Grid specific pointers
that enable an RQA to provide Grid specific information to applications. It is also to be noted that some
of the proposed PKIX Identifiers refer to services that are not yet standardized

OID Text Description

PKIX {id-ad 1} ocsp OCSP Service

{id-ad 2} caIssuers CA Information

{id-ad 3} timeStamping TimeStamping Service

{id-ad 10} dvcs DVCS Service

{id-ad 11} scvp SCVP Service

General PKI
operations

{id-ad 50} certPolicy Certificate Policy (CP) URL

{id-ad 51} certPracticesStatement Certification Practices Statement (CPS) URL

{id-ad 60} httpRevokeCertificate HTTP Based (Browsers) Certificate Revocation Service

{id-ad 61} httpRequestCertificate HTTP Based (Browsers) Certificate Request Service

{id-ad 62} httpRenewCertificate HTTP Based (Browsers) Certificate Renewal Service

{id-ad 63} httpSuspendCertificate Certificate Suspension Service

{id-ad 40} cmsGateway CMS Gateway

{id-ad 41} scepGateway SCEP Gateway

{id-ad 42} xkmsGateway XKMS Gateway

{eng-ltd 3344810 10 2} webdavCert Webdav Certificate Validation Service

{eng-ltd 3344810 10 3} webdavRev Webdav Certificate Revocation Service

Grid Specific {id-ad 90} accreditationBody Accreditation Body URL

{id-ad 91} accreditationPolicy Accreditation Policy

{id-ad 92} accreditationStatus Accreditation Status Document

{id-ad 95} commonDistributionUpdate Grid Distribution Package

{id-ad 96} accreditedCACertificates Certificates of Currently Accredited CAs

175

Federated PKI Authentication in Computing Grids

which serves all the organizations participating
in the grid community.

This model is easily applicable when the
VOs and grids share the same set of accredited
Certification Authorities. In this case, the client
application queries the central RQA to discover
the needed information about CAs participating
in the VO. For this model to work, the central
RQA must know the pointers for each and every
CA that is recognized by the VO. In this case,
the RQA is to be trusted by all the participating
parties. The RQA can be configured to act as a
trusted responder or, if every participating CA
is willing to certify the RQA’s key pair, as an
authoritative responder.

It may be unrealistic to expect a policy authority
(like IGTF) to operate a central RQA which would
require 24x7 support; however, the operation could
be easily delegated by the policy authority to one
of the more prominent accredited CA sites that
are already geared for 24x7 services. The policy
body would then simply need to require periodic
assertions (or audits) to confirm that the central
service was operated precisely and integrally.

In our PRQP deployment for TACAR we
adopted a delegated model where the central
RQA service is run by one of the accredited CAs.
Moreover, in order to facilitate the update of the
pointers provided by each CA to the RQA admin-
istrators, we provided a web-based configuration
tool (integrated with the TACAR control panel)
that allows CA administrators to easily update/
add URL pointing to the provided services. The
configuration is then pushed to the RQA server
and automatically deployed at regular intervals
during the day.

TOWARDS GLOBAL GRID
AUTHENTICATION

Our experience with PRQP provided us with
the idea that an Internet-wide service aimed at
enhancing trust-infrastructures deployment and

interoperability is both needed and soon deploy-
able. In particular, we started working at the
deployment of a distributed support system for
trust infrastructures suitable for Internet-scale
deployment and dynamic federation management,
namely the Public Key System (PKS). In order
to ease roll over between isolated PKI islands to
globally available and locally configurable PKI
services, this infrastructure will allow smooth
co-existence and progressive integration with
existing infrastructures.

The PKS we first designed in (M. Pala, 2010)
and that we plan to develop and deploy for Grid
authentication purposes first, is composed of
three main parts: a DHT-based overlay network,
a unified message format, and the support for
federated identities.

The PKS uses a peer-to-peer overlay network
to route messages to the target CAs and federation
authorities. In particular, we use a simplified ver-
sion of the Chord protocol based on the PEACH
(M. Pala and S. W. Smith, 2008) system. We
selected this routing algorithm for two reasons.
First, it already provides support for node identi-
fiers based on public key certificates. Secondly,
the PEACH protocol is easy to support from the
developers point of view: other protocols like
Kademilia (Maymounkov, P., Mazieres, D., 2002)
or P-Grid (Aberer, K., Mauroux, P.C., Datta, A.,
Despotovic, Z., Hauswirth, M., Punceva, M.,
Schmidt, R., 2003) might provide additional
features at a greater implementation costs.

A collaborative Approach. In our previous
work, we designed and prototyped a scalable
system for PKI resources look-up. In (M. Pala
and S. W. Smith, 2008) we introduced a new
peer-to-peer overlay network that makes use of a
Distributed Hash Table routing protocol (namely,
Peach). Results from this work have demonstrated
that PKIs can make effective use of peer-to-peer
technologies and have laid the path for the next
steps in this new field. Building on our previous
work, we extended this approach to provide a
support system for Public Key trust infrastructures

176

Federated PKI Authentication in Computing Grids

deployment. In particular, we enhanced the peer-
to-peer protocol to support (1) interoperable PKI
message exchange among CAs, and (2) usable
federated identities deployment. The most notice-
able addition to the PEACH network infrastructure
is introduction of a new type of nodes, the PK
Federation Authorities.

In the PKS model, network administrators
deploy local PKS responders. As such, the PKS
is similar to the DNS where caching servers are
deployed in LANs to ease client configurations.
The PKS responders, in this case, act as a PKI
proxy for applications. In case the local organi-
zation also deployed it’s own CA, the local PKS
node will reply to PKI requests for the local PKI in
addition to forwarding requests that are addressed
for external CAs.

In order to locate available CAs efficiently on
the PKS network, we use unique node identifiers
for each CA. We leverage the availability of the
CAs’ digital certificates by deriving the node’s
identifier from the fingerprint of the CA certificate
itself. For example, if CA1 wants to participate
in the PKS network, it will setup a PKS node and
issue a certificate that identifies it as the authorita-
tive PKS responder.

When joining the PKS network, the PKI gate-
way will present its own certificate together with
its issuing CA’s certificate. The node identifier,
that is the identifier that will enable the node to be
found on the network, is calculated by using the
fingerprint of the CA’s certificate. To validate the
identity of the joining node, a simple validation
of the presented certificate chain will guarantee
that the joining node has been authorized as a PKS
responder for that particular CA. This approach
guarantees high scalability, provides a simple
approach to PKS responders deployment, and is
logically compatible with the Peer Name Resolu-
tion Protocol (Microsoft) already available in the
Windows operating system (although available
only over IPv6).

Ultimately, we notice that the PKS network
can support any type of public key identifiers, not

only X.509 certificates. This feature stems from
the use of the output of the hash function to link
a node on the PKS network to an identity (e.g.,
a CA or a PK-FA). Although our work primarily
focuses on X.509 certificates, the PKS overlay
network is capable of supporting multiple types
of public key based identifiers.

Two-Tier Approach. To ease the deployment
of PKS, applications such as browsers or email
clients, access the PKS by querying the local PKS
server. The local PKS responder is responsible of
discovering if the responder authoritative for the
CA requested by a client is available on the PKS
network and, if so, it forwards the application’s
request to the target node. The response is then
routed back to the client through the same local
PKS responder.

In other words, applications use only one
simple transport protocol for all PKI-related que-
ries (e.g., OCSP, CMM, SCEP, etc.) and do not
need to implement any of the peer-to-peer overlay
network operations (e.g., join() or lookup()).

The Quest for Federated Identities. One of
the urgent needs in today’s on-line communities
is the possibility to demonstrate one’s participa-
tion to one or more federations. In the case of
Computing Grids, these federations are identi-
fied by saccreditation bodies. These authorities
decide the policies (or rules) that an organization
must follow in order to be accredited. They also
perform audits to check on the compliance of an
accredited organization with the policy of the
VO. Therefore, being the authority recognized by
every member participating to the VO, the policy
body is the authoritative source of isnformation
about the VO membership. Regrettably, there is
no standardized way to dynamically provide that
information to applications.

To accommodate the need to federate existing
organizations, the PKS supports PK Federation
Authorities (PK-FA) nodes. These nodes provide
information about the deployed federations by
indicating if a particular entity is part of a specific
federation or not. The protocol we designed in

177

Federated PKI Authentication in Computing Grids

(M. Pala, 2010) allows clients to sensibly reduce
the list of trust anchors (or Trusted Certification
Authorities). In particular, by trusting the PK-FA
certificate, a client can dynamically discover if
a CA is part of the trusted federation, and, if so,
can use the PKS to correctly route the requests
about the provided PKI services.

Since the source of trust is the PK-FA, the trust
is built by combining the PK-FA response with the
usual certificate validation of the certificate that is
being verified. The use of dynamically generated
PK-FA responses allows infrastructures to dynami-
cally join or leave federations. In fact, although
that there is no direct certification link between
the PK-FA (the trusted entity) and the certificate
to be verified, the trust (from a federation point
of view) flows from the signed PK-FA response
as it identifies the certificate issuing CA as part of
the trusted federation. In other words, the PK-FA
provides a source of technical bridge that allows
to verify (from an application standpoint) the
compliance of an organization to a well-known
policy without the need of cross certification
among trust infrastructures.

This allows applications to implement user-
friendly trust anchor management systems based
on the idea of federation (e.g., the Banking Federa-
tion, the Credit Cards Association, etc.).

CONCLUSION

In our work we provide a description of the grid
authentication layer. We also provide an overview
of the issues that grids and virtual organizations
face every day in distributing crucial information
that enables the usage of digital certificates.

Our work also analyzes the current status of
the PKI Resource Query Protocol and describes
the TACAR experience in integrating the protocol
into an existing infrastructure.

We believe that PRQP can provide an effective
solution to the PKI services pointer distribution
issue, especially in virtual organizations where a

common authentication layer exists. The PRQP
introduces a new layer of indirection that allows
mapping of PKI resource discovery to network
addresses. Today, no existing software provides
such a flexible service. In fact, no deployed in-
frastructure exists that provides an efficient and
interoperable PKI resource-discovery service.

Building on top of our experience with PRQP
deployment, we focused on allowing for improved
interoperability among trust infrastructures by
introducing the Public Key System (PKS) and its
promising characteristic toward an Internet-wide
support infrastructure for federated identities.

ACKNOWLEDGMENT

The authors would like to thank the IGTF members
for their contribution and inspiring suggestions.
This work was supported in part by CISCO;
the NSF (under Grant CNS-0448499); the U.S.
Department of Homeland Security (under Grant
Award Number 2006-CS-001-000001); and the
Director, Office of Science, Office of Advanced
Scientific Computing Research of the U.S.
Department of Energy (under Contract No. DE-
AC02-05CH11231). The views and conclusions
contained in this document are those of the au-
thors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, of any of the sponsors. A preliminary
version of this work appeared as Pala et al, “Ex-
tending PKI Interoperability in Computational
Grids,” 8th IEEE International Symposium on
Cluster Computing and the Grid.

REFERENCES

Aberer, K., Mauroux, P. C., Datta, A., Despotovic,
Z., Hauswirth, M., Punceva, M., & Schmidt, R.
(2003). P-Grid: A self-organizing structured P2P
system. SIGMOD, 32. ACM.

178

Federated PKI Authentication in Computing Grids

Arends, R., Austein, R., Larson, M., Massey, D.,
& Rose, S. (2005). DNS security introduction and
requirements. RFC 4033. Internet Engineering
Task Force. IETF.

Arnold, K. (2000). The Jini specification (2nd
ed.). Addison-Wesley.

Chadwick, D. W. (2007). Use of WebDAV for
certificate publishing and revocation. Internet
Engineering Task. IETF.

Chinnici, R., Gudgin, M., Moreau, J.-J., & Weer-
awarana, S. (2005). Web services description lan-
guage (WSDL) version 2.0 part 1: Core language.
Retrieved from http://www.w3.org/TR/wsdl20

Christensen, E., Curbera, F., Meredith, G., &
Weerawarana, S. (2001). Web services descrip-
tion language (WSDL) 1.1. Retrieved from http://
www.w3.org/TR/2001/NOTE-wsdl-20010315

Ciaschini, V. (2004). A VOMS attribute certificate
profile for authorization. Retrieved from http://
grid-auth.infn.it/docs/AC-RFC.pdf

Clement, L., Hately, A., von Riegen, C., & Rogers,
T. (2004). UDDI version 3.0.2. Retrieved from
http://uddi.org/pubs/uddi v3.htm

Curbera, F., Duftler, M., Khalaf, R., Nagy, W.,
Mukhi, N., & Weerawarana, S. (2002). Unraveling
the Web services Web: An introduction to SOAP,
WSDL, and UDDI. IEEE Internet Computing, 6,
86–93. doi:10.1109/4236.991449

Deering, S., & Hinden, R. (1998). Internet pro-
tocol, version 6 (IPv6) specification. Internet
Engineering Task Force. IETF.

Edwards, W. (2000). Core Jini (2nd ed.). Prentice-
Hall.

Foster. (2002). What is the Grid? A three point
checklist. GRIDtoday, 1(6).

GLOBUS. (2008). Overview of the Grid security
infrastructure. Retrieved from http://www.globus.
org/security/overview.html

Gulbrandsen, A., Vixie, P., & Esibov, L. (2000).
A DNS RR for specifying the location of services
(DNS SRV). RFC 2782. Internet Engineering Task
Force. IETF.

Guttman, E. (1999). Service location proto-
col: Automatic discovery of IP network ser-
vices. IEEE Internet Computing, 3(4), 71–80.
doi:10.1109/4236.780963

Guttman, E., Perkins, C., & Kempf, J. (1999).
Service templates and schemes. Internet Engineer-
ing Task Force. IETF.

Guttman, E., Perkins, C., Veizades, J., & Day,
M. (1999). Service location protocol, version 2.
Internet Engineering Task Force. IETF.

Housley, R., Polk, W., Ford, W., & Solo, D. (2002).
Certificate and certificate revocation list (CRL)
profile. RFC 3280. Internet Engineering Task
Force (IETF).Jenronimo, M., & Weast, J. (2003).
UPnP design by example: A software developer’s
guide to universal plug and play. Intel Press.,
ISBN-13, 978–0971786110.

Karmarkar, A., Hadley, M., Mendolsohn, N.,
Lafon, Y., Gudgin, M., Moreau, J. J., & Nielsen,
H. (2007). SOAP version 1.2 part 1: Messaging
framework (2nd ed.). Retrieved from http://www.
w3.org/TR/2007/REC-soap12-part1-20070427/

Maymounkov, P., & Mazieres, D. (2002). Kadem-
lia: A peer-to-peer Information System based on
the XOR metric.

Microsoft. (n.d.). Peer name resolution protocol.
Retrieved from http://technet.microsoft.com/en-
us/library/bb726971.aspx

Mockapetris, P. (1987). Domain names - imple-
mentation and specification. RFC 1035. Internet
Engineering Task Force. IETF.

Myers, M., & Schaad, J. (2007). Certificate man-
agement over CMS (CMC) transport protocols.
Internet Engineering Task Force. IETF.

179

Federated PKI Authentication in Computing Grids

NCSA. (2008). MyProxy credential management
service. Retrieved from http://grid.ncsa.uiuc.edu/
myproxy/ca/

Open, C. A. (2008a). LibPKI: The easy PKI
library. Retrieved from http://www.openca.org/
projects/libpki/

Open, C. A. (2008b). OpenCA-NG: The next gen-
eration CA. Retrieved from http://www.openca.
org/projects/ng/

Open, C. A. Labs. (2008c). OpenCA’s PKI resource
discovery package. Retrieved from http://www.
openca.org/projects/prqpd/

Pala, M. (2008). PKI resource discovery protocol
(PRQP). Internet Engineering Task Force. IETF.

Pala, M. (2010). A proposal for collaborative
Internet-scale trust infrastructures deployment:
The public key system. 9th Symposium on Identity
and Trust on the Internet (IDTrust 2010). Gaith-
ersburg, MD: NIST.

Pala, M., & Smith, S. W. (2007). AutoPKI: A
PKI resources discovery system. Public Key In-
frastructure: EuroPKI 2007. [Springer-Verlag.].
LNCS, 4582, 154–169.

Pala, M., & Smith, S. W. (2008). PEACHES and
peers. 5th European PKI Workshop: Theory and
Practice. LNCS 5057, (pp. 223-238). Springer-
Verlag.

SWITCH. (2008). SWITCH pki, an X.509 public
key infrastructure for the Swiss higher education
system. Retrieved from http://www.switch.ch/pki/

UPnP forum. (2008). Universal plug and play
specifications. Retrieved from http://www.upnp.
org/resources/

Weiler, S., & Ihren, J. (2006). Minimally cover-
ing NSEC records and DNSSEC online signing.
Internet Engineering Task Force. IETF.

ENDNOTES

1 The subsequent description here of the PRQP
protocol is derived from our earlier paper
(M. Pala and S.W. Smith 2007).

2 http://www.openca.org/projects/prqpd/
3 A more complete explanation of the non

grid-specific pointers is currently submitted
for publication.

180

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

INTRODUCTION

Grid computing has emerged to cater the need
of computing-on-demand (Jana, Chaudhuri, &
Bhaumik, 2009) due to the advent of distributed
computing with sophisticated load balancing,

distributed data and concurrent computing power
using clustered servers. The Grid enables resource
sharing and dynamic allocation of computational
resources, thus increasing access to distributed
data, promoting operational flexibility and col-
laboration, and allowing service providers to scale
efficiently to meet variable demands (Foster &
Kesselman, 2004).

David G. Rosado
University of Castilla-La Mancha, Spain

Eduardo Fernández-Medina
University of Castilla-La Mancha, Spain

Javier López
University of Málaga, Spain

Mario Piattini
University of Castilla-La Mancha, Spain

Identifying Secure Mobile
Grid Use Cases

ABSTRACT

Mobile Grid includes the characteristics of the Grid systems together with the peculiarities of Mobile
Computing, with the additional feature of supporting mobile users and resources in a seamless, trans-
parent, secure, and efficient way. Security of these systems, due to their distributed and open nature, is
considered a topic of great interest. We are elaborating a process of development to build secure mobile
Grid systems considering security on all life cycles. In this chapter, we present the practical results ap-
plying our development process to a real case, specifically we apply the part of security requirements
analysis to obtain and identify security requirements of a specific application following a set of tasks
defined for helping us in the definition, identification, and specification of the security requirements on our
case study. The process will help us to build a secure Grid application in a systematic and iterative way.

DOI: 10.4018/978-1-60960-603-9.ch012

181

Identifying Secure Mobile Grid Use Cases

Mobile computing is pervading our society
and our lifestyles with a high momentum. Mobile
computing with networked information systems
help increase productivity and operational ef-
ficiency. This however, comes at a price. Mobile
computing with networked information systems
increases the risks for sensitive information sup-
porting critical functions in the organization which
are open to attack (Talukder & Yavagal, 2006).

At first glance, it seems that the marriage of
mobile wireless consumer devices with high-
performance Grid computing would be an unlikely
match. After all, Grid computing to date has utilised
multiprocessors and PCs as the computing nodes
within its mesh. Consumer computing devices
such as laptops and PDAs are typically restricted
by reduced CPU, memory, secondary storage, and
bandwidth capabilities. However, therein lies the
challenge. The availability of wirelessly connected
mobile devices has grown considerably within
recent years, creating an enormous collective
untapped potential for resource utilisation. To wit,
recent market research shows that in 2008, 269
million mobile phone and 36 million smartphone
(Gartner, 2009) were sold worldwide, and that in
2006, 17 million PDAs (Gartner, 2007) were sold
worldwide. Although these individual computing
devices may be resource-limited in isolation, as
an aggregated sum, they have the potential to play
a vital role within Grid computing (Phan, Huang,
Ruiz, & Bagrodia, 2005).

Mobile Grid, in relevance to both Grid and
Mobile Computing, is a full inheritor of Grid with
the additional feature of supporting mobile users
and resources in a seamless, transparent, secure
and efficient way (Litke, Skoutas, & Varvarigou,
2004). Grids and mobile Grids can be the ideal
solution for many large scale applications being
of dynamic nature and requiring transparency
for users.

Security has been a central issue in grid com-
puting from the outset, and has been regarded as
the most significant challenge for grid comput-
ing (Humphrey, Thompson, & Jackson, 2005).

The characteristics of computational grids lead
to security problems that are not addressed by
existing security technologies for distributed
systems (Foster, Kesselman, Tsudik, & Tuecke,
1998; Welch et al., 2003). Security over the mobile
platform is more critical due to the open nature of
wireless networks. In addition, security is more
difficult to implement into a mobile platform due
to the limitations of resources in these devices
(Bradford, Grizzell, Jay, & Jenkins, 2007).

The reasons that led us to focus on this topic
are several: Firstly, the lack of adequate develop-
ment methods for this kind of systems since the
majority of existing Grid applications have been
built without a systematic development process
and are based on ad-hoc developments (Dail et
al., 2004; Kolonay & Sobolewski, 2004), sug-
gests the need for adapted development method-
ologies (Giorgini, Mouratidis, & Zannone, 2007;
Graham, 2006; Jacobson, Booch, & Rumbaugh,
1999; Open Group, 2009). Secondly, due to the
fact that the resources in a Grid are expensive,
dynamic, heterogeneous, geographically located
and under the control of multiple administrative
domains (Bhanwar & Bawa, 2008), and the tasks
accomplished and the information exchanged are
confidential and sensitive, the security of these
systems is hard to achieve. And thirdly, because
of the appearance of a new technology where se-
curity is fundamental together with the advances
that mobile computation has experienced in recent
years that have increased the difficulty of incor-
porating mobile devices into a Grid environment
(Guan, Zaluska, & Roure, 2005; Jameel, Kalim,
Sajjad, Lee, & Jeon, 2005; Kumar & Qureshi,
2008; Kwok-Yan, Xi-Bin, Siu-Leung, Gu, & Jia-
Guang, 2004; Sajjad et al., 2005).

In this paper, we will apply the activity of
security requirements analysis for obtaining a set
of security requirements on a mobile grid environ-
ment for a case study of media domain where the
mobile devices participate as actives resources.
Using misuse cases and security use cases we
obtain a vision about the threats and risks of the

182

Identifying Secure Mobile Grid Use Cases

system and about the security requirements and
mechanisms that we must use to protect to our
mobile grid system.

The rest of paper is organized as follows: First,
we present the related work with this topic. Next,
we will describe some of the security require-
ments most important on grid environments and
will identify the common attacks that can appear
on a mobile grid system. Later, we give a brief
overview of our development process for mobile
grid systems, we will describe the analysis activity
and we will study one of the tasks of this activity,
the “Identifying secure Mobile Grid Use Cases”
task. After, we will present a case study and we
will apply the task of identifying security require-
ments for obtaining a set of security requirements
for our real application. Finally, we will finish by
putting forward our conclusions as well as some
research lines for our future work.

BACKGROUND

There are numerous approaches related to secure
development processes but here we present some
of those that we believe to be most interesting
and that consider security as an important fac-
tor for success and application in Mobile Grid
environments. Rational Unified Process (RUP)
(Kruchten, 2000) describes how to effectively de-
ploy commercially proven approaches to software
development for software development teams,
although it does not specifically address security.
One extension of the Unified Process is defined
in (Steel, Nagappan, & Lai, 2005) in which the
authors present a methodology for the integra-
tion of security into software systems which it
is called the Secure Unified Process (SUP). SUP
establishes the pre-requirements to incorporate the
fundamental principles of security. It also defines
an optimized design process of security within the
life cycle of software development. The problem
is that it is a very general approach that has to
be adapted for each specific application that we

wish to develop. The specific aspects of Mobile
Grid systems necessitate the definition of new
activities, artefacts, roles, techniques and security
disciplines which are not considered in Secure UP.
Another recent approach proposes the integration
of security and systems engineering by using ele-
ments of UML within the Tropos methodology
(Castro, Kolp, & Mylopoulos, 2001; Mouratidis
& Giorgini, 2006). Secure Tropos (Mouratidis,
2004) is an extension of the Tropos methodology
(Bresciani, Giorgini, Giunchiglia, Mylopoulos, &
Perin, 2004) and has been proposed to deal with
the modelling and reasoning of security require-
ments and their transformation to design that
satisfies them. There are many security aspects
that cannot be captured as a result of the dynamic
behaviour and mobile considerations of Mobile
Grid systems.

Several approaches for the integration of the
security in the development process for specific
domains appear in the relevant literature. For
example, in (Fernández-Medina & Piattini,
2005), the authors propose a methodology with
which to build multilevel databases, taking into
consideration aspects of security (with regard to
confidentiality) from the earliest stages to the end
of the development process. SEDAWA (Trujillo,
Soler, Fernández-Medina, & Piattini, 2009) is
another approach that proposes a comprehensive
methodology with which to develop secure Data
Warehouses based on the MDA framework. Ap-
proaches which integrate security in the develop-
ment process for generic applications and systems
also exist, such as for example, (Georg et al.,
2009) which proposes a methodology based on
aspect-oriented modelling (AOM) with which to
incorporate security mechanisms into an applica-
tion, and (Fernández-Medina, Jurjens, Trujillo,
& Jajodia, 2009), whose authors explore current
research challenges, ideas and approaches for
employing Model-Driven Development to inte-
grate security into software systems development
through an engineering-based approach, avoiding
the traditional ad hoc security integration. None

183

Identifying Secure Mobile Grid Use Cases

of these approaches are defined and designed
for Grid computing and none of them support
mobile nodes.

A further approach (Jurjens, 2001, 2002)
concentrates on providing a formal semantics for
UML to integrate security considerations into the
software design process. The approach presents
UMLsec (Jan Jürjens, 2005) which is an extremely
interesting approach which incorporates security
properties into the UML model. UMLsec has
been applied in security-critical systems and in
the industrial context of a mobile communica-
tion system (J. Jürjens, Schreck, & Bartmann,
2008; Popp, Jürjens, Wimmel, & Breu, 2003),
and the security aspects of this kind of systems
has been analyzed, but it has not been applied in
Grid environments with specific security aspects.
UMLsec is a perfect candidate to model the mobile
security aspects within the diagrams of deploy-
ment, activity, classes, collaboration, etc., which
complement to the use cases and describe the
complete behavior of detailed way. Our approach
models mobile Grid security aspects in use cases
diagrams, so that our approach and UMLsec can
work together to capture, between other things, the
mobile security requirements in the different UML
diagrams used in the analysis. A model driven
architecture approach towards security engineer-
ing, called Model Driven Security, is introduced
in reference (Basin, Doser, & Lodderstedt, 2003).
This approach, called SecureUML (Basin &
Doser, 2002), integrates role-based access control
policies into a UML-based model-driven soft-
ware development process, but is not focused on
Grid systems. The Comprehensive, Lightweight
Application Security Process (CLASP) is a life-
cycle process that suggests a number of different
activities throughout the development life cycle in
an attempt to improve security (Graham, 2006).
Finally, AEGIS (Flechais, Sasse, & Hailes, 2003)
is the only approach found in which the authors
attempt to apply the methodology to Grid systems,
although they do not explain how to do this, and do
not define guidelines and practices with which to

capture specific security aspects in Grid systems.
This approach should be adapted to the necessities
and features of Grid systems.

We conclude that the existing proposals are
not specific enough to provide a complete solu-
tion of security under a systematic development
process for Mobile Grid environments. This is due
to the fact that none of the approaches defines a
systematic development process for this specific
kind of systems that incorporates security from
the earliest stages of the development. The ap-
proaches which provide security to the software
development processes for Mobile Grid systems
are scant or nonexistent, because the secure de-
velopment approaches are not focused on Grid
systems and they do not take into account mobile
devices. Thus, reflected the need to advance in the
study of new contributions to the secure system-
atic development of Grid systems incorporating
mobile devices.

SECURITY REQUIREMENTS
AND ATTACKS ON A
MOBILE GRID SYSTEM

Defining Security Requirements

The special security requirements of Grid applica-
tions derive mainly from the dynamic nature of
Grid applications and the notion of virtual orga-
nization (VO), which requires the establishment
of trust across organizational boundaries. In this
kind of environment, security relationships can be
dynamically established among hundreds of pro-
cesses spanning several administrative domains,
each one with its own security policies. As a result,
the Grid security requirements are complex and
pose significant new challenges.

The most common general security require-
ments and challenges associated with Grids and
Mobile systems (Bellavista & Corradi, 2006;
Foster & Kesselman, 2004; Nagaratnam et al.,

184

Identifying Secure Mobile Grid Use Cases

2003; Open Grid Forum, 2006; Vivas, López, &
Montenegro, 2007) are presented below:

• Authentication. Authentication mecha-
nisms and policies are supposed to con-
stitute the basis on which local security
policies can be integrated within a VO.
Difficult issues with respect to authentica-
tion in Grids are scalability, trust across
different certification authorities, revoca-
tion, key management, and delegation.

• Confidentiality. The nature of Grids forc-
es data to be stored in accessible online
databases. Confidential code may be re-
quested to execute on a remote host, and
confidential data may need to be used at
remote locations. Data may also need to be
replicated at multiple sites, and thus should
be stored in an encrypted form and remain
consistent throughout.

• Integrity. Many applications have strong
code or data integrity concerns. The trust
status of remote resources is important
when data arises from remote processing
as the accuracy of results can be trusted
only to the extent that the remote host gen-
erating the data is trusted.

• Authorization and access control.
Authorization refers to the ability to con-
trol the level of access that individuals or
entities have to a wireless network or re-
source and how much information they can
receive. In Grids local access mechanisms
should be applied whenever possible, and
the owner of a resource should be able to
enforce local user authorization.

• Revocation. Revocation is crucial for au-
thentication in case of a compromised key
and for authorization when a VO is ter-
minated or a user or mobile user proves
untrustworthy.

• Distributed trust. Trust is a complex theo-
retical issue. A Grid must be constructed
in a dynamic fashion from components

whose trust status is hard to determine.
Determining trust relations between partic-
ipant entities in the presence of delegation
is important, and delegation mechanisms
must rely upon stringent trust requirements.

• Freshness. Freshness is related to authen-
tication and authorization and is important
in many Grid applications. Validity of a
user’s proof of authentication and authori-
zation is an issue when user rights are del-
egated and the duration of a job may span
several weeks.

• Scalability. A Grid must be easy to extend
and capable of progressive replacement in
mobile environments. Fault recovery and
dynamic optimization should be usually
possible, and degradation should happen
gracefully.

• Trust. Trust refers to the assured reliance
on someone or something. Since VOs can
span multiple security domains, trust re-
lationships between domains are of para-
mount importance. Sites in a Grid must be
able to enter into trust relationships with
Grid users, mobile users and maybe other
Grid sites as well. In a Grid environment
trust is usually established through ex-
change of credentials, either on a session
or a request basis.

• Single sign-on. A user should be able to
authenticate only once, whereupon he may
acquire, use and release resources without
further authentication in different domains
of the Grid. Users may want to initiate
computations running for long periods of
time without needing to remain logged on
all the time.

• Delegation. Privilege delegation for op-
erations executed by a proxy is a basic re-
quirement for Grid environments, among
other reasons in order to satisfy the single
sign-on requirement. Delegation of user
rights depends upon the security require-
ments of the application.

185

Identifying Secure Mobile Grid Use Cases

• Privacy. Privacy is the ability to keep infor-
mation from being disclosed to determined
actors. Privacy can be important in many
Grid applications, for instance in medi-
cal and health Grids (Herveg, Crazzolara,
Middleton, Marvin, & Poullet, 2004). It
is also very important in mobile devices
with limited memory and whose access is
through wireless networks.

• Non-repudiation. Non-repudiation refers
to the inability to falsely deny the perfor-
mance of some action. It is especially im-
portant in e-commerce involving money
transactions and mobile environments.
With the advent of Enterprise Grid this re-
quirement becomes very important.

• Credentials. Interdomain access requires a
uniform way of expressing the identities of
users or resources, and must thus employ
a standard for the encoding of credentials.
In many scenarios, a job initiated by a user
may take longer than the life span of the
user’s initially delegated credential. In
those cases, the user needs the ability to be
notified prior to expiration of the creden-
tials, or the ability to refresh those creden-
tials such that the job can be completed.

• Exportability. Code is required to be ex-
portable and executable in multinational
testbeds. As a result, bulk encryption can-
not be required.

• Secure group communication.
Authenticated communications for dynam-
ic groups is required since the composition
of a process group may change dynami-
cally during execution.

• Multiple implementations. It should be
possible to enforce security requirements
with distinct security technologies and
mechanisms.

• Interoperability. In the context of mobile
Grids, interoperability means that services
within a single VO must be able to com-
municate across heterogeneous domains.

Interoperability guarantees that services
located in different administrative domains
are able to interact at multiple levels.

• Interoperability with local security solu-
tions. Access to local resources is normally
enforced by local security policies and
mechanisms. Interoperability between sites
and domains with different local policies is
necessary in a mobile Grid environment. In
order to accommodate interdomain access,
one or several entities in a domain may
act as agents of external entities for local
resources.

• Integration. In order to allow the use of
existing services and resources, integration
requirements call for the establishment of
an extensible architecture with standard in-
terfaces. Security integration is facilitated
by the use of existing security mechanisms.
Uniform credentials and certification in-
frastructure. A common way of expressing
identity, e.g. by a standard such as X.509,
is necessary for interdomain access.

• Policy exchange. Allow service requestors
and providers to exchange dynamically se-
curity (among other) policy information to
establish a negotiated security context be-
tween them.

• Secure logging. Provide all services, in-
cluding security services themselves, with
facilities for time-stamping and securely
logging any kind of operational informa-
tion or event in the course of time - secure-
ly meaning here reliably and accurately,
i.e. so that such collection is neither inter-
ruptible nor alterable by adverse agents.

• Assurance. Provide means to qualify the
security assurance level that can be expect-
ed of a hosting environment.

• Manageability. Explicitly recognize the
need for manageability of security func-
tionality within the OGSA security model.
For example, identity management, policy

186

Identifying Secure Mobile Grid Use Cases

management, key management, and so
forth.

• Firewall traversal. A major barrier to
dynamic, cross-domain Grid comput-
ing today is the existence of firewalls. As
noted above, firewalls provide limited
value within a dynamic Grid environment.
However, it is also the case that firewalls
are unlikely to disappear anytime soon.

• Anonymity. Anonymity is the state of being
not identifiable within a set of principles
(Pitzmann & Köhntopp, 2001). Preserving
anonymity is of greater concern in mobile
systems for several reasons. Mobile sys-
tems yield more easily to eavesdropping
and tapping, compared to fixed networks,
making it easier to tap into communication
channels and obtain user information.

• Mobility. Because mobile devices come
with many capabilities, mobile applica-
tions must run on a wide variety of de-
vices, including the devices embedded in
various environments and devices carried
by users. Applications must also support
varying levels of network connectivity.

• Self-organization. The wireless networks
topology must be adapted in case of node
or system compromise and failure. If a ma-
licious node discloses the network topol-
ogy, routing establishment paths may be
affected as well.

All these security requirements must be identi-
fied and analyzed in the analysis activity of our
development process from the mobile grid security
use cases defined in this activity and that we will
explain further on.

Defining Attacks on Mobile
Grid Environments

According to (Enterprise Grid Alliance Security
Working Group, 2005), the following include

some of the threats and risks based on the unique
characteristics of an enterprise Grid:

• Access control attacks: defines risks with
unauthorized entities, as well as authorized
entities, bypassing or defeating access con-
trol policy.

• Mobile colluding attackers: adversaries
having different levels of attacking ability
can collaborate through separate channels
to combine their knowledge and to coordi-
nate their attacking activities. This realizes
the strongest power at the adversary side.

• Defeating Grid auditing and accounting
systems: includes threats to the integrity of
auditing and accounting systems unique to
an enterprise Grid environment. This may
include false event injection, overflow,
event modification, and a variety of other
common attacks against auditing systems.

• Denial of Service (DoS): this describes an
attack on service or resource availability.
As an enterprise Grid is often expected to
provide a better availability compared to a
non-Grid environment, the following DoS
threats must be considered as part of a risk
assessment:
 ◦ DoS attack against the Grid compo-

nent join protocol to prevent new au-
thorized Grid components/users from
successfully joining.

 ◦ Authorized Grid component or user is
“forced” to leave the grid.

 ◦ User or service attempts to flood the
Grid with excessive workload which
may cause compute, network and/or
storage components to become ex-
hausted, or the latency to access those
resources significantly impacts other
Grid users.

 ◦ Altering scheduling (or other Quality
of Service) priorities that have been
defined for Grid components to un-

187

Identifying Secure Mobile Grid Use Cases

fairly prioritize one application/ser-
vice over another.

• Malicious code/“malware”: this describes
any code that attempts to gain unauthorized
access to the Grid environment, to subse-
quently elevate its privileges, hide its exis-
tence, disguise itself as a valid component,
or propagate itself in clear violation of the
security policy of the enterprise Grid.

• Masquerading attacks: describes a class of
attacks where a valid Grid component may
be fooled into communicating or working
with another entity masquerading as valid
Grid component. Such an attack could per-
mit the disclosure or modification of in-
formation, the execution of unauthorized
transactions, etc.

• Mobile eavesdropper and traffic analyst:
such an adversary can at least perform
eavesdropping and collect as much infor-
mation as possible from intercepted traf-
fic. It is mobile and equipped with GPS
to know its exact location. The minimum
traffic it can intercept is the routing traffic
from the legitimate side. An eavesdropper
with enough resources is capable of ana-
lyzing intercepted traffic on the scene. This
ability gives the traffic analyst quick turn-
around action time about the event it de-
tects, and imposes serious physical threats
to mobile nodes.

• Mobile node intruder: if adequate physical
protection cannot be guaranteed for every
mobile node, node compromise is inevita-
ble within a long time window. A success-
ful passive node intruder is protocol com-
pliant, thus hard to detect. It participates
in collaborative network operations (e.g.,
ad hoc routing) to boost its attack strength
against mobile anonymity; thus it threat-
ens the entire network including all other
uncompromised nodes. This implies that a
countermeasure must not be vulnerable to
a single point of compromise.

• Object reuse: this describes how sensitive
data may become available to an unau-
thorized user, and used in a context other
than the one for which it was generated.
In the enterprise grid context, this is a
risk if a Grid component is not properly
decommissioned.

• Sniffing/snooping: involves watching
packets as they travel through the network.
An enterprise Grid potentially introduces
additional network traffic between applica-
tions/services, the system and grid compo-
nents that should be protected. Failure to
address this threat may result in other types
of attacks including data manipulation and
replay attacks.

In addition to these, it is also necessary to adopt
the general security mechanisms applicable in any
enterprise scale IT infrastructure, and includes
physical security to protect against threats from
humans (either malicious or accidental) as well
as man-made and natural catastrophes.

OVERVIEW OF OUR PROCESS

A. Process of Development

The process is designed for building software
systems based on Mobile Grid computing with
security aspects. It is a process which builds, from
initial requirements and needs of Mobile Grid
systems, a secure executable software product.
It is not a process for including only security in
a development process but it is a development
process in itself incorporating security aspects
during all the process.

Our systematic process of development
(Rosado, Fernández-Medina, López, & Piattini,
2008) is an iterative and incremental process. An
iterative approach refers to the cyclic nature of
the process in which activities are repeated in a
structured manner and proposes an understanding

188

Identifying Secure Mobile Grid Use Cases

of the problem through successive refinements,
and an incremental growth of an effective solution
through several versions. Thus, in each iteration
of the process, new and necessary characteristics
can be added and extended so that a complete final
design is obtained. Also, it is a reusable process
in the sense of the utilization of artifacts built in
others executions of this process or in previous
iterations which have been validated and tested
and that improve the quality of the new artifacts
built and save developers’ time and effort.

The structure of the process which we propose
follows the classical cycle, in which we find a
planning phase, a development phase including
analysis, design and construction and finally a
maintenance phase. The phases of planning and
maintenance are common phases which any de-
velopment of information systems has to define,
so we move on a generic development process to
carry out the activities and tasks of these phases.
Thus, our work focuses on defining what is really
specific and differentiating in developing systems
based on Grid computing, the development phase.
This phase consists of three activities, analysis,
design and construction, and each of them de-
fines the specific tasks necessary, the artifacts to
be used, and the steps to take to analyze, design
and build specific information systems as Mobile
Grid systems are.

Therefore, the main block of this process con-
sists of a requirements analysis activity driven by
use cases (Rosado, Fernández-Medina, López, &
Piattini, 2010a), a design activity that focuses on
architecture (Rosado, Fernández-Medina, López,
& Piattini, 2011), and construction activity ori-
ented to implementation. All these activities are
supported by a repository where different reus-
able elements which can be used in the different
activities and tasks of the process are stored. These
reusable elements are use cases and security use
cases diagrams oriented to Grid systems to be
reused in the analysis activity to capture the secu-
rity requirements (Rosado, Fernández-Medina, &
López, 2009a, 2009b, 2009c; Rosado, Fernández-

Medina, López, & Piattini, 2010b); a reference
security architecture (Rosado, Fernández-Medina,
& López, 2011b) where we define security ser-
vices for Mobile Grid environments reused in the
design activity which guarantees that the system
is built under a secure environment and meets all
the requirements and security needs of the system;
and implemented interfaces based on Grid tools
and platforms (as Globus) to be reused in the
construction activity (See Figure 1).

In this paper, we study one of the tasks of the
secure mobile grid system analysis activity, the
Identification of secure Mobile Grid Use Cases
task whose steps can be seen in Figure 3. In this
task we identify threats and risks related to mobile
grid environments which attack assets that we
want to protect, and we build the diagrams of
security use cases and misuse cases for mobile
grid environments considering these assets, threats
and attacks.

B. Secure Mobile Grid
System Analysis Activity

The analysis activity is based on use cases in which
we define the behaviour, actions and interactions
with those implied by the system (actors) to obtain
a first approach to the needs and requirements
(functional and non-functional) of the system to be
constructed. This activity is supported by reposi-
tories in which several types of elements appear:
Firstly, the elements that have been developed in
earlier stages; secondly, those that have been built
at the beginning of the process and finally, those
that come from other executions of the process
from which we have obtained elements that can
be reused by other applications. Reuse is appro-
priate here thanks both to the common features
of applications based on Grid computing (CPU
intensive, data intensive, collaborative and so on)
and to the fact that these applications use mobile
devices. Therefore, we must abstract all the com-
mon features (by analyzing the main features of
Grid applications and constructing, for example,

189

Identifying Secure Mobile Grid Use Cases

generic use case diagrams in which all these
common features are represented) and make them
available for the process (through the repository)
in order to be able to use the common elements in
any activity and adapt them to our needs.

The analysis activity is composed of tasks
which build use case diagrams and specifications
to obtain the analysis model in which the require-
ments are defined. This activity produces internal
artifacts which are the output of some tasks and
the input of others. All these internal artifacts are
included in the analysis model to be used in the
following activities if this is necessary. Figure 2
shows a graphical representation of the analysis
activity tasks using SPEM 2.0 diagrams.

In this subsection, we describe the analysis
activity, enumerating and describing briefly what

tasks are parts of this activity. This analysis activ-
ity is composed of six tasks (see Figure 2):

1. Defining Use Cases of the application.
The purpose of this task is to define the
functional use cases of the application
identified from the stakeholder needs and
study the interactions with the user without
considering the specific aspects of Mobile
Grid environments.

2. Identifying secure Mobile Grid Use Cases.
In this task we study the security aspects
of the application within the Mobile Grid
context and identify the possible security use
cases and misuse cases that can be reused
from those defined in the repository, for the
system in development.

Figure 1. Development process for secure Mobile Grid systems with SPEM 2.0

190

Identifying Secure Mobile Grid Use Cases

3. Building secure Mobile Grid Use Cases
diagram. Once the use cases have been
identified and defined, we build the overall
use case diagram (or diagrams) in which we
define the relationships between all the use
cases and actors previously identified, and
we describe the information from all the
diagram’s elements by following a new UML
profile for Mobile Grid use cases (Rosado,
Fernández-Medina, López, & Piattini,
2011a). We can also reuse and integrate
some diagrams with common features of
the repository which have been previously
built for Mobile Grid environments.

4. Supporting with UML models. In this task we
complete the analysis model with different
UML models such as the sequence and col-
laboration diagrams according to use cases
and scenarios, or class diagrams for an initial
structural description of the system from the
use cases diagrams built in previous tasks.

5. Verifying Analysis Model. The purpose of
this task is to verify that the artifacts have
been correctly generated and the possible
conflicts or errors in the analysis model

have to be identified and analyzed for their
subsequent refinements and corrections in
next iterations of this activity.

6. Specifying Requirements. This task consists
of the formal definition of the requirements
identified in previous tasks (functional
requirements and non-functional require-
ments including security) in natural language
(though a template of requirements specifi-
cation will be defined in the future).

Once we have described the tasks of the analy-
sis activity, we will explain the task 2, which is in
charge of analyzing security requirements for the
mobile grid system, and we apply the steps of this
task in a case study. This task have been improved
and updated with regard to the published work in
(Rosado, Fernández-Medina et al., 2009b).

C. Task 2: Definition of secure
Mobile Grid Use Cases

In this task, a study of the system security must
be carried out before identifying the security use
cases and misuse cases of the repository. First,

Figure 2. Tasks and artifacts of the Secure Mobile Grid System Analysis activity

191

Identifying Secure Mobile Grid Use Cases

generic Grid use cases that are common to many
Grid applications are identified of the repository
because will take part in the application analysis.
Secondly, assets that we wish to protect should be
identified; thirdly, the possible threats and attacks
to these assets should be defined and the risk as-
sociated with these threats should be studied. The
security use cases and misuse cases should then
be defined, thus obtaining certain elements of the
reusable repository such as the misuse cases for
the system and the security use cases that miti-
gate them. Finally, a security assessment should
be carried out. Some of the security use cases
and misuse cases identified for the application
are therefore stored in the repository and can be
reused for this specific application since they are
part of the secure Mobile Grid UC output artifact.

During this task, it is possible to discover new
use cases which are suitable for incorporation into
the repository, or we may wish to modify or update
existing use cases in the repository. The repository
is an input and output artifact from which we can
obtain different elements and add or create new
ones. Also, we have to consider possible conflicts
between Grid use cases, security use cases and
misuse cases and solve them in this iteration.

A set of steps will serve as a guide for defining
and specifying security requirements for mobile
grid systems. Figure 3 shows the steps of this task
using SPEM 2.0 diagrams.

• Step 2.1. Identify generic Grid UC: Once
we have defined the use cases of the appli-
cation in the task 1, we have to identify
which are the generic Grid use cases that
are related to the use cases of the applica-
tion. To define the Grid use cases we will
use the GridUCSec-profile defined as a
model of the process (Rosado, Fernández-
Medina, López et al., 2011a; Rosado,
Fernández-Medina et al., 2010b) and using
the repository where a large set of Grid use
cases are defined.

• Step 2.2: Identify Security Assets: The se-
curity assets for a grid with mobile devices
depend on the characteristics and type of
system to be built. The CPU-intensive ap-
plications will consider resources as main
assets while data-intensive applications
will consider data as main assets to protect.

• Step 2.3: Identify Threats, Attacks and
Risks. The threats analysis is the process of
identifying, as many risks that can affect
the assets as possible. A well-done threat
analysis performed by experienced people
would likely identify most known risks,
providing a level of confidence in the sys-
tem that will allow the business to proceed.
In previous section the most important
threats and attacks for these environments
have been defined.

Figure 3. Task 2: Identifying secure Mobile Grid UC

192

Identifying Secure Mobile Grid Use Cases

• Step 2.4: Identify Security Use Cases and
Misuse Cases: Once we have identified
the threats and vulnerabilities for Grid
environments and mobile computation,
we can identify the security use cases and
misuse cases where threats, attacks and
security identified in the previous step are
expressed and represented in these use
cases indicating the assets to protect, the
security objectives to achieve and the secu-
rity requirements that the system must ful-
fill through of our UML profile (Rosado,
Fernández-Medina, López et al., 2011a;
Rosado, Fernández-Medina et al., 2010b).

• Step 2.5: Security Assessment: It is neces-
sary to assess whether the threats are rel-
evant according to the security level speci-
fied by the security objectives. Then, we
have to estimate the security risks based
on the relevant threats, their likelihood
and their potential negative impacts, in
other words, we have to estimate the im-
pact (what may happen) and risk (what will
probably happen) which the assets in the
system are exposed to. We have to interpret
the meaning of impact and risk.

Therefore, the aim of this activity is identify
security use cases and misuse cases correctly
defined where all security requirements of our
system are represented and identified.

We shall now provide a detailed description of
this task that we have considered in our process
using the SPEM 2.0 textual notation. We define the
roles, steps, work products and guidance, which
will be characterized according to the discipline
that they belong to. According to SPEM, the task
2 is described by using the structure shown in
Figure 4. Each task specifies WorkProductUse as
both input and output respectively, the roles that
perform or participate in this RoleUse task, and
the collection of Steps defined for a Task Defini-
tion which represents all the work that should be

carried out to achieve the overall development
goal of the Definition task.

As a result of this task, we will obtain the fol-
lowing artifacts: generic Grid use cases and secure
Mobile Grid use cases. The roles which will take
part in this task are: Client or Expert user, Use
Case Specifier, Security Requirements Engineer,
Security Analyst and Mobile Grid Specialist.

Regarding the techniques and practices for the
realization of this task, we can found: meetings
and interviews with the involved, security use
cases and misuse cases and cost/effort-benefit
and analysis risks.

CASE STUDY

Our development process will be validated with
a business application in the Media domain (see
Figure 5) attempting to solve existing problems
in this domain. The process will help us to build
a Mobile Grid application, which will allow
journalists and photographers (actors of media
domain) to make their work available to a trusted
network of peers the same instant it is produced,
either from desktop or mobile devices.

With the explosion of ultra portable photo/
video capture media (i.e. based on mobile phones,
PDAs or solid state camcorders) everyone can
capture reasonably good quality audiovisual
material while on the move. We want to build a
system that will cater for the reporter who is on
the move with lightweight equipment and wishes
to capture and transmit news content. This user
needs to safely and quickly upload the media to
a secure server to make it easier for others to ac-
cess, and to avoid situations where his device’s
battery dies or another malfunction destroys or
makes his media unavailable.

In the media domain, both the distributions
of content, and the need for rapid access to this
content, are apparent. News is inherently distrib-
uted everywhere and its value falls geometrically
with time. These two reasons make the need for

193

Identifying Secure Mobile Grid Use Cases

Grid technology evident in both scenarios which
represent, however, a plethora of relevant business
cases which share these two common characteris-
tics: the need for fast access to distributed content.

Following the process of analysis defined in
the definition of mobile grid security use cases
activity aforementioned, we will identify and
analyze security requirements involved in this case
study helping of security repository and mobile
grid security uses cases. For all possible use cases
defined for this application, we are only going to
consider three use cases (due to space constraints),

defined in Table 1, which we are going to work
with in the following tasks.

Once we have identified some of functional
use cases of the application, now, we must iden-
tify all the use cases and security use cases for
the Grid system that are related to the functional
use cases of the application. These use cases for
the Grid system include Grid use cases, security
use cases, Grid security use cases, misuse cases
and mobile use cases together with Grid actors
and Misactors, all of them defined with the Gri-
dUCSec-profile.

Figure 4. Detailed description of the Task 2 using SPEM 2.0

194

Identifying Secure Mobile Grid Use Cases

We use the reusable artifacts of the repository
where many of these use cases for Grid systems
and diagrams that can be easily used in this ap-
plication and that help us obtain use cases, actors
and associations that are necessary in this applica-
tion are defined.

To identify the use cases and security use cases
of the Grid system, we have to follow the steps
defined in this task of the SecMobGrid process.
Next we apply each one of these steps for this
application.

Step 2.1: Identify Generic Grid
UC for the application

We must act on the repository of Grid use cases
to identify the generic Grid use cases that are
needed to extract and that are related to the use

cases defined in the previous task. In the repository
we have a set of generic use cases which have a
common behaviour for any Grid systems and have
been identified in other executions of the process
and that can be used in this application. We select
some of these generic Grid use cases that have
relation with the functional use cases identified
previously and which are defined in Table 2.

Step 2.2: Identify Security Assets

On mobile Grid environments we can identify a
set of assets that we must protect for obtaining a
secure grid system, which are the following: User
and system data (stored, transmitted); Identity in-
formation; Credentials (private keys, passwords);
Accounting; CPU-/Storage-/Mobile devices-/
Network-resources; General system.

Figure 5. Mobile Grid Computing system for Media application

195

Identifying Secure Mobile Grid Use Cases

In this first iteration of our case study, we define
the most important assets related to the use cases
aforementioned that we must protect and that
are the reference for the identification of threats,
attacks and security use cases. These assets are:

• Personal information about the journalist
or editors: name, age, address, subscrip-
tions, salaries. All this personal informa-
tion is stored in the system and must be
protected from unauthorized access.

• Media information used: photos, articles,
recordings, videos, intellectual property
rights. This information is of a profession-
al nature and will be exchanged between
Grid users and stored in different localiza-
tions of the Grid system for an easy and
quick acess.

• Exchange information: messages, queries,
transactions. The data transmitted between
Grid elements (users, resources, server,

etc.) which contain sensitive information
that have to be protected from external dis-
closure or alteration.

Step 2.3: Identify Threats,
Attacks and Risks

The set of threats and attacks that can occur in a
Mobile Grid system is similar to that produced
in a distributed system by adding those occurring
in the mobile environment with wireless network
and limited resources.

Examples of threats are unauthorized disclo-
sure of information, attacks to the content of a
message through wireless links, denial-of-service
attacks, network authentication related attacks,
physical node attacks, alteration of information,
and so on. In Table 3 we can see the threats con-
sidered for the assets identified in Mobile Grid
environments.

Table 1. Use cases

Use Case Name Add/edit Mobile user

Goals/Description Provide authentication mechanisms

Scenario example All users must be subscribed in the Grid

Description - A new user fills in or edits an electronic subscription form with his/her profile information
- The Grid administrator adds a new user to the system by approving the form or approves the user profile
change

Use Case Name Search for news

Goals/Description

A journalist can search for news material through the system interface in:
1. public sources
2. his organisation’s historical archive
3. trusted commercial portals according to the subscriptions paid-for.

Scenario example The journalist familiarizes himself with the topic

Description
- A user formulates a search query
- The user selects sources to search from a list
- The user submits the query

Use Case Name Get query results

Goals/Description Receive query results from available repositories

Scenario example The Journalist receives a list with the results of the search query

Description

- The system returns results based on the metadata description of the stored material.
- Results can be sorted according to the journalist’s needs, such as thematic groups.
- Visualization of results is based on the end user device capabilities (low resolution video for mobile
devices)

196

Identifying Secure Mobile Grid Use Cases

In this first iteration, we can identify several
possible types of threats to Information:

• Unauthorized access to Grid system. In
this scenario, the user wants to login the
system, so that we must ensure authorized
access.

• Unauthorized disclosure and alteration of
information. The user can send informa-
tion to the system or receive from the sys-
tem, so that we must protect the informa-
tion both transmitted and stored. Also we
must protect the personal information that
is transported through credentials.

• Masquerade. An attacker masquerades as a
certain user, access the Grid and sends re-
quests and obtains data from the Grid with

the stolen credentials of a legal user. Such
an attack could permit the disclosure or
modification of information, the execution
of unauthorized transactions, etc.

Step 2.4: Identify the Security
Use Cases and Misuse Cases

Once we have defined the most significant threats
and major assets to be protected in this first itera-
tion, we start with the identification, definition and
incorporation of security use cases and misuse
cases for the application.

In the repository, the main security use cases
for Mobile Grid environments, and misuse cases
that capture the behaviour of the main threats
identified in these environments are defined. We

Table 2. Generic Grid Use Cases defined in the repository

Grid UC Name User Register

Goals/Description Register a user in the Grid before the user can send jobs or access to the Grid.

Scenario example A new user fills in a form with information (username, role, domain, resource, credential type, etc.) and
the form is stored in the Grid.

Description - A user gives information to register in the Grid system
- The Grid system processes this information and stores it in the Grid
- The user obtains the Grid system a username and password to log in.

Grid UC Name Request of query

Goals/Description Make a query to the Grid

Scenario example A user wants to obtain information about a topic (pictures, news, videos, etc.) and s/he requests the Grid
with this query and waits for the results.

Description - A query is received in the Grid
- The Grid processes the query and sent it to appropriate target
- The target executes the query and returns results

Grid UC Name Data Retrieve

Goals/Description Retrieve data requested

Scenario example The Grid retrieves data of the resources indicated by the request

Description - A request of retrieval of data has been authorized
- The request is processed and the task is sent to the resource where data is stored
- The resource returns requested data

Grid UC Name Send results

Goals/Description The results obtained are sent to the mobile device which initiated the request.

Scenario example The results of a query are appropriately formatted to be shown on the screen of the mobile device.

Description - The result of a query o request is obtained in the Grid when the task or subtasks have finished.
- The Grid studies the sender to know the resource display, memory, cpu, etc. and to send the results in
the right format

197

Identifying Secure Mobile Grid Use Cases

can identify those security use cases and misuse
cases that fit in with the attacks and threats for
this application identified in the previous step.

In this first iteration, the misuse cases that we
have found in the repository and that fit in with
the threats identified for this application are:
Alteration info, Disclosure info, Unauthorized
access and Masquerade.

In the repository, these misuse cases are de-
fined in a generic way, therefore, we have to adapt
them to this case study with the specific elements
(actors, messages, assets, etc.) of this application.
Table 4 shows the definition of these misuse cases.

With these misuse cases, we can identify se-
curity use cases that mitigate them observing the
information offered by the repository for secu-
rity use cases and the diagrams defined where we
can see the relationships of mitigation between
security use cases and misuse cases. In case that
the required use cases are not in the repository
we can define them and specify relationships as
it is convenient.

We find in the repository the security use
cases (including Grid security use cases and Grid
actors) that are related to the misuse cases identi-

fied. These security use cases are: Authenticate,
Authorize access, Ensure Confidentiality and
Ensure Integrity.

Some security use cases have different in-
stances depending on the use case path defined
(Firesmith, 2003) so that we have to define some of
them relating to the assets and misuse cases identi-
fied in this first iteration. For example, “Ensure
Integrity” security use case has three instances,
one related to message integrity from Grid to user,
other related to message from user to Grid, and
other related to data stored in the Grid. All these
paths are important to be taken into account in the
application, but here we only show one of them
for simplicity making the same analysis for the
rest of paths of these security use cases.

Table 5 shows the instances of the security use
cases selected in this first iteration and which are
defined in the Grid use cases repository. These
security use cases selected are related to misuse
cases identified previously mitigating the threats
and attacks defined in such misuse cases.

Table 3. Assets and threats

Assets Threats

User and system data (stored, transmitted) - Unauthorized access (stored data)
- Eavesdropping (transmitted data)
- Unauthorized publishing
- Manipulation
- Erroneous data

Identity information - Eavesdropping
- Manipulation

Credentials (private keys, passwords) - Theft / Spoofing (masquerade as a certain user, illegal use of software)
- Publishing

Accounting - Manipulation of log entries, CPU/memory usage, number and size of processes
- Acquire information about competitor’s work

CPU-/Storage-/Mobile devices-/Network-
resources

- Misuse (e.g. Spambot)
- Denial of Service

General System - Security holes / exploits
- Malicious / compromised resources
- Backdoors, viruses, worms, Trojan horses

198

Identifying Secure Mobile Grid Use Cases

Table 4. Misuse Cases for the case study

Misuse Case Alteration of information (MC1)

Attack Attack on the content of a message (integrity).

Summary The external attacker type gains access to the message exchanged between the journalist and the Grid system, and
modifies the part of the message that contains the media information with the intention of changing its meaning
by modifying some aspects of the information like authors, dates, or secrecy information.

Preconditions

1) The external attacker has physical access to the message.

2) The external attacker has a clear knowledge of where the secrecy information is located within the message.

Interactions

1 User Interactions The journalist sends a query message for obtaining media information

2 Misuser Interactions The external attacker intercepts it and identifies the part of the message to modify the media information and he/
she forwards it to the media Grid.

3 System Interactions
The Media Grid receives the corrupted message and processes it incorrectly due to its altered semantic content.
That is, it establishes that the journalist wishes as new media information that media information which has been
modified by the attacker

Postconditions

1) The Media Grid will remain in a state of error with regard to the original intentions of the journalist.

2) In the register of the system in which the media Grid was executed, the request received with an altered semantic content will be reflected.

Misuse Case Disclosure of information (MC2)

Attack Attack on the confidentiality of a message from Grid system to user

Summary The external attacker type gains access to the message exchanged between the journalist and the Grid system, and
reads a specific piece of information.

Preconditions

1) The external attacker has physical access to the message.

Interactions

1 User Interactions The journalist sends a query message for obtaining media information

2 System Interactions The Grid system receives the query message and processes it. The Grid system returns the media information
related to the query to the journalist

3 Misuser Interactions The external attacker intercepts it and reads the part of the message that contains the media information and he/
she forwards it to the journalist

4 User Interactions The journalist wishes as new media information that media information which has been intercepted by the attacker.

Postconditions

1) The Grid system will remain in a normal state and the journalist continues without realizing the interception of information by the attacker

Misuse Case Unauthorized access (MC3)

Attack Attack on the access rights and privileges to the Grid system.

Summary The external attacker type gains access to the Grid system.

Preconditions

1) The external attacker has physical access to the system and access messages.

Interactions

1 Misuser Interactions The unauthorized user wants to login the system with the username/password or presenting a certificate.

2 System Interactions The Grid system receives the access request and it allows the access to the Grid.

3 Misuser Interactions The attacker sends queries to the Grid to obtain sensitive information or for storing harmful data for the system.

4 System Interactions The Grid system receives the queries processes them and executes them.
continued on following page

199

Identifying Secure Mobile Grid Use Cases

Table 4. continued

Misuse Case Alteration of information (MC1)

Postconditions

1) The Grid system must not allow the access to unauthorized users

Misuse Case Masquerade (MC4)

Attack Attack on authorized user

Summary The external attacker type pretends to be an authorized user of a system in order to gain access to it or to gain
greater privileges than those it is authorized for.

Preconditions

1) The external attacker has physical access to the system and the messages exchanged between the user and the Grid.

Interactions

1 User Interactions The journalist sends a request to the Grid to execute certain task.

2 Misuser Interactions The attacker intercepts the request and obtains privileges information and authorized information of the user
(credentials, roles, rights, etc.)

3 Misuser Interactions The attacker sends requests to the Grid presenting authorized credentials of certain authorized user.

4 System Interactions The Grid system receives these requests of the authorized attacker and executes the harmful actions.

Postconditions

1) The Grid system must check the identity of the user who sends requests.

2) The Grid system must check the privileges and certificates presented by the user and the authenticity of the certificates.

Table 5. Security use cases for the case study

Security Use Case Ensure Integrity (SUC1)

Use Case Path System Message Integrity

Security Threat A misuser corrupts a message from the system to a user.

Preconditions

1) The misuser has the means to intercept a message from the system to a user.

2) The misuser has the means to modify an intercepted messag

3) The misuser has the means to forward the modified message to the user.

Interactions

1
System Interactions The system sends a message to a user.

System Actions The system ensures that modifications to the message will be obvious
to the user

2 Misuser Interactions The misuser intercepts and modifies the system’s message and for-
wards it to the user.

3
User Interactions The user receives the corrupted message.

System Actions The system will recognize that the message was corrupted.

4 System Interactions The system will notify the user that the message was corrupted

Postconditions None

continued on following page

200

Identifying Secure Mobile Grid Use Cases

Security Use Case Ensure Confidentiality (SUC2)

Use Case Path User Message Integrity

Security Threat A misuser accesses a private message from the user to the system

Preconditions

1) The misuser has the means to intercept a message from the user to the system

2) The system has requested private information from the user.

Interactions

1 Interactions The user sends a private message to the system.

2 System Actions The system makes the private message illegible while in transit.

3 Misuser Interactions The misuser intercepts the user’s private message.

Postconditions The misuser cannot read the user’s private message

Security Use Case Authenticate (SUC3)

Use Case Path Attempted Spoofing using Valid User Identity.

Security Threat The application authenticates a misuser as if the misuser were actu-
ally a valid user.

Preconditions

1) The misuser has a valid means of user identification.

2) The misuser has an invalid means of user authentication.

Interactions

1 System Interactions The system shall request the misuser’s means of identification and
authentication.

2 Misuser Interactions The misuser provides a valid means of user identity but an invalid
means of user authentication

3 System Actions 1) The system shall misidentify the misuser as a valid user.
2) The system shall fail to authenticate the misuser.

4 Misuser Interactions The system shall reject the misuser by cancelling the transaction

Postconditions

1) The system shall not have allowed the misuser to steal the user’s means of authentication.

2) The system shall not have authenticated the misuser.

3) The system shall not have authorized the misuser to perform any transaction that requires authentication.

4) The system shall record the access control failure.

Security Use Case Authorize Access (SUC4)

Use Case Path Attempted Spoofing using Social Engineering

Security Threat The misuser gains access to an unauthorized resource.

Preconditions

1) The misuser has a valid means of user identification enabling the impersonation of a valid user that is authorized to use a protected
resource.

2) The misuser does not have an associated valid means of user authentication.

3) The misuser has basic knowledge of the organization including the ability to contact the contact center.

Interactions

1 Misuser Interactions The misuser contacts the contact center.

Table 5. continued

continued on following page

201

Identifying Secure Mobile Grid Use Cases

Task 2.5: Assessment of Security

Finally, it is necessary to assess whether the threats
are relevant according to the security level speci-
fied by the security objectives. Therefore we must
estimate the security risks based on the relevant
threats, their likelihood and their potential nega-
tive impacts, in other words, we have to estimate
the impact (what may happen) and risk (what
will probably happen) to which the assets in the
system are exposed. We must therefore interpret
the meaning of impact and risk. In Table 6 we
define the impact and risk for the threats identi-
fied previously. We are going to evaluate risk and
impact with five possible values: Very Low, Low,
Medium, High and Very High. The likelihood of
a threat could be: Very Frequent (daily event),
Frequent (monthly event), Normal (once a year),
Rare (once in several years).

As we can see in the previous table, all threats
have to be dealt with because they cause a high
or very high value of risk in the worst case, there-
fore, misuse cases that represent these threats

must be studied and analyzed in this first iteration
and will take part of the Grid use cases diagram
that we will build in the next task. For example,
for alteration and disclosure of information we
can see that if the information is sensitive (per-
sonal data, bank data), these treats represent a
high risk for our system and we must ensure that
attacks (modifying or altering information) do
not attain their objectives. In this case we must
strongly protect the information stored and trans-
mitted between user and system. This assessment
must be present in the next activities and it must
take into account when we design the security
service oriented architecture.

FUTURE RESEARCH DIRECTIONS

The main future lines of research open are de-
tailed below:

• Define the process with a tool that supports
the SPEM notation, such as EPF (Eclipse

Table 5. continued

2 Contact center Interactions A user support agent shall request the misuser’s identity and authen-
tication.

3 Misuser Interactions

1) The misuser provides the valid user identity.
2) The misuser states that he or she has a temporary inability to
authenticate himself or herself.
3) The misuser states that he or she has an urgent need to access a
protected resource requiring authentication and authorization.

4 Contact center Interactions
The user support agent shall request one or more alternate forms of
authentication. The user support agent shall check the appropriate
procedures for the proper action.

Contact center Actions
The user support agent shall request one or more alternate forms of
authentication. The user support agent shall check the appropriate
procedures for the proper action.

5 Misuser Interactions The misuser fails to provide a valid alternate form of authentication.

6 Contact center Interactions The user support agent shall refuse authentication and authorization
to the requested resource.

Alternative Paths The misuser can quit at any point.

Postconditions

1) The system shall not have authenticated the misuser.

2) The system shall not have authorized the misuser to access the protected resource.

3) The system shall record the access control failure.

202

Identifying Secure Mobile Grid Use Cases

Process Framework), and enables its au-
tomated integration with the processes of
other methodologies based on UML as UP,
OPEN, OpenUP, etc.

• Concrete and refine the generic tasks of
the used development processes that have
been incorporated into our process.

• Refine and improve the parameters and
tagged values of the GridUCSec-profile for
capturing the most important aspects and
features of Mobile Grid systems to take
them into account in the design and con-
struction activities of the process.

• Improve the reference security architec-
ture for that the security aspects consid-
ered in the analysis activity through the
GridUCSec-profile can easily be incorpo-
rated as parameters into the interfaces of

the security architecture, into the definition
of policies of the system or into the deci-
sions of implementation.

• Study and incorporate security patterns
into the design activity to facilitate and en-
sure the correct incorporation of architec-
tural elements that define already proven
security solutions and help us construct the
security architecture specific for mobile
Grid systems.

• Define templates for the specification of
security requirements based on IEEE std.
1233, 12207.1, 830 standards, SIREN, etc.
that impose a format and a specific method
for the definition and extraction of infor-
mation for functional and non-functional
requirements, especially those of security,
identified in the analysis activity and that

Table 6. Assessment of impact and risk

Threat Unauthorized access to Grid system

Impact MEDIUM if the authorization privileges are very limited (i.e.
only reading). VERY HIGH if the opposite is the case

Attack Unauthorized access

Probability Normal Normal

Risk HIGH VERY HIGH

Threat Unauthorized alteration of information

Impact LOW if there is no personal information modified HIGH if the opposite is the case

Attack Modification of information

Probability Frequent Frequent

Risk LOW HIGH

Threat Unauthorized disclosure of information

Impact LOW when the disclosed information is not sensitive or important HIGH if the opposite is the case

Attack Interception of information

Probability Frequent Very Frequent

Risk LOW HIGH

Threat Masquerade as a certain user

Impact LOW when the exchanged information with the fooled entity is
not sensitive or important HIGH if the opposite is the case

Attack Masquerade

Probability Frequent Normal

Risk MEDIUM VERY HIGH

203

Identifying Secure Mobile Grid Use Cases

must be completed and managed in the rest
of activities of the process.

• Carry out new case studies for a continu-
ous improvement of the process in other
environments and dominions apart from
the one developed here.

• Extend the applicability of the process and
adapt its tasks and artifacts in order to de-
velop secure systems oriented to Cloud
Computing.

• Extend the GridUCSec-profile to define
not only stereotypes for use cases but also
stereotypes for other kind of UML models
such as the models of interaction, deploy-
ment, collaboration, etc., that can be used
in the different activities of the process.

• Implement all security services and inter-
faces of the reference security architecture
using the most advanced and used pro-
gramming languages such as Java, .Net o
C#.

CONCLUSION

The interest in incorporating mobile devices into
Grid systems has arisen with two main purposes.
The first one is to enrich users of these devices
while the other is that of enriching the Grid’s own
infrastructure. Both benefit from this fact since,
on the one hand, the Grid offers its services to
mobile users to complete their work in a fast and
simple way and, on the other hand, the mobile
devices offer their limited resources, but millions
of them, in any place and at any time, endorsed
by the fast advance in the yield and capacity that
is being carried out in mobile technology.

In many cases, constrained wireless networks
are made up of devices that are physically con-
strained and therefore have little room for memory,
batteries, and auxiliary chips. Security over the
mobile platform is more critical due to the open
nature of wireless networks. In addition, security is

more difficult to implement into a mobile platform
due to the limitations of resources in these devices.

Due to this difficulty when we want to incor-
porate mobile devices into a grid system and due
to the fact that we must take into account security
aspects throughout the life cycle, it is necessary
to provide a systematic process to developers
for building this kind of system considering grid
characteristics, mobile computing and security
aspects throughout the development process. This
process must always be flexible, scalable and dy-
namic, so that it adapts itself to the ever-changing
necessities of mobile Grid systems.

In this paper we have presented a process
for designing and building a secure mobile grid
system based on an iterative, incremental and
reusable process. This process is composed of
several stages and activities and in each one of
them the stakeholders carry out their tasks. An
important activity of the process is the security
requirements analysis which we have proposed
with a set of tasks to obtain security requirements
for mobile grid systems based in security use cases.
Considering a case study for media domain, we
have applied the analysis activity for analyzing
security requirements in this real application using
techniques of uses cases, misuse cases, security
use cases and risk assessment where we obtain
a specification of security requirements of our
system analyzed on several refinements.

Applying this set of tasks we have been able to
incorporate security requirements into our analysis
and into our system. The application of this case
study has allowed us to improve and refine some
activities, tasks and artifacts of the process.

ACKNOWLEDGMENT

This research is part of the following projects:
MARISMA (HITO-2010-28), SISTEMAS
(PII2I09-0150-3135) and SEGMENT (HITO-
09-138) financed by the “Viceconsejería de
Ciencia y Tecnología de la Junta de Comunidades

204

Identifying Secure Mobile Grid Use Cases

de Castilla-La Mancha” (Spain) and FEDER,
and MEDUSAS (IDI-20090557), BUSINESS
(PET2008-0136), PEGASO/MAGO (TIN2009-
13718-C02-01) and ORIGIN (IDI-2010043(1-5)
financed by the “Ministerio de Ciencia e Inno-
vación (CDTI)” (Spain). Special acknowledg-
ment to GREDIA (FP6-IST-034363) funded by
European Commission.

REFERENCES

Basin, D., & Doser, J. (2002). SecureUML: A
UML-based modeling language for model-driven
security. Paper presented at the 5th International
Conference on the Unified Modeling Language.
Lecture Notes in Computer Science 2460.

Basin, D., Doser, J., & Lodderstedt, T. (2003).
Model driven security for process-oriented sys-
tems. Paper presented at the ACM Symposium
on Access Control Models and Technologies,
Como, Italy.

Bellavista, P., & Corradi, A. (2006). The handbook
of mobile middleware. Auerbach Publications.
doi:10.1201/9781420013153

Bhanwar, S., & Bawa, S. (2008). Securing a Grid.
Paper presented at the World Academy of Science,
Engineering and Technology.

Bradford, P. G., Grizzell, B. M., Jay, G. T., &
Jenkins, J. T. (2007). Cap. 4. Pragmatic security
for constrained wireless networks. In Xaio, Y.
(Ed.), Security in distributed, Grid, mobile, and
pervasive computing (p. 440). Tuscaloosa, USA:
The University of Alabama.

Bresciani, P., Giorgini, P., Giunchiglia, F., My-
lopoulos, J., & Perin, A. (2004). TROPOS: An
agent-oriented software development methodol-
ogy. Journal of Autonomous Agents and Multi-
Agent Systems, 8(3), 203–236. doi:10.1023/
B:AGNT.0000018806.20944.ef

Castro, J., Kolp, M., & Mylopoulos, J. (2001). A
requirements-driven development methodology.
Paper presented at the 13th Int. Conf. on Advanced
Information Systems Engineering, CAiSE’01.

Dail, H., Sievert, O., Berman, F., & Casanova, H.
YarKhan, A., Vadhiyar, S., et al. (2004). Schedul-
ing in the Grid application development software
project. In Grid resource management: State of
the art and future trends (pp. 73-98).

Enterprise Grid Alliance Security Working Group.
(2005). Enterprise Grid security requirements,
version 1.0.

Fernández-Medina, E., Jurjens, J., Trujillo, J., &
Jajodia, S. (2009). Special issue: Model-driven
development for secure Information Systems.
Information and Software Technology, 51(5),
809–814. doi:10.1016/j.infsof.2008.05.010

Fernández-Medina, E., & Piattini, M. (2005).
Designing secure databases. Information and Soft-
ware Technology, 47(7), 463–477. doi:10.1016/j.
infsof.2004.09.013

Firesmith, D. G. (2003). Security use cases. Jour-
nal of Object Technology, 53-64.

Flechais, I., Sasse, M. A., & Hailes, S. M. V. (2003).
Bringing security home: A process for developing
secure and usable systems. Paper presented at the
New Security Paradigms Workshop (NSPW’03),
Ascona, Switzerland.

Foster, I., & Kesselman, C. (2004). The Grid2:
Blueprint for a future computing infrastructure
(2nd ed.). San Francisco, CA: Morgan Kaufmann
Publishers.

Foster, I., Kesselman, C., Tsudik, G., & Tuecke, S.
(1998). A security architecture for computational
Grids. Paper presented at the 5th ACM Conference
on Computer and Communications Security, San
Francisco, USA.

205

Identifying Secure Mobile Grid Use Cases

Gartner. (2007). Gartner says worldwide PDA
shipments top 17.7 Million in 2006. Gartner Press
Release. Retrieved from http://www.gartner.com/
it/page.jsp?id=500898

Gartner. (2009). Gartner says worldwide mobile
phone sales declined 8.6 per cent and smartphones
grew 12.7 per cent in first quarter of 2009. Gartner
Press Release. Retrieved from http://www.gartner.
com/it/page.jsp?id=985912

Georg, G., Ray, I., Anastasakis, K., Bordbar,
B., Toahchoodee, M., & Houmb, S. H. (2009).
An aspect-oriented methodology for designing
secure applications. Information and Software
Technology, 51(5), 846–864. doi:10.1016/j.
infsof.2008.05.004

Giorgini, P., Mouratidis, H., & Zannone, N. (2007).
Modelling security and trust with secure tropos.
In Giorgini, H. M. P. (Ed.), Integrating security
and software engineering: Advances and future
visions (pp. 160–189). Hershey, PA: Idea Group
Publishing.

Graham, D. (2006). Introduction to the CLASP
process. Retrieved from https://buildsecurityin.
us-cert.gov/daisy/bsi/articles/best-practices/re-
quirements/548.html

Guan, T., Zaluska, E., & Roure, D. D. (2005). A
Grid service infrastructure for mobile devices.
Paper presented at the First International Confer-
ence on Semantics, Knowledge, and Grid (SKG
2005), Beijing, China.

Herveg, J., Crazzolara, F., Middleton, S. E., Mar-
vin, D. J., & Poullet, Y. (2004). GEMSS: Privacy
and security for a medical Grid. Paper presented at
the HealthGRID 2004, Clermont-Ferrand, France.

Humphrey, M., Thompson, M. R., & Jackson, K.
R. (2005). Security for Grids. Lawrence Berkeley
National Laboratory. (Paper LBNL-54853).

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The unified software development process.
Addison-Wesley Professional.

Jameel, H., Kalim, U., Sajjad, A., Lee, S., & Jeon,
T. (2005). Mobile-to-Grid middleware: Bridging
the gap between mobile and Grid environments.
Paper presented at the European Grid Conference
EGC 2005, Amsterdam, The Netherlands.

Jana, D., Chaudhuri, A., & Bhaumik, N. B. (2009).
Privacy and anonymity protection in computa-
tional Grid services. International Journal of
Computer Science and Applications, 6(1), 98–107.

Jurjens, J. (2001). Towards development of secure
systems using UMLsec. Paper presented at the
Fundamental Approaches to Software Engineer-
ing (FASE/ETAPS).

Jurjens, J. (2002). UMLsec: Extending UML for
secure systems development. Paper presented at
the 5th International Conference on the Unified
Modeling Language (UML), Dresden, Germany.

Jürjens, J. (2005). Secure systems development
with UML. Springer.

Jürjens, J., Schreck, J., & Bartmann, P. (2008).
Model-based security analysis for mobile com-
munications. Paper presented at the International
Conference on Software Engineering, Leipzig,
Germany.

Kolonay, R., & Sobolewski, M. (2004). Grid
interactive service-oriented programming en-
vironment. Paper presented at the Concurrent
Engineering: The Worldwide Engineering Grid,
Tsinghua, China.

Kruchten, P. (2000). The rational unified process:
An introduction (2nd ed.). Addison-Wesley.

206

Identifying Secure Mobile Grid Use Cases

Kumar, A., & Qureshi, S. R. (2008, March 29). In-
tegration of mobile computing with Grid comput-
ing: A middleware architecture. Paper presented
at the 2nd National Conference on Challenges &
Opportunities in Information Technology (COIT-
2008), Mandi Gobindgarh, India.

Kwok-Yan, L., Xi-Bin, Z., Siu-Leung, C., Gu, M.,
& Jia-Guang, S. (2004). Enhancing Grid security
infrastructure to support mobile computing nodes.
Lecture Notes in Computer Science, 2908, 42–54.
doi:10.1007/978-3-540-24591-9_4

Litke, A., Skoutas, D., & Varvarigou, T. (2004).
Mobile Grid computing: Changes and challenges
of resource management in a mobile Grid envi-
ronment. Paper presented at the 5th International
Conference on Practical Aspects of Knowledge
Management (PAKM 2004).

Mouratidis, H. (2004). A security oriented ap-
proach in the development of multiagent systems:
Applied to the management of the health and social
are needs of older people in England. University
of Sheffield.

Mouratidis, H., & Giorgini, P. (2006). Integrating
security and software engineering: Advances and
future vision. Hershey, PA: IGI Global.

Nagaratnam, N., Janson, P., J. Dayka, Nadalin, A.,
Siebenlist, F., Welch, V., et al. (2003). The security
architecture for open Grid services.

Open Grid Forum. (2006). The open Grid services
architecture, version 1.5 o.

Open Group. (2009). TOGAF™ version 9 - the
open group architecture framework. Retrieved
from http://www.opengroup.org/architecture/
togaf9-doc/arch/

Phan, T., Huang, L., Ruiz, N., & Bagrodia, R.
(2005). Integrating mobile wireless devices into
the computational Grid. In Ilyas, M., & Mahgoub,
I. (Eds.), Mobile computing handbook. Auerbach
Publications.

Pitzmann, A., & Köhntopp, M. (2001). Anonymity,
unobservability, and pseudonymity — a proposal
for terminology. Designing Privacy Enhancing
Technologies (pp. 1–9). LNCS.

Popp, G., Jürjens, J., Wimmel, G., & Breu, R.
(2003). Security-critical system development with
extended use cases. Paper presented at the Tenth
Asia-Pacific Software Engineering Conference
(APSEC’03).

Rosado, D. G., Fernández-Medina, E., & López,
J. (2009a). Applying a UML extension to build
use cases diagrams in a secure mobile Grid
application. Paper presented at the 5th Interna-
tional Workshop on Foundations and Practices of
UML, in conjunction with the 28th International
Conference on Conceptual Modelling, ER 2009,
Gramado, Brasil.

Rosado, D. G., Fernández-Medina, E., & López,
J. (2009b). Obtaining security requirements for
a mobile Grid system. International Journal of
Grid and High Performance Computing, 1(3),
1–17. doi:10.4018/jghpc.2009070101

Rosado, D. G., Fernández-Medina, E., & López,
J. (2009c). Reusable security use cases for mo-
bile Grid environments. Paper presented at the
Workshop on Software Engineering for Secure
Systems, in conjunction with the 31st International
Conference on Software Engineering, Vancouver,
Canada.

Rosado, D. G., Fernández-Medina, E., & López,
J. (2011a). Towards an UML extension of reus-
able secure use cases for mobile Grid systems.
IEICE Transactions on Information and Systems,
94-D(2), 243–254.

Rosado, D. G., Fernández-Medina, E., & López,
J. (2011b). Security services architecture for
secure mobile Grid systems. Journal of Systems
Architecture. Special Issue on Security and De-
pendability Assurance of Software Architectures,
57(3), 240–258.

207

Identifying Secure Mobile Grid Use Cases

Rosado, D. G., Fernández-Medina, E., López,
J., & Piattini, M. (2008). PSecGCM: Process for
the development of secure Grid computing based
systems with mobile devices. Paper presented at the
International Conference on Availability, Reliabil-
ity and Security (ARES 2008), Barcelona, Spain.

Rosado, D. G., Fernández-Medina, E., López, J.,
& Piattini, M. (2010a). Analysis of secure mobile
Grid systems: A systematic approach. Informa-
tion and Software Technology, 52, 517–536.
doi:10.1016/j.infsof.2010.01.002

Rosado, D. G., Fernández-Medina, E., López,
J., & Piattini, M. (2010b). Developing a secure
mobile Grid system through a UML extension.
Journal of Universal Computer Science, 16(17),
2333–2352.

Rosado, D. G., Fernández-Medina, E., López, J.,
& Piattini, M. (2011). (in press). Systematic design
of secure mobile Grid systems. Journal of Net-
work and Computer Applications. doi:10.1016/j.
jnca.2011.01.001

Sajjad, A., Jameel, H., Kalim, U., Han, S. M.,
Lee, Y.-K., & Lee, S. (2005). AutoMAGI - an
autonomic middleware for enabling mobile ac-
cess to Grid infrastructure. Paper presented at the
Joint International Conference on Autonomic and
Autonomous Systems and International Confer-
ence on Networking and Services - (icas-icns’05).

Steel, C., Nagappan, R., & Lai, R. (2005). Chapter
8-the alchemy of security design methodology,
patterns, and reality checks. In Core security pat-
terns: Best practices and strategies for J2EE™,
Web services, and identity management (pp. 10-
88). Prentice Hall PTR/Sun Micros.

Talukder, A., & Yavagal, R. (2006). Security is-
sues in mobile computing. In Mobile computing.
McGraw-Hill Professional.

Trujillo, J., Soler, E., Fernández-Medina, E., &
Piattini, M. (2009). An engineering process for
developing secure data warehouses. Information
and Software Technology, 51(6), 1033–1051.
doi:10.1016/j.infsof.2008.12.003

Vivas, J. L., López, J., & Montenegro, J. A.
(2007). Grid security architecture: Requirements,
fundamentals, standards, and models. In Xiao, Y.
(Ed.), Security in distributed, Grid, mobile, and
pervasive computing (p. 440). Tuscaloosa, USA.

Welch, V., Siebenlist, F., Foster, I., Bresnahan, J.,
Czajkowski, K., Gawor, J., et al. (2003). Security
for Grid services. Paper presented at the 12th IEEE
International Symposium on High Performance
Distributed Computing (HPDC-12 ‘03).

208

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

INTRODUCTION

Most current Grid middleware is designed primar-
ily for high-performance and high-throughput
computing and data storage (LHC, n.d.; Foster,
Kesselman, & Tuecke, 2001). Initially, Grid
infrastructure aimed mostly at the Physics com-
munity, but recently many other domains, such

as Biology, Pharmaceutics, and Medical research
have shown increasing interest in using Grids for
their applications. Grid middleware, including
gLite (gLite, n.d.) and the Globus Toolkit (Globus,
n.d.), hides many aspects such as data distribution
and replication from users of the system. As a
result, users are often unaware that jobs and data
are transferred through multiple Grid components
in different administrative domains implicitly.
This makes it hard for users to understand the

Guido J. van ‘t Noordende
University of Amsterdam, The Netherlands

Silvia D. Olabarriaga
Academic Medical Center - Amsterdam, The Netherlands

Matthijs R. Koot
University of Amsterdam, The Netherlands

Cees T.A.M. de Laat
University of Amsterdam, The Netherlands

Trusted Data Management
for Grid-Based Medical

Applications

ABSTRACT

Existing Grid technology has been foremost designed with performance and scalability in mind. When
using Grid infrastructure for medical applications, privacy and security considerations become paramount.
Privacy aspects require a re-thinking of the design and implementation of common Grid middleware
components. This chapter describes a novel security framework for handling privacy sensitive infor-
mation on the Grid, and describes the privacy and security considerations which impacted its design.

DOI: 10.4018/978-1-60960-603-9.ch013

209

Trusted Data Management for Grid-Based Medical Applications

security implications of using Grid middleware,
in particular when using it for applications that
use privacy sensitive information.

Medical applications have very strict require-
ments on data handling and storage due to privacy
concerns and regulations. Therefore, Grid middle-
ware intended for usage in the medical domain
should support policies that define where particular
data may be stored, in what form, and what jobs
from which users may access this data from what
hosts or administrative domains.

This paper presents a new framework for
managing privacy-sensitive data on the Grid, that
allows for explicit data-owner control over data
access and distribution related aspects. It makes a
clear distinction between data storage components,
access control, job authentication aspects, and
auditing mechanisms for data related operations.

This paper is organized as follows: first we
describe a use-case for medical research, based
on our own experience (Olabarriaga, Nederveen,
Snel & Belleman, 2006). Next, we analyze legal
requirements with regard to medical data and
technical aspects that are relevant when using Grid
infrastructure to manage privacy-sensitive data.
Finally, we describe a framework that allows data
owners to express fine-grained data distribution

and access control policies to allow for secure
handling of medical data on the Grid. We conclude
with an overview of some usability aspects.

USAGE SCENARIO

Figure 1 shows a typical Grid infrastructure de-
ployment for medical research. A Grid storage
system in one trusted administrative domain is
used for storing medical research data. Although
data is often replicated across different domains
to enhance availability and reliability, we assume
here that all storage facilities reside in only one
administrative domain trusted by the data owner.
Different incarnations of storage infrastructure ex-
ist, e.g., SDSC SRB and dCache (dCache, n.d.). In
this paper, we refer to the storage infrastructure as
a Storage Resource Broker (SRB) in a general way,
without referring to a particular implementation.

First, Researcher A (data owner) uploads the
data to an SRB he or she trusts, e.g., using gridFTP.
Researcher B can now submit a job on the Grid
through a Compute Resource Broker (CRB) which
can reside in any administrative domain. The CRB
transparently selects a cluster, typically based on
load, where the job is scheduled for execution.

Figure 1. A use-case for medical imaging research showing grid resources in different administrative
domains, with an emphasis on data and job flow

210

Trusted Data Management for Grid-Based Medical Applications

The user controls job submission via some job
description, e.g., using a Job Submission Descrip-
tion Language (JSDL), which describes the bi-
nary to execute on the compute element and input
files. In addition, the job description can specify
a specific cluster, or resource requirements, to be
matched with available Grid resources prior to
scheduling. Running jobs can access files that the
job’s owner is authorized to access. In some
cases, the Grid middleware pre-fetches required
input files using the job’s credentials prior to job
execution.

Figure 1 also shows a File Catalog that pro-
vides a mapping between Grid ‘logical file names’
and the underlying physical files, which may be
replicated on different storage systems on the
Grid. Additionally, an SRB may also maintain
a metadata service (not shown). Since metadata
and file names may contain privacy sensitive
information, both services should be managed
by a trusted domain.

LEGAL REQUIREMENTS

The European Union (EU) has produced legisla-
tion on handling personal information and privacy
(EC, 1995). This section focusses on EU and
selected Dutch regulations. Countries outside the
EU have adopted or are adopting legal measures
to allow exchange of personal data with the EU
countries (e.g., U.S. Safe Harbor Framework).
For more information about other countries see
(Fischer-Huebner, 2001; EC; Herveg, 2006; U.S.
Congress, 1996).

EU regulations can be seen as leading guide-
lines for handling personal data (Fischer-Huebner,
2001). The data protection regulations can be
summarized as follows. First, there must be a ne-
cessity for data collection and processing. Related
to that, for each data collection, there has to be
a clear purpose binding which specifies what is
done with the information. Usage of data beyond
this specified purpose is not allowed. In addition,

a minimality principle exists, which states that
only the minimum information for the required
purpose may be collected. Furthermore, there has
to be transparency of personal data processing
and collection, implying that the data subject is
informed of data collection (opt-in or opt-out)
and that the data subject has a right to access the
information. Finally, the regulations require that
information is accurate, which implies that the
information must be kept up-to-date.

Two Dutch laws (WGBO, 1994; WMO, 1998)
formalize what may be done with data collected
from a patient in the course of treatment. In general,
usage of patient information outside the scope of
the patient’s treatment is not allowed, unless there
is considerable public interest or similar neces-
sity to do so. Medical scientific research is often
considered such an exception (Herveg, 2006).

If a patient explicitly consents with usage of
his data for medical research, that data is purpose-
bound to a specific medical research activity. The
data may not be disclosed beyond this activity. The
physician or medical researcher who determines
the purpose and means of processing is legally
responsible for ensuring an appropriate level of
security to protect data.

The restrictions described above only apply to
personal data. In some situations, the data can be
de-personalized to circumvent these restrictions,
e.g., as done in (Kalra et al., 2005; Montagnat
et al., 2007; Erberich et al., 2007). However,
complete de-identification is hard to get right,
and re-identification is often possible (Sweeney,
2002; Malin, 2002). For this reason, de-identified
information should be considered confidential,
and appropriate distribution and access control
mechanisms are required.

BASIC GRID SECURITY
INFRASTRUCTURE

The Grid Security Infrastructure (GSI) (Foster,
Kesselman, Tsudik and Tuecke, 1998) is the de-

211

Trusted Data Management for Grid-Based Medical Applications

facto standard for user and host authentication
on the Grid. GSI is used by most mature Grid
middleware implementations. Shortcomings of
this infrastructure are described later in this paper;
here we introduce the basic GSI infrastructure.

GSI essentially comprises a Public Key Infra-
structure (PKI) that is used to sign user identity and
host certificates. Users can create limited-lifetime
Proxy certificates which allow them to send cre-
dentials with their jobs for authentication, without
the risk of compromising the user’s private key.
Proxy certificates are used for all transactions by a
job, such as gridFTP transactions. We here assume
that all authorization decisions with regard to data
are based on GSI user authentication by means
of Proxy certificates. Other approaches (such as
role-based or attribute-based authorization, as
proposed in (Alfieri et al., 2004) are possible,
but not required for our framework. Many Grid
infrastructures manage access control to resources
and storage based on virtual organization (VO)
membership information. However, VO-based
authorization is often too course-grained for pro-
tecting medical information: there may be many
users (e.g., researchers) in a VO, which may not
all be equally trusted to access particular data.
Therefore, we assume authorization based on user
identities in this paper.

PROBLEM ANALYSIS

Grids are, by nature, distributed across multiple
administrative domains, only a few of which
may be trusted by a specific data owner. Grid
middleware, and thus jobs, typically run on an
operating system (OS), such as Linux, that al-
lows administrators to access all information on
the system. A job or data owner does not have
control over the hardware or software that runs on
some remote system. Besides OS and middleware
vulnerabilities, these systems might also not be
well protected against physical attacks, such as
stealing hard disks. Such aspects should be part

of a risk assessment when decisions are made on
which sites are trusted to store or access particular
information.

Given legal constraints, trust decisions will and
should be conservative. For example, unencrypted
data, file names, and other sensitive metadata
should only be stored in trusted domains, e.g., in
the hospital. This aspect is even more prevalent
in systems where jobs on remote machines can
access medical data. Current OSs such as Linux
provide little assurance that information stored
on the system cannot be leaked to external parties
(van ‘t Noordende, Balogh, Hofman, Brazier and
Tanenbaum, 2007).

Even if files are removed after the job exits
(e.g., temporarily created files), the contents could
be readable by administrators or possibly attackers
while the job executes. Furthermore, disks may
contain left-over information from a job’s previ-
ous execution, which is readable by an attacker
who gains physical access to a storage device, if
the system is not properly configured (NIST). As
another example, it is possible to encrypt swap
space in a safe way, but this is an option that has to
be explicitly enabled in the OS. For these reasons,
it is important for a data owner to identify critical
aspects of the administration and configuration
of a remote host, before shipping data to (a job
running on) that host.

Another problem is that a data owner cannot
control nor know the trajectory that a job took
before it was scheduled on a host, since this is
implicit and hidden in current Grid middleware.
Therefore, even if the host from which a job ac-
cesses data is trusted by the data owner, there
is a risk that the job was manipulated on some
earlier host.

Current middleware does not provide a way
to securely bind jobs to Proxy certificates: a cer-
tificate or private key bundled with a program
can easily be extracted and coupled to another
program which pretends to be the original program.
In Grids, this issue is exacerbated by the fact that
a job may traverse several middleware processes

212

Trusted Data Management for Grid-Based Medical Applications

(e.g., a CRB) in different domains before it is
scheduled at some host. Each of these hosts or
domains may be malicious, and the administrator
or an attacker that gains access to one of these
hosts may replace the original job with another
program that leaks information to an external
party. Alternative authentication schemes (e.g.,
username/password-based) do not improve this
situation.

For this paper, we assume that the implemen-
tation of a job is trusted when this job’s owner
is trusted. In particular, we assume that medical
researchers are aware of confidentiality aspects
regarding medical data and treat this data as con-
fidential information – and as a result use only
trusted programs to make use of this data. In the
proposed framework, jobs can only access data
from hosts that are trusted by the data owner, and
we assume that a job submitted by a trusted user
will not leak information to unauthorized parties.
A mechanism is presented later in this paper that
allow users to seal jobs in such a way that tamper-
ing with these jobs is not possible.

Note that mechanisms exist that limit the
capabilities of a possibly untrusted program to
export information to arbitrary external parties,
e.g., using the jailing system described in (van ‘t
Noordende, Balogh, Hofman, Brazier, and Tanen-
baum, 2007). Such solutions can be considered
as additional measures to increase security, but
are outside the scope of this paper.

For this paper, we assume that jobs do not ship
potentially privacy-sensitive (output) data back
to the possibly untrusted CRB through which
the they entered the system. Instead, jobs should
be programmed to encrypt output data with the
job owner’s public key before returning to their
CRB, or they should store any potentially sensitive
(output) data only on secure storage, preferably
the system that contained the input data.

Summarizing, a number of implementation
issues should be solved before we can be sure
that privacy-sensitive information cannot be ac-
cessed by unauthorized parties. First, a secure

binding between jobs and Proxy certificates
must be provided. Second, a data owner should
be able to express in a policy which administra-
tive domains he or she trusts to handle privacy
sensitive information in a safe way, based on a
risk assessment. Third, a data owner should be
able to express policies with regard to a remote
system’s configuration details which are relevant
to privacy and security and the way in which data
is handled.

THE TSRB FRAMEWORK

We propose a framework for secure handling of
privacy sensitive information on Grids that al-
lows for controlling data access and distribution
aspects. The components and interactions of the
framework are presented in Figure 2.

The framework is centered around a secure
storage infrastructure called Trusted Storage
Resource Broker (TSRB). There may be many
TSRBs on the Grid, possibly managed by differ-
ent administrative domains in different VOs. The
TSRB is coined ``trusted’’, because (1) it is de-
ployed in an administrative domain trusted by the
data owner, and (2) it is trusted to enforce data-
owner specified access control policies. The TSRB
controls access to data items or collections by
combining User-based Access Control Lists (User
ACLs) and Host-ACLs. Host ACLs contain re-
quired host properties that must be met by a remote
host before the data can be accessed by a job on
this host.

Required host properties are described by
the data owner in a Remote Host Property List
(RHPL). Each host has a Host Property List
(HPL) that contains host configuration details.
The HPL contents are matched with the data’s
RHPL at connection time. The HPL is maintained
by the remote host (Cluster A in Figure 2), and is
signed by the host’s administrator. The TSRB also
maintains for each data collection or item a Host
ACL containing a list of administrative domains

213

Trusted Data Management for Grid-Based Medical Applications

or hosts, who are trusted by the data owner both
for confidentiality (of the administrators) and for
providing correct information in their HPL.

The main actions are illustrated in Figure 2. A
user uploads data to the TSRB, e.g., using gridFTP
(step 1). The data is stored in a storage system
maintained in the TSRB domain. Metadata can
be stored in a separate service managed by the
TSRB, e.g., a File Catalog in case of storing files
(step 2). A job is submitted through a CRB (step
3), about which the data owner has no information.
Eventually, the CRB submits the job to a cluster
(step 4) that must be trusted by the data owner
before the job can access data.

As part of the protocol before data access is
authorized, user (job) and host authentication
takes place, and the data’s RHPL and the remote
host’s HPL are compared (details are given
later). If RHPL and HPL match, a microcontract
is established, which is a statement containing
agreed-upon host properties and signed by both
the TSRB and the remote host. Microcontracts are
established for all authorization decisions, includ-
ing, e.g., resolving file names in a File Catalog
(step 5), and accessing the data item itself (step 6).

Only after the TSRB receives a microcontract,
are the data shipped to the job or middleware act-

ing on the job’s behalf. In step 7 a job returns to
its CRB where it can be collected by its owner.
Subject to agreement in the microcontract, Cluster
A ensures that no data from the job’s execution
remains on the host.

Auditing is important to allow data owners to
track which jobs applied which operations on their
data, on behalf of which users, and from which
hosts. All established microcontracts are shipped
to an auditor process (see Figure 2), which can
be used by data owners to trace the transactions.
Auditing can help establish trust (e.g., using
reputation-based mechanisms), and enables track-
ing of potential sources of information leakage.

CONCEPTS AND INTERACTIONS

Job Authentication

A solution to provide a secure binding between jobs
and Proxy certificates is to combine job integrity
verification with a trust-based mechanism. Only
if a data owner trusts a remote system to verify
the integrity of incoming jobs properly, can he or
she assume the the job-Proxy certificate binding
to be valid, and can Proxy certificate-based au-

Figure 2. The TSRB framework: files, file names and metadata are managed by a Trusted SRB. Dotted
lines depict microcontract establishment and auditing, solid lines depict data flow and job transfers

214

Trusted Data Management for Grid-Based Medical Applications

thentication be trusted. Job integrity verification
can be implemented securely if all initial content
of the job is signed by its owner, thus creating an
unforgeable binding between all components of
a job, including its proxy certificate.

A secure job container could be created before
submitting the job, which is signed using the job
owner’s private key - see a similar idea in (van
‘t Noordende, Brazier & Tanenbaum, 2004). A
job container has a well-defined structure, which
makes it straightforward for the middleware to
find the components of the job that are relevant
for integrity verification. Alternative implementa-
tions are conceivable, e.g., using signed Virtual
Machine images (Travostino et al., 2006).

Host Property Lists

For risk assessment and policy enforcement, hosts
should announce security relevant properties of
their operating system, its configuration, and the
used middleware, including properties regarding
job integrity verification, in their Host Property
List (HPL). The host administrator has the respon-
sibility to fill in the HPL correctly. As a concrete
example, the HPL could report on whether the
operating system was configured to use encrypted
swap space, on whether the middleware is capable
of job integrity verification, and provides jobs
with a private file system that is removed after
the job exits.

HPLs allow for run-time assessment on wheth-
er a host adheres to the requirements for secure
data handling as imposed by a data owner. This
assessment takes place at the time that a connec-
tion is made to the TSRB. Because HPL matching
takes place at connection time, no external trusted
repository of HPLs is required for security.

Microcontracts

Microcontracts state the obligations that the site
holds with regard to a transaction. Our framework
requires that all Grid middleware components that

are concerned with data transfer aspects (e.g.,
gridFTP) are extended with functionality to report
a signed HPL to their peer processes at connection
time. Based on whether peers trust each other to
provide correct information, and on the informa-
tion in their HPLs, both parties decide whether to
proceed with the transaction (e.g., data transfer),
which takes place over a mutually authenticated
secure channel. Agreement should be reached on
the properties in the data item’s RHPL before any
data is shipped.

For non-repudiation, both parties must co-sign
a microcontract once agreement is reached. Non-
repudiation means that none of the parties can
deny that they agreed on the contract’s content.
To allow for auditing the exact operations on a
particular data item, the microcontract has to be
bound to each individual transaction, by including
e.g., a hash over the data and the operation in the
microcontract.

Trusted Storage Resource Broker

The TSRB is the key component for managing all
privacy sensitive data in our framework. The TSRB
is the central reference monitor and access point
for data stored through this TSRB. In particular,
the TSRB enforces the access control policies
outlined in this paper. For clarity of exposition, we
assume that the TSRB is a non-distributed service
running in a single domain. The TSRB (and by
implication, domain) is determined as trusted by
a data owner prior to storing data on it.

Although we refer to the TSRB as a resource
broker here, the TSRB is effectively an abstrac-
tion for a secure storage system. In case where the
TSRB uses distributed facilities (e.g., untrusted
storage elements managed by different domains),
the TSRB can implement broker functionality.
In this case, the TSRB should make sure that it
stores only encrypted data on untrusted storage,
using cryptographic filenames. Example storage
systems that are implemented as a broker for

215

Trusted Data Management for Grid-Based Medical Applications

encrypted data are described in (Montagnat et al.,
2007; Xu, 2005).

Naming and Metadata Services

The TSRB can offer metadata services for man-
aging and querying metadata about the stored
data. Metadata is useful to search for data items
of interest in large data collections. File names
can be seen as metadata specific to file systems.

Naming or metadata services must be inte-
grated into the TSRB, since access to file names
and other sensitive metadata should be carefully
protected. For example, careless encoding of file
names could enable attackers to identify patient
or hospital information from a file name and re-
identify a patient. Naming or metadata services
may be private to a VO, or part of some hierarchical
naming service. In either case, file name lookup
requests are subject to data-owner specified access
control policies as outlined in this paper.

Access Control Lists

Access control in our system is enforced on the
basis of ACLs. ACLs can be associated with indi-
vidual data items or with a grouping (set) of data
items. In case of files, grouping may be facilitated
by e.g., associating ACLs with directory names.
Unauthorized users should not even be able to
find out if a given data item exists.

The User ACL contains a list of principals (job
owners) that are allowed to access a (set of) data
item(s), together with these principals’ access
rights on that data. The Host ACL specifies from
what hosts or domains authorized jobs may ac-
cess particular data, and with what access rights.
Access rights from the User and Host ACLs are
combined such that only the minimum set of
rights for this data is granted to a job of a given
user running on a given host.

The trusted domains or hosts in the Host ACL
are determined by the data owner, e.g., based on
whether he or she trusts the administrator of a

particular administrative domain. Host ACLs
are expressed as GSI host/domain name patterns,
which match with the common name field of the
x509 GSI host certificate, e.g., *.sara.nl, or host1.
amc.nl. Specific patterns override wildcarded
patterns. Also associated with data items or sets
of data is a Remote Host Property List (RHPL).
Before evaluating a remote host’s HPL, it is
checked that this host is in the Host ACL; only
then is the HPL information considered trusted.

We chose to separately store an RHPL with each
(set of) data items, in addition to the basic User
and Host ACLs, because of the dynamic nature
of Grid systems. Different domains may contain
many machines or clusters, each of which with
different configuration and job or data handling
properties, which may even change over time.
Connection-time RHPL / HPL matching allows
the system to evaluate these properties at runtime,
without relying on a (trusted) central repository
of these properties.

Job Submission Procedure

At job submission time, a host must be selected
from which the job’s input data is accessible.
Since CRBs are generally not trusted1, client-side
software should be used which contacts the TSRB
before job submission. A file naming convention
combined with a naming service (e.g., DNS) al-
lows the client job submission program to locate
the TSRB where the data is stored.

Client-side software can authenticate directly
to the TSRB using the job owner’s identity key. If
authorized, it can fetch the relevant access control
and HPL information, using which a job descrip-
tion is created. To allow for selection of suitable
hosts by the CRB, HPLs could be published in a
(global) information system. Note that because
of run-time (R)HPL evaluation, the information
system does not need to be completely consistent
or trusted. This is important for scalability, as
keeping a possibly global information system
fully up-to-date may be infeasible.

216

Trusted Data Management for Grid-Based Medical Applications

Auditing

Auditing is important to allow for tracing all opera-
tions on a particular data item. For convenience
and scalability, we use a trusted auditor process
per TSRB, managed by the TSRB. Copies of the
co-signed microcontracts of all transactions are
sent to and strored by the auditor. This allows the
data owners to trace all transactions that involve
a particular data item in a way that ensures non-
repudiability.

PUTTING IT ALL TOGETHER

Authorization of a data access requires that the
connecting job’s owner is on the User ACL, that
the host on which the connecting job runs is on
the Host ACL, and that the properties in the RHPL
match the properties in the connecting host’s
HPL. Authorization of a data request consists of
the following steps, assuming GSI host/Proxy
certificate based authentication.

•At connection time, the connecting process
(either a job or middleware, in case of data pre-
fetching) authenticates with the TSRB using the
job’s Proxy certificate, resulting in an authenti-
cated and encrypted SSL/TLS channel.

•The information from the Proxy certificate is
matched against the User ACL to see if access is
allowed. If not, an error is returned that does not
indicate whether the data exists or not.

•The TSRB and the connecting process engage
in a protocol for matching RHPL and HPL proper-
ties. If the connecting process is the middleware
(e.g., during data pre-fetch), it can directly sign
the microcontract. If the connecting process is a
job, it has to request its local middleware (using
a runtime interface) to match the RHPL of the
TSRB with the host’s HPL, and to have it sign
a microcontract on its behalf if these properties
match. The microcontract includes the (hash over
the public key of the) Proxy certificate of the job
to which it was issued.

•The signature over the microcontract (shipped
together with the GSI host certificate that was used
for signing) is compared with the Host ACL, to
see if the HPL information is trusted and if access
is allowed from this host.

The above mechanisms suffice to establish the
required combination of Host ACL and User ACL
based authorization, together with obtaining a mi-
crocontract signed by the connecting host before
the data is shipped. If all provided information
matches the data owner’s requirements, the data is
shipped to the requesting job or middleware, and
the microcontract is logged in the auditor process.

USABILITY

Determining an appropriate Host ACL and HPL
specification may be difficult for non-technical
data owners. However, system administrators who
support users may define template (R)HPLs with
basic properties that hosts must adhere to when
running jobs that access sensitive information.
Such templates may be provided with the client-
side software used for data uploading, and may
be adapted by data owners and/or local system
administrators at the time of use. Similarly, lo-
cal (VO) administrators may help by composing
default lists of trusted domains for particular data
types or groups of users. Such measures allow
secure usage of the system by researchers without
burdening them with too many details. Dynamic
adaptation of RHPLs for long-term storage of
data is an open issue that needs to be addressed.

CURRENT STATUS AND
FUTURE WORK

We have implemented a proof-of-concept imple-
mentation of the TSRB framework based on a
gridFTP server from the Globus toolkit. We ex-
tended the gsi-FTP server with an authenticated
key-exchange protocol to authenticate the client

217

Trusted Data Management for Grid-Based Medical Applications

and establish a secure connection for data transfer;
FTP commands were modified to include TSRB
concepts such as HPL exchange and microcon-
tracts. The resulting system’s performance is as
well as can be expected from a protocol that uses
encryption to protect data transferred from server
to client. Performance results are described in a
separate report (Coca, 2011).

One of the more difficult issues to address when
using our system, is how to decide whether a given
system setup is secure. We have experimented
with HPLs to describe various Linux systems. To
determine a system’s security, we used informa-
tion obtained from the Common Vulnerability and
Exposures (CVE) vulnerability database (http://
cve.mitre.org), to locate potentially vulnerable
packages on the system. A vulnerability score
(Scarfone and Mell, 2009) is associated with each
entry in the CVE database, which indicates the
potential impact of a vulnerability on security of
the system. However, Grid systems generally have
different characteristics than desktop systems, for
which the scoring method was devised.

Grid clusters are typically batch systems, and
worker nodes within a cluster are usually not
directly exposed to the Internet. Rather, the most
important threats may originate from within the
cluster, for example from malicious jobs that
run concurrently with a job in the same cluster,
or from jobs that compromised a machine some
time earlier. We are currently studying whether the
CVE-based vulnerability scoring can be adapted to
Grid-specific characteristics.We are also studying
ways to facilitate dynamic evalutation of HPL-
based policies, such that users or administrators
do not have to be overly burdened by (manually)
updating policies or analyzing vulnerability re-
ports to assess a system’s security.

RELATED WORK

Montagnat et al. (2007) describe a Medical Data
Manager (MDM) for DICOM images and associ-

ated metadata in a secure way. MDM is deployed
inside hospitals, and provides read-only access
to automatically de-identified DICOM images
to grid jobs outside the hospital’s domain. Data
is encrypted before it becomes accessible to Grid
jobs, so jobs must first acquire a key from a key
store before they can access the data. However,
MDM does not constrain from which hosts jobs
may access the data or keys. MDM’s reliance on
automatic de-identification of DICOM headers
may prove a vulnerability, e.g., in case of images
which contain facial features of a patient as part
of the binary data.

Globus MEDICUS (Erberich, Silverstein,
Chervenak, Schuler, Nelson, & Kesselman, 2007)
is an approach for sharing medical information
(metadata and files) through Grid infrastructure.
Encryption can be used to store information se-
curely on untrusted storage elements in the Grid.
One of the weak points of the system is that it
does not clearly describe where the different
components reside physically, i.e., what the trust
model is. For example, metadata is stored in a meta
catalog service which may be operated outside the
hospital domain. In addition, the system depends
on GSI for authentication, which makes the lack
of a clear trust model even more worrisome.

Blancquer et al. (2009) describe an approach
for managing encrypted medical data, building
upon Hydra (Xu, 2005) and the ideas presented in
Montagnat et al. (2007). The contribution of this
approach is that key management and authoriza-
tion are integrated with common Grid management
concepts such as Virtual Organizations. However,
like MDM and Hydra, the approach chosen by
Blancquer et al. does not deal with the problem
that the machine where the data is decrypted (by
the job) may be compromised.

None of the related work considers trust in the
hosts or clusters from which data are accessed,
nor with the properties of the software running
on these hosts.

218

Trusted Data Management for Grid-Based Medical Applications

DISCUSSION

We presented a trust-based security framework for
Grid middleware that allows for enforcement of
access control and data export policies for privacy-
sensitive data. The framework proposes a Trusted
SRB to manage data and enforce fine-grained
access control policies on behalf of data owners.
Access control policies combine user-based ac-
cess control and trusted hosts lists with a runtime
evaluation of properties of remote hosts from
which jobs request data access. Microcontracts
allow for establishing data handling agreements,
and an auditing mechanism based on microcon-
tracts allows for tracing all operations on the data.

The focus of this paper is on usage scenarios
where Grid-based storage and data sharing is
required. Our framework emphasizes data-owner
specified user and host (property) based access
control policies, to ensure that privacy sensitive
information is only made accessible to authorized
jobs running on hosts trusted by the data owner.
This way, we can ensure that the data owner’s
requirements for secure data handling are met.
More generally, we believe that the basic concepts
presented in this paper, such as remote host prop-
erty list evaluation, microcontracts, and auditing,
can be of value for any distributed system or Grid
middleware component in which precise control
is required over where data or code may be dis-
tributed, and under what constraints.

ACKNOWLEDGMENT

We thank Oscar Koeroo, Dennis van Dok, and
David Groep (NIKHEF) for valuable insight in the
gLite-based VL-e infrastructure. Keith Cover (VU
Medical Center) provided valuable information
on privacy aspects of his job farming application.
Berry Hoekstra and Niels Monen worked on a
student project on HPLs and vulnerability scor-
ing. Razvan Coca (UvA) is thanked for recent
contributions to implementing the framework

described in this paper. This work has been carried
out as part of the Dutch research project Virtual
Laboratory for e-Science (VL-e).

REFERENCES

Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello,
L., Frohner, A., Gianoli, A., et al. Spataro, F. (2004).
Voms, an authorization system for virtual organiza-
tions. European Across Grids Conference, LNCS
2970, (pp. 33-40). Springer, 2004.

Blancquer, I., Hernández, V., Segrelles, D., & Tor-
res, E. (2009). Enhancing privacy and authorization
control scalability in the Grid through ontologies.
IEEE Transactions on Information Technol-
ogy in Biomedicine, 13(1), 16–24. doi:10.1109/
TITB.2008.2003369

Coca, R. (2011). Security enhancements of
GridFTP:Description and Measurements. Tech-
nical Report UVA-SNE-2011-01, University of
Amsterdam.

Dcache. (n.d.). Dcache storage system. Retrieved
from http://www.dcache.org/

E.C. (1995). Directive 95/46/EC. European com-
mission data protection regulations overview page.
Retrieved from http://ec.europa.eu/justice_home/
fsj/privacy/

Erberich, S., Silverstein, J. C., Chervenak, A.,
Schuler, R., Nelson, M. D., & Kesselman, C. (2007).
Globus medicus - federation of dicom medical
imaging devices into healthcare grids. Studies in
Health Technology and Informatics, 126, 269–278.

Fischer-Huebner, S. (2001). IT-security and pri-
vacy: Design and use of privacy-enhancing security
mechanisms. New York, NY: Springer-Verlag.

Foster, I., Kesselman, C., Tsudik, G., & Tuecke, S.
(1998). A security architecture for computational
grids. Proc. 5th ACM Conf. on Computer and
Communication Security, (pp. 83-92).

219

Trusted Data Management for Grid-Based Medical Applications

Foster, I., Kesselman, C., & Tuecke, S. (2001).
The anatomy of the grid: Enabling scalable virtual
organizations. Int’l J. Supercomputer Applica-
tions, 15(3).

Glite. (n.d.). Glite middleware. Retrieved from
http://glite.web.cern.ch/glite

Globus. (n.d.). Globus alliance toolkit homepage.
Retrieved from http://www.globus.org/toolkit/

Herveg, J. (2006). The ban on processing medical
data in European law: Consent and alternative
solutions to legitimate processing of medical
data in healthgrid. Proc. Healthgrid (Vol. 120,
pp. 107–116). Amsterdam, The Netherlands:
IOS Press.

JSDL. (n.d.). Job submission description language
(jsdl) specification, v.1.0. Retrieved from http://
www.gridforum.org/documents/GFD.56.pdf

Kalra, D., Singleton, P., Ingram, D., Milan, J.,
MacKay, J., Detmer, D., & Rector, A. (2005).
Security and confidentiality approach for the
clinical e-science framework (clef). Methods of
Information in Medicine, 44(2), 193–197.

LHC. (n.d.). LHC computing grid project. Re-
trieved from http://lcg.web.cern.ch/LCG

Malin, B. (2002). Compromising privacy with
trail re-identification: The Reidit algorithms.
(CMU Technical Report, CMU-CALD-02-108),
Pittsburgh.

Montagnat, J., Frohner, A., Jouvenot, D., Pera,
C., Kunszt, P., & Koblitz, B. (2007). A secure
grid medical data manager interfaced to the glite
middleware. Journal of Grid Computing, 6(1).

NIST. (2007). Special publication 800-88: Guide-
lines for media sanitization by the national institute
of standards and technology. Retrieved from http://
csrc.nist.gov/publications/nistpubs/#sp800-88

Olabarriaga, S. D., Nederveen, A. J., Snel, J. G., &
Belleman, R. G. (2006). Towards a virtual labo-
ratory for FMRI data management and analysis.
Proc. HealthGrid 2006 (Vol. 120, pp. 43–54).
Amsterdam, The Netherlands: IOS Press.

Scarfone, K., & Mell, P. (2009) An analysis of
CVSS version 2 vulnerability scoring. Proceed-
ings of the 3rd. Int’l Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM’09),
(pp. 516-525).

Sweeney, L. (2002). K-anonymity: A model
for protecting privacy. International Journal
of Uncertainty. Fuzziness and Knowledge-
Based Systems, 10(5), 557–570. doi:10.1142/
S0218488502001648

Travostino, F., Daspit, P., Gommans, L., Jog, C., de
Laat, C. T. A. M., & Mambretti, J. (2006). Seam-
less live migration of virtual machines over the
man/wan. Future Generation Computer Systems,
22(8), 901–907. doi:10.1016/j.future.2006.03.007

U.S. Congress (1996). Health insurance portabil-
ity and accountability act, 1996.

U.S. Safe Harbor Framework. (n.d.). Retrieved
from http://www.export.gov/safeharbor/

Van ‘t Noordende, G., Balogh, A., Hofman, R.,
Brazier, F. M. T., & Tanenbaum, A. S. (2007).
A secure jailing system for confining untrusted
applications. 2nd Int’l Conf. on Security and
Cryptography (SECRYPT), (pp. 414-423). Bar-
celona, Spain.

Van ‘t Noordende, G. J., Brazier, F. M. T., &
Tanenbaum, A. S. (2004). Security in a mobile
agent system. 1st IEEE Symp. on Multi-Agent
Security and Survivability, Philadelphia.

WGBO. (1994). Dutch ministry of health, welfare
and sport – WGBO. Retrieved from http://www.
hulpgids.nl/wetten/wgbo.htm

220

Trusted Data Management for Grid-Based Medical Applications

WMO. (1998). Dutch ministry of health, welfare
and sport - WMO. Retrieved from http://www.
healthlaw.nl/wmo.html.

Xu, L. (2005). Hydra: A platform for survivable
and secure data storage systems. ACM StorageSS.

ENDNOTE

1 Note that if any (untrusted) CRB could query
the TSRB directly for the locations from
which data is available, the result can reveal
whether a given data file exists or not. Such
information may be considered sensitive in
itself, as outlined earlier.

Section 4
Applications

222

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

INTRODUCTION

The generation of novel insights in many scientific
domains such as biology, physics, or chemistry

increasingly relies on compute-intensive appli-
cations that require high-performance or large-
scale, distributed high-throughput computing
technology and infrastructure. In the discipline

Heinz Stockinger
Swiss Institute of Bioinformatics, Switzerland

Alexander F. Auch
University of Tübingen, Germany

Markus Göker
University of Tübingen, Germany

Jan Meier-Kolthoff
University of Tübingen, Germany

Alexandros Stamatakis
Ludwig-Maximilians-University Munich, Germany

Large-Scale Co-Phylogenetic
Analysis on the Grid

ABSTRACT

Phylogenetic data analysis represents an extremely compute-intensive area of Bioinformatics and thus
requires high-performance technologies. Another compute- and memory-intensive problem is that of
host-parasite co-phylogenetic analysis: given two phylogenetic trees, one for the hosts (e.g., mammals)
and one for their respective parasites (e.g., lice) the question arises whether host and parasite trees are
more similar to each other than expected by chance alone. CopyCat is an easy-to-use tool that allows
biologists to conduct such co-phylogenetic studies within an elaborate statistical framework based on
the highly optimized sequential and parallel AxParafit program. We have developed enhanced versions
of these tools that efficiently exploit a Grid environment and therefore facilitate large-scale data analy-
ses. Furthermore, we developed a freely accessible client tool that provides co-phylogenetic analysis
capabilities. Since the computational bulk of the problem is embarrassingly parallel, it fits well to a
computational Grid and reduces the response time of large scale analyses.

DOI: 10.4018/978-1-60960-603-9.ch014

223

Large-Scale Co-Phylogenetic Analysis on the Grid

of bioinformatics, biological insight is typically
generated via data analysis pipelines that use a
plethora of distinct and highly specialized tools.
Most commonly, bioinformaticians and biologists
collaborate to analyze data extracted from large
databases containing DNA and/or protein data in
order to study, e.g., the function of living beings,
the effect and influence of diseases and defects, or
their evolutionary history. Early “classic” bioin-
formatics tools, such as CLUSTALW (Thompson
et al., 1994) or BLAST (Altschul et al., 1997) that
have been ported to Grid computing environments
deal with biological sequence search, analysis,
and comparison. Typically, these programs are
embarrassingly parallel and therefore represent
ideal candidate applications for Grid computing
environments (Stockinger et al., 2006).

The study of the genome represents a way to
obtain new insight and extract novel knowledge
about living beings. In particular, stand-alone
phylogenetic analyses have many important ap-
plications in biological and medical research. Ap-
plications range from predicting the development
of emerging infectious diseases (Salzberg et al.,
2007), over the study of Papillomavirus evolution
that is associated with cervical cancer (Gottschling
et al., 2007), to the determination of the common
origin of Caribbean frogs (Heinicke et al., 2007).

Recent years have witnessed significant
progress in the field of stand-alone phylogeny
reconstruction algorithms, which represent an
NP-complete optimization problem (Chor and
Tuller, 2005), with the release of programs such
as TNT (Goloboff, 1999), RAxML (Stamatakis,
2006), MrBayes (Ronquist and Huelsenbeck,
2003) or GARLI (Zwickl, 2006). Because of the
continuous explosive accumulation and avail-
ability of molecular sequence data coupled with
advances in phylogeny reconstruction methods,
it has now become feasible to reconstruct and
fully analyze large phylogenetic trees comprising
hundreds or even thousands of sequences (organ-
isms). However, current meta-analysis methods for
phylogenetic trees such as programs that conduct

co-phylogenetic tests can currently not handle
such large datasets.

To alleviate this bottleneck in the meta-analysis
pipeline, we recently parallelized, and released
the highly optimized co-phylogenetic analysis
program AxParafit (Axelerated Parafit - Sta-
matakis et al., 2007) that implements an elaborate
statistical test of congruence between host and
parasite trees (Legendre et al., 2002). AxParafit
is a typical stand-alone Linux/Unix command line
program. AxParafit has been integrated and can
be invoked via a user-friendly graphical interface
for co-phylogenetic analyses called CopyCat
(Meier-Kolthoff et al., 2007). In this article, we
present an enhanced version of this tool suite
(henceforth denoted as CopyCat(AxParafit)) for
co-phylogenetic analyses, that is packaged into a
client tool which makes use of a world-wide Grid
environment and thereby allows for large-scale
data analysis. In the current version, the underly-
ing Grid middleware is gLite (Laure et al., 2006)
that is coupled with an efficient submission and
execution model called Run Time Sensitive (RTS)
scheduling and execution (Stockinger et al., 2006).

The remainder of this article is organized as
follows: initially, we provide a brief introduction
to the field of phylogenetic inference, co-phylo-
genetic analyses, and related software packages
in Section 2. Next, we discuss the implementation
and architecture of our new approach for efficient
adaptation of the CopyCat(AxParafit) tool-suite to
a Grid environment. Finally, we provide detailed
performance results on the EGEE (Enabling Grids
for E-SciencE, http://www.eu-egee.org) Grid
infrastructure (where the gLite middleware is
deployed in production mode) and demonstrate the
performance as well as scalability of our proposed
bioinformatics tool.

BACKGROUND

Phylogenetic (evolutionary) trees are used to
represent the evolutionary history of a set of s

224

Large-Scale Co-Phylogenetic Analysis on the Grid

currently living organisms, roughly comparable
to a genealogical tree of species rather than indi-
vidual organisms. Phylogenetic trees or simply
phylogenies are typically unrooted binary trees.
The s organisms, which are represented by their
DNA or AA (Amino Acid/Protein) sequences
that are used as input data for the computation,
are located at the leave nodes (tips) of the tree
while the inner nodes of the topology represent
common extinct ancestors. There exist various
methods and models to reconstruct such trees
which differ in their computational complexity
and also in the accuracy of the final results, i.e.,
there exists a “classic” trade-off between speed and
accuracy. As already mentioned in the introduc-
tion, phylogenetic analysis has many important
applications in medical and biological research.
In Figure 1, we provide a simple example for the
phylogenetic tree of monkeys.

In the context of this article, however, we will
not address stand-alone phylogenetic inference,
but consider the problem of co-phylogenetic
analysis. Given two phylogenetic trees that rep-
resent the evolutionary histories of hosts and their

respective parasites, the “classic” example being
mammals and lice, and given the extant associa-
tions between the former and the latter, we want
to determine whether the parasite phylogeny is
more similar to the phylogeny of the respective
hosts than expected by chance alone. The main
interpretation of such a congruence between the
trees is that parasites have been associated with
respect to their evolutionary history and mostly
speciated in parallel (co-speciated) with their hosts
(Page, 2002). Given a parasite tree with n organ-
isms and a host tree with m organisms (sequenc-
es), their associations can be represented as a n
times m binary matrix, that contains information
of the type: does parasite x (x=1...n) occur or live
on host y (y=1...m)? In addition to the question
of global congruence, one may also be interested
in whether individual associations significantly
increase the agreement between the phylogenies.
Such associations can be interpreted as being
caused mainly by co-speciation.

As previously mentioned, recent advances in
stand-alone phylogenetic inference methods in
combination with the increasing availability of

Figure 1. Phylogenetic tree of monkeys

225

Large-Scale Co-Phylogenetic Analysis on the Grid

appropriate sequence data, allow for large-scale
phylogenetic analyses with several hundred or
thousand sequences (Stamatakis, 2006). Thus,
large-scale co-phylogenetic studies have, in prin-
ciple, become feasible. However, most common
co-phylogenetic tools or methods such as BPA,
Component, TreeMap, TreeFitter (cf. review in
Charleston, 2006) or Tarzan (Merkle, 2006) are
not able to handle datasets with a large number of
organisms or have not been tested in this regard
with respect to their statistical properties and
scalability. Faster methods based on topological
distances between trees, like, e.g., Icong (de Vienne,
2007) are even limited to the analysis of bijective
associations only. In this context bijectivity means
that each parasite can only be associated to one
single host, and vice versa. Therefore, there is a
performance and scalability gap between tools
for phylogenetic analysis and meta-analysis. The
capability to analyze large datasets is important to
infer “deep co-phylogenetic” relationships which
can otherwise not be assessed (Meier-Kolthoff et
al., 2007; Stamatakis et al., 2007). Deep relation-
ships are relationships that determine the extant
associations between parasite and host organisms
at a high taxonomic level, such as, e.g., families
and orders.

Parafit (Legendre, 2002) and the analogous
highly optimized AxParafit (Stamatakis et al.,
2007) program implement a statistical test to assess
hypotheses of global congruence between trees
as well as the impact of individual associations.
This test is based on the permutation of the entries
in the association matrix. The null hypothesis is
that the global similarity between the trees, or the
respective impact of an individual local association
on the similarity, is not larger than expected by
pure chance. Extensive simulations have shown
that the Parafit test is statistically well-behaved
and yields acceptable error rates. The method has
been successfully applied in a number of biologi-
cal studies (Hansen et al., 2003; Ricklefs et al.,
2004; Meinilä et al., 2004).

In addition, the type-II statistical error of
Parafit decreases with the size of the dataset (see
Legendre, 2002), i.e., this approach scales well
on large phylogenies of hosts and parasites in
terms of accuracy. The AxParafit program is a
highly optimized version of Parafit which yields
exactly the same results. The sequential version
of AxParafit is up to 67 times faster than the
original Parafit implementation, while the speedup
increases with increasing input size, caused by
higher cache efficiency. The speedup of AxParafit
has been achieved via low-level optimizations
in C, re-design of the algorithm, omission of
redundant code, reduction of memory footprint,
and integration of highly optimized BLAS (Basic
Linear Algebra Subroutines, http://www.netlib.
org/blas/) routines.

Earlier work describes these optimizations
together with a respective performance study.
Moreover, the program was used to conduct the
largest co-phylogenetic analysis on real-world
data to date. The underlying data were smut fungi
and their respective host plants (Stamatakis et al.,
2007). Smut fungi are parasitic mushrooms that
cause plant diseases. For economically important
hosts, such as barley and other cereals, smut fungi
can for instance cause considerable yield losses
(Thomas and Menzies, 1997).

Workflow of a Co-Phylogenetic
Analysis with CopyCat and AxParafit

In this section, we provide an outline of the
work-flow for a full co-phylogenetic analysis
using CopyCat(AxParafit). The input for a co-
phylogenetic analysis with CopyCat(AxParafit)
are the host and parasite phylogenies, that might
have branch lengths, depending on which method/
model was used to calculate the trees. The afore-
mentioned associations are represented as a plain
text file containing a list of sequence (organism)
name pairs of hosts and parasites, i.e., an adjacency
list. This input data representation is henceforth
also referred to as list of host-parasite associations.

226

Large-Scale Co-Phylogenetic Analysis on the Grid

Initially, these files are parsed and transformed
into the appropriate file format by CopyCat. In
a first step, a principal coordinate analysis is
conducted on the respective tree-based distance
matrices induced by the host and parasite trees.
This analysis is carried out by the AxPcoords
(Axelerated Principal Coordinates) program (Sta-
matakis et al., 2007), which is an optimized version
of the analogous DistPCoA program (Legendre
and Anderson, 1998). The output of AxPcoords
for the host and parasite trees is then parsed and
appropriately prepared for the AxParafit analysis
which takes the two principal coordinates matrices
and the binary matrix with the associations as
input. The output of this computation is a list of
probabilities for the individual null hypotheses
that a certain association does not improve the fit
between host and associate phylogenies. In addi-
tion, a probability for the global null hypothesis
of the absence of congruence between host and
parasite trees is computed. Upon termination of
AxParafit the output files are read by the CopyCat
tool and presented in a human-readable format.
It is important to note that the computations with
AxParafit represent the by far largest part (over
95%) of the computational effort required to con-
duct such a co-phylogenetic analysis. Therefore,
the AxPcoords and CopyCat parts of the workflow
can be handled sequentially and executed locally.
We will, thus, mainly focus on the parallel and
gridified versions of AxParafit in the next sections.
The basic workflow is outlined in Figure 2 (at the
end of the article).

Parallel AxParafit

The most compute-intensive operation (95%
of execution time) conducted by AxParafit to
compute the statistics is a dense matrix-matrix
multiplication of double precision floating point
numbers. This is the rationale for integration of
highly optimized BLAS routines. In the remainder
of this article, we thus always refer to the BLAS-
based version of AxParafit.

Initially, the program will compute the statistics
for the global congruence of the complete list of
host-parasite associations. This part of the com-
putation is significantly less expensive than the
individual tests for each host-parasite association,
which take nz times longer, where nz is the number
of non-zero entries in the binary association matrix,
i.e., number of entries in the original host-parasite
association list. For large datasets that require
parallel and distributed computing resources as
well as a sufficient amount of memory typically
nz >> 1. The statistics computed during the global
test of congruence are required as input data for
the individual tests of host-parasite associations,
hence there is a sequential dependency: global test
→ nz local tests. Thus, in the MPI-based parallel
implementation we only parallelized these nz lo-
cal tests which can be computed independently of
each other via a straight-forward master-worker
scheme. The master simply distributes the nz
individual host-parasite association tests to the
worker processes.

The potential bottleneck induced by the se-
quential part of the computations can be allevi-
ated by using, e.g., the respective shared-memory
implementations of BLAS. With respect to a
gridification, this sequential dependency actually
has advantages. Since the inference time as well
as memory footprint of the global test of congru-
ence are nearly identical (same type of operation,
identical matrix sizes, permuted input data) to
each of the individual nz tests, the information
on run-times and memory requirements collected
during the global tests can be used for scheduling
decisions, as well as to determine an optimal level
of granularity and to assess respective resource
requirements.

FIT FOR THE GRID

In the following section, we describe how
CopyCat(AxParafit) has been adapted and modi-
fied for use in a Grid environment. The overall

227

Large-Scale Co-Phylogenetic Analysis on the Grid

architecture of the client tool will be explained as
well as the integration with an existing middle-
ware toolkit.

An important design goal of the Grid-based
system for co-phylogenetic analyses was to re-use
the current graphical user interface of CopyCat
such that the deployment of Grid resources is
hidden from the end-user. One fundamental dif-
ference between the standard and Grid-enabled
versions of CopyCat (AxParafit) is that specific

Grid credentials are required (an X.509 user cer-
tificate) since Grid jobs can only be submitted by
authenticated and authorized users.

Overall Architecture

The basic workflow of a co-phylogenetic study
using CopyCat and the AxPcoords/AxParafit
programs has already been outlined in the above
section. Here, we will describe the architecture

Figure 2. Detailed work- and dataflow for co-phylogenetic analysis on the Grid

228

Large-Scale Co-Phylogenetic Analysis on the Grid

and workflow for a gridified analysis in greater
detail. The input data consists of three files: a host
tree file, a parasite tree file, and a host-parasite
association list. In the reminder of this article, the
following terminology is used:

• Individual test (job): an individual test is
the minimal “work unit” or processing en-
tity that has to be conducted by AxParafit
to calculate a single host-parasite associa-
tion. In the context of AxParafit this is also
referred to as job. In total, nz individual
tests have to be computed to achieve the
final result.

• Task: a task consists of a fraction (subset)
of the nz individual tests that have to be
conducted by AxParafit.

• Grid job: a Grid job is an executable that
is scheduled by the Grid middleware to
be executed on a Worker Node of a Grid
computing resource (also referred to as
Computing Element). In our model, a
single Grid job can execute one or several
such tasks.

The overall workflow is depicted in Figure
2. The most important Grid-enhancement is the
interface to the Grid (represented by the Perl
program AxParafit.pl in Figure 2). Once the input
files are validated, CopyCat uses AxParafit.pl to
determine a specific set of tasks (to be registered
with a Task Server as indicated in Figure 3) and
Grid jobs which are then submitted to Grid com-
puting resources using the gLite middleware. Each
individual Grid job then requests tasks from the
Task Server, processes them, and stores the result
on a Grid Storage Element.

AxParafit.pl will constantly monitor the over-
all Grid job status and presents intermediate results
in a CopyCat control window. Once all results are
obtained and merged, CopyCat indicates where
the final result can be obtained. Further details
about AxParafit.pl, AxWorker.pl etc. will be
given in the other section.

Implementation Details

In the following section we describe the neces-
sary modifications and adaptations of the existing

Figure 3. Interaction of AxParafit.pl with the gLite Grid middleware, a Task Server and a Storage Ele-
ment. Each submitted Grid job will execute on a Grid Worker Node

229

Large-Scale Co-Phylogenetic Analysis on the Grid

CopyCat and AxParafit tools as well as additional
components that were necessary to implement the
system outlined in Section 3.1.

CopyCat

Previous versions of CopyCat already provided
straight-forward GUI-based functionality for the
preparation and analysis of co-phylogenetic da-
tasets. The CopyCat GUI is implemented in Java
using the Standard Widget Toolkit (SWT). Upon
startup, the user can load the host and parasite trees
(represented in the standard Newick tree format:
http://evolution.genetics.washington.edu/phylip/
newicktree.html), together with a host-parasite
association list in a simple plain-text format that
contains one host-parasite association per line.

When starting an analysis, the user can now
utilize a new Grid interface that connects Copy-
Cat to the gridified program AxParafit. Instead
of directly calling the AxParafit executable, the
interface invokes a Perl script (AxParafit.pl)
which hides the Grid-related parts from the user
and CopyCat. By delegating the invocation pro-
cess to a script, dependencies between the user
front-end and the Grid software are minimized.
Thus, future modifications like the development
of a Web interface for job submissions (see Con-
clusion) or the usage of a different middleware
system are possible.

The AxParafit.pl script entirely manages the
execution of AxParafit on the Grid and provides
status updates to the standard output stream at the
same time. As CopyCat is listening to the output
stream of the external programs it invokes, it
also receives the status updates generated by the
aforementioned Perl-script and writes them to
the CopyCat log-message window, thus keep-
ing the user informed about the progress of Grid
jobs. Upon termination of the script, the output
of the Grid jobs (individual tests of host-parasite
associations), as well as the global significance
test results, are read by CopyCat. The results can

then be displayed and further analyzed via the
CopyCat evaluation window.

Within the context of an automated Grid-driven
simultaneous analysis of several distinct datasets
(and other potential script-based applications,
based on CopyCat), the program has been extended
by a command-line interface. As a side-effect, this
enables CopyCat users to speed-up certain analy-
ses by simply executing a specific command-line
call with a defined set of parameters (please refer
to the CopyCat manual for detailed information
on the command-line options).

Application-Side Modifications
of AxParafit

As outlined in other section, the parallel MPI
implementation of AxParafit uses a simple master-
worker scheme. In order to devise a distributed ver-
sion of AxParafit we modified the code as follows:
initially, we appropriately modified the global test
of congruence in AxParafit to write an additional
file called “gridData.RUN-ID” where RUN-ID is
the output file name appendix for a specific analy-
sis that is passed to AxParafit via a command line
parameter (for details see the AxParafit Manual
at http://icwww.epfl.ch/~stamatak/). This file
contains the necessary data to make scheduling
decisions for the distributed computation of the n
individual tests of host-parasite associations, i.e.,
the number of jobs nz, e.g. Jobs=2000, and the
approximate execution time per job in seconds,
e.g., ComputeTime=10 . This data can then be
used to determine the level of granularity for in-
dividual Grid tasks since in the current example
the scheduling overhead induced by distributing
2,000 jobs of 10 seconds each, along with the
comparatively large input datasets on the Grid,
would be immense. We have, thus, extended the
implementation of the individual host-parasite
association tests in AxParafit by two additional
command line parameters -l (lower limit) and -u
(upper limit). These parameters allow for compu-
tation of several host-parasite associations in one

230

Large-Scale Co-Phylogenetic Analysis on the Grid

single program run. The lower and upper limits
just refer to the order of the nz non-zero entries in
the binary association matrix. Thus, in the pres-
ent example, we can schedule larger, in terms of
execution times, Grid jobs by only distributing
two Grid jobs with -l 0 -u 1000 and -l 1000 -u
2000 that would require approximately 10,000
seconds of execution time each, i.e., Grid job 0
would compute statistics for the first 1,000 host-
parasite associations and Grid job 1 for the remain-
ing 1,000 associations. The result files of these
distributed Grid jobs only need to be recovered
and concatenated in the order of the associations
they computed, and the respective result file can
then be read and visualized by CopyCat.

Grid-Side Adaptation

Parafit.pl provides the actual link between Copy-
Cat and the gridified version of AxParafit. First,
it reads the file “gridData.RUN-ID” to determine
the number of tasks to be created (registered) for
execution on the Grid (Step 1 in Figure 3). As
outlined in Section 3.2.1, the basic idea consists
of combining appropriate fractions (subsets) of
the nz individual tests into a single task, i.e., a set
of individual tests k < nz are executed by a Grid
job. In order to make efficient use of the Grid and
to reduce scheduling overhead, a task contains
a minimum of k individual tests, such that the
respective job requires at least 30 seconds on an
average CPU. After the number of tasks has been
determined, a certain number of Grid jobs (ap-
proximately nz/k) needs to be submitted (Step 3 in
Figure 3) which then ask for tasks to be executed,
i.e., issue work requests. An individual Grid job
can request and execute several tasks, as long as
the Task Server can provide more work (Steps
5 and 6 in Figure 3). The protocol used for the
Task Server is HTTP which allows for fast com-
munication between the client and the server. For
additional background and fault tolerance features
of this processing model with a Task Server please
refer to Stockinger et al. (2006).

Before Grid jobs can be submitted, AxParafit.
pl creates the Grid job specification, i.e. the job
description file to decide which files (data and/or
executables) to send to Grid computing resources.
A typical job description file looks as follows:(See
Box 1).

The wrapper code (identified as “Executable”
in the JDL file above) is AxWorker.pl using the
command line arguments specified by “Argu-
ments”. Once AxParafit.pl is running on a Grid
Worker Node, it is responsible for requesting tasks
from a Task Server and executing AxParafitBLAS.
The two programs (AxWorker.pl and AxParafit-
BLAS) are transferred to the Grid Worker Node
as specified in the InputSandbox in the example
above, i.e. gLite provides the means to transfer
data from the client machine to the actual comput-
ing resource.

In parallel to the execution of Grid jobs, the
script AxParafit.pl monitors the status and is re-
sponsible for providing and assembling the final
result (Steps 8 and 9 in Figure 3).

In particular, when tasks have been processed
successfully, they are downloaded from the Stor-
age Element and transferred to the client. Note
that an alternative implementation option is to
transfer the output of individual tasks via the gLite
middleware (using the OutputSandbox). However,
because of performance and reliability consider-
ations, it has turned out to be more efficient to store
files at an external Storage Element and retrieve
them from there: one reason is that the actual job
output can only be retrieved if gLite indicates
that a job has been finished. However, because
of update latencies in the Grid-wide information
and motoring system, jobs might have finished
already several dozens of seconds or even a few
minutes ago while the job status is still indicated
as pending or running.

As a final remark: since the gLite services can
only be accessed by authorized users, the execu-
tion of the AxParafit.pl script requires the usage
of a valid X.509 proxy certificate.

231

Large-Scale Co-Phylogenetic Analysis on the Grid

EXPERIMENTAL RESULTS

The main goal of the gridified version of
CopyCat(AxParafit) is to accelerate and facilitate
large-scale analyses. We present two experiments
with large computational demands and study
their performance on the Grid. The performance
improvement is outlined with respect to running
the application sequentially on a single machine.
Moreover, we conduct a performance comparison
between a dedicated compute cluster and the Grid.

Test Environment

The Grid platform that is supported by our ap-
plication is gLite 3. Tests are conducted using
gLite on the EGEE production infrastructure. In
particular, we use the Virtual Organization (VO)
that is dedicated to biomedical applications:
“biomed”. Members of this VO have access to
about 50 Computing Elements (acting as front-
ends to computing clusters), each having between
2 and a few hundred processing cores. The exact
number of processing cores available to a single
user at a given time cannot be easily obtained since
it depends on the current system load as well as
the general availability of a Computing Element
at a certain point in time. Currently, gLite does
not support resource reservation nor job priorities,

which means that experimental results can not be
fully reproduced. However, once one is correctly
registered with the Virtual Organization, one can
use it any time of the day.

On the client side, we used gLite on GNU/
Linux on an AMD Opteron machine (2 GB RAM,
2.2 GHz CPU) located in Lyon, France – previous
tests (in particular with the installation of CopyCat
and the Grid interface have been conducted on a
machine located in Lausanne, Switzerland). The
gLite components used are the workload man-
agement system (for job submission and status
monitoring) as well as data management clients
for file transfer. Additionally, we deployed and
used a Task Server that is located in Lausanne,
using resources provided by the Vital-IT group
of the Swiss Institute of Bioinformatics. In the
second experiment, we used a dedicated compute
cluster with 128 CPUs. In contrast to the Grid, the
cluster had to be reserved in advance.

Experiment with Real-world Data

In the first experiment we are interested in the
raw performance (response time) of AxParafit.pl,
i.e., how long does it take to fully process a set of
tasks on the Grid. In this experiment, we do not
include CopyCat but directly invoke AxParafit.
pl as shown in Box 2.

Box 1.

Executable = “AxWorker.pl”;

Arguments = “-j ax-May1319-41-28 -p 100 -1 2048 -2 2048 -3 2025 -4 2031 \

–A gsiftp://example.org/dpm/home/biomed/heinz/selection_2048.mat-ax-

May1319-41-28 \

-B gsiftp://example.org/dpm/home/biomed/heinz/selection_2048_P.pco-ax-

May1319-41-28 \

-C gsiftp://example.org/dpm/home/biomed/heinz/selection_2048_H.tra-ax-

May1319-41-28 -i 1”;

Stdoutput = “output.txt”;

InputSandbox = {“/home/stockinger/AxWorker.pl”, “/home/stockinger/AxParafitB-

LAS”};

OutputSandbox = {“output.txt”}

232

Large-Scale Co-Phylogenetic Analysis on the Grid

The parameters -1, -2, -3 and -4 specify the
number of rows and columns in the association
matrix as well as the number of rows and columns
in the parasite and host matrices; -p represents
the number of permutations conducted by the
statistical test; -A, -B, and -C are used to read the
plain-text input files; -n specifies a run ID that is
appended to all output files (for details on the
AxParafit program parameters please refer to the
AxParafit manual at http://icwww.epfl.
ch/~stamatak/). The dataset we used is the afore-
mentioned (Section 2) dataset for the study of
smut-fungi, that was used to demonstrate perfor-
mance of the stand-alone AxParafit code by
Stamatakis et al. (2007). As already mentioned,
this dataset represents the largest real-world co-
phylogenetic study conducted to date. While the
sequential execution time for this dataset still
appears to be acceptable, such studies were previ-
ously not feasible with Parafit which is between
1-2 orders of magnitude slower than AxParafit.
Since the host-parasite association list contains
nz=2,362 entries, 2,362 individual tests need to
be performed. The execution of AxParafit to
compute global congruence of the trees returned
an estimated run time of 3 seconds per job, i.e.,
an overall expected run time of almost two hours
(2,362 x 3 seconds). The main goal of the first
test is therefore to minimize the expected response
time. We also executed the full test, as specified
above, on a single machine and observed that the
estimated run time of about 2 hours (7,000 seconds)
is almost identical to the measured run time (7,200
seconds). Therefore, we deduce that the run time
prediction mechanism is sufficiently accurate for
our application. In our experiments, we varied
the number of tasks (in the range between 60 and

162) as well as the number of parallel Grid jobs
(in the range between 24 to 124) to experimen-
tally determine the minimal response time. How-
ever, because of varying response times of the
Grid (i.e. the various Computing Elements and
their job queues etc.) it was not possible to deter-
mine an optimal number of Grid jobs and tasks.
Finally, in the experiment we used 124 Grid jobs
and 150 tasks which have been proposed by the
work distribution algorithm outlined in aforemen-
tioned section. The overall response time to
produce the final output was 11 minutes and 15
seconds (cf. Figure 4). Consequently, we observe
a clear runtime improvement with respect to a
single, sequential run. Note that the AxParafit.pl
program had to be adapted to allow for parallel
downloads of the individual results: originally,
results were downloaded sequentially, which
increased the overall response time by several
minutes. By overlapping communication with
computation, this problem was resolved.

Experiment with Synthetic Data

In another experiment, we used a larger (synthetic)
test dataset that had been extracted from a larger
empirical dataset to test scalability of AxParafit
and compared the runtime of the Grid with the
infiniband cluster at the Technical University of
Munich equipped with 128 AMD Opteron 2.4 GHz
CPUs. In the association list, there were nz=2,048
non-zero entries (equivalent to 2,048 tasks) and
we used 100 permutations. The expected runtime
of a single task was 568 seconds, i.e., about 10
minutes. As a result, the expected sequential re-
sponse time to finish all 2,048 tasks is about 13.4
days. We used the wrapper as shown in Box 3.

Box 2.

AxParafit.pl -p 10 -1 413 -2 1400 -3 1390 -4 411 \

 -A smuts010907.mat -B smuts010907_P.pco -C smuts010907_H.tra -n RUN_1

233

Large-Scale Co-Phylogenetic Analysis on the Grid

Note that the input files are bigger than in the
previous experiment: they cannot be directly
submitted with the Grid job but they are up-
loaded to a Storage Element and then dynami-
cally downloaded by Grid jobs when needed.

A direct performance comparison between the
cluster and a Grid is not feasible since the cluster
we used had several favorable features that a
multi-institutional Grid does not have: a shared
file system between all processing nodes which
minimizes the data transfer time; homogeneous
hardware infrastructure; pre-defined number of
CPUs that are available which does not require

an automatic task assignment, no overhead for
job submission etc. However, the cluster needed
to be reserved in advance (larger slots can only
be obtained overnight) which means that it was
only available at a specific time, whereas Grid
resources are available on demand at any time.
Intuitively, one expects a cluster to provide a bet-
ter response time to a large size application but it
has a considerable “reservation latency”, a fact
that should not be underestimated.

The final performance results of the experi-
ments are depicted in Figure 5. For the Grid ex-
ecution, we used between 90 and 175 parallel jobs

Figure 4. Comparison of smut-fungi dataset on a single CPU and on a Grid using 124 Grid jobs and 150
tasks. Note that there is a rather high redundancy in Grid jobs and not all 124 jobs really participate
in the overall calculation because of start-up latencies. In fact, a few Grid jobs (AxWorker.pl) started,
requested tasks and found out that there were no more tasks available and gracefully finished

Box 3.

AxParafit.pl -p 100 -1 2048 -2 2048 -3 2025 -4 2031 -A selection_2048.mat \

 -B selection_2048_P.pco -C selection_2048_H.tr a -n RUN_2

234

Large-Scale Co-Phylogenetic Analysis on the Grid

(the number varied during the overall execution
time). Given the number of parallel jobs used in
the Grid, the cluster performed better. However,
if the number of jobs is increased on the Grid,
the cluster can actually be out-performed. Note
that, the Grid response time comprises the se-
quential run time that is necessary to determine
the number of tasks and jobs and compute the
test for global congruence that is then used as
input data for the nz individual tests. This initial
part of the analysis also needs to be executed
sequentially on the cluster. In addition, the Grid
response time also includes the job submission
overhead that is imposed by the gLite workload
management systems. In order to avoid congestion
problems at the submission server, only a certain
number of jobs are submitted at a given time by
AxParafit.pl. The actual processing time of the
2,048 AxParafit tests can then be better compared
to the cluster performance. Another interesting
observation is the average processing time of 13.3
min per single task on the Grid compared to the
local execution time of 11 min on the Grid client
machines. This indicates that distinct Computing

Elements have CPUs with rather different CPU
speeds and latencies.

Overall, our Grid-based approach requires
computing times that are in the same order of
magnitude as those of a dedicated cluster. Con-
sequently, the gridified version provides an eas-
ier to use alternative to a compute cluster with
comparable performance.

CONCLUSION

We have demonstrated how a compute-intensive
application for a statistical test of congruence
between host and parasite phylogenies can effi-
ciently be distributed on the Grid. The proposed
Grid-based implementation can greatly contribute
to the reduction of response times for large-scale
analyses and to the computation of a larger number
of test permutations, which in turn improve upon
accuracy. Moreover, we have integrated the access
to Grid resources into an easy-to-use Graphical
User Interface (CopyCat) which entirely hides the
technical details related to the exploitation of Grid

Figure 5. Performance comparison of a 128 CPU cluster with a Grid using between 90 and 175 parallel
jobs. Note that the number of Grid job varied and was never constant

235

Large-Scale Co-Phylogenetic Analysis on the Grid

resources from the user. Note that in particular for
non-expert users, easy accessibility and usability
of HPC resources represents a major criterion for
the selection of software and systems. We thus
believe that the proposed architecture will greatly
facilitate access to HPC resources for real-world
biological studies on host-parasite evolution.
Nonetheless, the requirement to obtain access
and accreditation to use Grid resources (valid
X.509 proxy certificate) will possibly hinder a
large amount of potential users to exploit these
new possibilities offered by the Grid. Based on
previous experience with the development of
the freely accessible RAxML Web servers for
phylogenetic reconstruction (Stamatakis et al.,
2008, over 8,000 job submissions in the first 8
months of operation) that are however scheduling
jobs to dedicated clusters instead of the Grid, we
believe that a freely accessible Web server for this
Grid-enabled system for co-phylogenetic analyses
can contribute to the generation of biological in-
sights, by further simplifying the access to HPC
resources. Thus, future work will concentrate on
the development of such a Web server, as well as
the integration with the aforementioned RAxML
servers such as to provide a comprehensive phy-
logenetic and co-phylogenetic analysis pipeline.

ACKNOWLEDGMENT

This work was funded in part by the EU project
EMBRACE Grid which is funded by the European
Commission within its FP6 Program, under the
thematic area “Life sciences, genomics and bio-
technology for health”, contract number LUNG-
CT-2004-512092. The Exelixis lab (AS) is funded
under the auspices of the Emmy-Noether program
by the German Science Foundation (DFG).

REFERENCES

Altschul, S. F., Madden, T. L., & Schaffer, A. A.
(1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs.
Nucleic Acids Research, 25(17), 3389–3402.
doi:10.1093/nar/25.17.3389

Charleston, M. A., & Perkins, L. (2006). Travers-
ing the tangle: Algorithms and applications for co-
phylogenetic studies. Journal of Biomedical Infor-
matics, 39, 62–71. doi:10.1016/j.jbi.2005.08.006

Chor, B., & Tuller, T. (2005). Maximum likelihood
of evolutionary trees: hardness and approximation.
Bioinformatics (Oxford, England), 21(1), 97–106.
doi:10.1093/bioinformatics/bti1027

de Vienne, D. M., Giraud, T., & Martin, O. C.
(2007). A congruence index for testing topological
similarity between trees. Bioinformatics (Oxford,
England), 23(23), 3119–3124. doi:10.1093/bio-
informatics/btm500

Goloboff, P. (1999). Analyzing Large Data
Sets in Reasonable Times: Solutions for Com-
posite Optima. Cladistics, 15(4), 415–428.
doi:10.1111/j.1096-0031.1999.tb00278.x

Gottschling, M., Stamatakis, A., & Nindl, I. (2007).
Multiple Evolutionary Mechanisms Drive Papil-
lomavirus Diversification. Molecular Biology
and Evolution, 24(5), 1242–1258. doi:10.1093/
molbev/msm039

Hansen, H., Bachmann, L., & Bakke, T. A. (2003).
Mitochondrial DNA variation of Gyrodactylus
spp. Monogenea, Gyrodactylidae populations
infecting Atlantic salmon, grayling, and rain-
bow trout in Norway and Sweden. International
Journal for Parasitology, 33(13), 1471–1478.
doi:10.1016/S0020-7519(03)00200-5

236

Large-Scale Co-Phylogenetic Analysis on the Grid

Heinicke, M. P., Duellman, W. E., & Hedges,
S. B. (2007). From the Cover: Major Caribbean
and Central American frog faunas originated by
ancient oceanic dispersal. Proceedings of the
National Academy of Sci

Laure, E., Fisher, S., & Frohner, A. (2006). Pro-
gramming the Grid with gLite. Computational
Methods in Science and Technology, 12(1), 33–45.

Legendre, P., & Anderson, M. J. (1998). DistPCOA
program description, source code, executables,
and documentation: http://www.bio.umontreal.
ca/Casgrain/en/labo/distpcoa.html

Legendre, P., Desdevises, Y., & Bazin, E.
(2002). A Statistical Test for Host-Parasite Co-
evolution. Systematic Biology, 51(2), 217–234.
doi:10.1080/10635150252899734

Meier-Kolthoff, J. P., Auch, A. F., Huson, D. H.,
& Göker, M. (2007). COPYCAT: Co-phylogenetic
Analysis tool. Bioinformatics (Oxford, England),
23(7), 898–900. doi:10.1093/bioinformatics/
btm027

Meinilä, M., Kuusela, J., Zietara, M. S., & Lumme,
J. (2004). Initial steps of speciation by geographic
isolation and host switch in salmonid pathogen
Gyrodactylus salaris (Monogenea: Gyrodac-
tylidae). International Journal for Parasitology,
34(4), 515–526. doi:10.1016/j.ijpara.2003.12.002

Merkle, D., & Middendorf, M. (2005). Recon-
struction of the cophylogenetic history of related
phylogenetic trees with divergence timing infor-
mation. Theory in Biosciences, 123(4), 277–299.
doi:10.1016/j.thbio.2005.01.003

Ricklefs, R. E., Fallon, S. M., & Birmingham,
E. (2004). Evolutionary relationships, cospe-
ciation, and host switching in avian malaria
parasites. Systematic Biology, 53(1), 111–119.
doi:10.1080/10635150490264987

Ronquist, F., & Huelsenbeck, J. (2003). MrBayes
3: Bayesian phylogenetic inference under mixed
models. Bioinformatics (Oxford, England),
19(12), 1572–1574. doi:10.1093/bioinformatics/
btg180

Salzberg, S. L., Kingsford, C., & Cattoli, G.
(2007). Genome analysis linking recent European
and African influenza (H5N1) viruses. Emerging
Infectious Diseases, 13(5), 713–718.

Stamatakis, A. (2006). RAxML-VI-HPC: maxi-
mum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinfor-
matics (Oxford, England), 22(21), 2688–2690.
doi:10.1093/bioinformatics/btl446

Stamatakis, A., Auch, A. F., Meier-Kolthoff, J.,
& Göker, M. (2007). AxPcoords & parallel Ax-
Parafit: statistical co-phylogenetic analyses on
thousands of taxa. BMC Bioinformatics, 8, 405.
doi:10.1186/1471-2105-8-405

Stamatakis, A., Hoover, P., & Rougemont, J.
(2008). (in press). A Rapid Bootstrapping Algo-
rithm for the RAxML Web Servers. Systematic
Biology. doi:10.1080/10635150802429642

Stockinger, H., Pagni, M., Cerutti, L., & Falquet,
L. (2006). Grid Approach to Embarrassingly Paral-
lel CPU-Intensive Bioinformatics Problems. 2nd
IEEE International Conference on e-Science and
Grid Computing (e-Science 2006), IEEE Com-
puter Society Press, Amsterdam, The Netherlands.

Thomas, P. L., & Menzies, J. G. (1997). Cereal
smuts in Manitoba and Saskatchewan, 1989-95.
Canadian Journal of Plant Pathology, 19(2),
161–165. doi:10.1080/07060669709500546

Thompson, J. D., Higgins, D. G., & Gibson, T.
J. (1994). CLUSTAL W: improving the sensitiv-
ity of progressive multiple sequence alignment
through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic
Acids Research, 22(22), 4673–4680. doi:10.1093/
nar/22.22.4673

237

Large-Scale Co-Phylogenetic Analysis on the Grid

Zwickl, D. (2006). Genetic algorithm approaches
for the phylogenetic analysis of large biological
sequence datasets under the maximum likelihood
criterion. PhD Thesis, The University of Texas
at Austin.

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1,
Issue 1, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 39-54, copyright 2009 by IGI Publishing (an imprint of IGI Global).

238

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

INTRODUCTION

Heterogeneous distributed systems are the
emergent infrastructures for scientific comput-
ing. From peer-to-peer, volunteer computing
systems to the more structured ensembles of

scientific instruments, data repositories, clusters
and supercomputers such as computational grids
(Foster and Kesselman, 1999), these systems are
heterogeneous and dynamic in availability. Fur-
thermore, the wide-area links that interconnect
these resources are prone to transient or permanent
failures. These dynamic characteristics introduce

Philip Chan
Monash University, Australia

David Abramson
Monash University, Australia

Persistence and Communication
State Transfer in an

Asynchronous Pipe Mechanism

ABSTRACT

Wide-area distributed systems offer new opportunities for executing large-scale scientific applications.
On these systems, communication mechanisms have to deal with dynamic resource availability and the
potential for resource and network failures. Connectivity losses can affect the execution of workflow
applications, which require reliable data transport between components. We present the design and
implementation of π-channels, an asynchronous and fault-tolerant pipe mechanism suitable for coupling
workflow components. Fault-tolerant communication is made possible by persistence, through adaptive
caching of pipe segments while providing direct data streaming. We present the distributed algorithm
for implementing: (a) caching of pipe data segments; (b) asynchronous read operation; and (c) com-
munication state transfer to handle dynamic process joins and leaves.

DOI: 10.4018/978-1-60960-603-9.ch015

239

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

unique challenges for executing large-scale sci-
entific applications.

This research is motivated by the need to sup-
port fault-tolerant communication within scientific
workflows. A workflow consists of multiple pro-
cessing stages, where intermediate data generated
in one stage are processed in subsequent stages.
A workflow component can be a device or an
application, which is often modified to enable
communication. Thus, a scientific workflow is a
computational/data-processing pipeline; with data
being captured, processed and manipulated as it
pass through various stages (Figure 1). Currently,
the data transfers between component applications
are realised by: (a) file transfers (e.g. GridFTP);
(b) remote procedure calls (e.g. RPC-V, GridRPC,
OmniRPC); and (c) custom mechanisms (e.g.
Web Services).

For coupling workflow components, we pro-
pose the π-channel, an asynchronous and persis-
tent pipe mechanism. It is part of the π-Spaces/π-
channels programming model which features:

1. Simplified application coupling using string
channel names through π-Spaces. A π-Space
is a name space for π-channels, enabling dy-
namic binding of channel endpoints between
processes.

2. π-channel data are adaptively cached to
achieve persistence. This allows π-channels
to be created and written to, even in the ab-

sence of the reader. Persistence also makes
π-channels accessible even after the writer
has terminated.

3. Asynchronous receives are made possible
through a communication thread; thus, an
application is able to accept pipe segments
even when it is busy in computation.

This article focuses on how π-channel per-
sistence relates to fault-tolerant communication
in scientific workflows. The extended API and
semantics for π-Space/π-channels are presented.
We describe the design and implementation of
π-channels, including the server that implements
this model along with the underlying distributed
algorithm.

This article is organised as follows: We review
related work in the next Section § 2. Then, we
present the π-Spaces/π-channels programming
model in § 3, including its application program-
ming interface, semantics, and how fault-tolerance
is achieved for workflows. In § 4, we discuss in
detail its design and implementation, describing
the distributed algorithm. Experimental results
are presented in § 5, followed by the conclusions.

RELATED WORK

We briefly review the major models for commu-
nication on distributed environments highlighting
their differences from π-Spaces/π-channels.

Pipe/Channel Models

The pipe/channel is a well-known IPC mechanism
and appears in many forms: Unix pipes, named
pipes, and TCP sockets (Stevens, 1998). Sockets
with TCP, while used in network programming,
are too low-level for scientific application pro-
gramming. In particular, since communication
endpoints are identified using IP/host addresses
and port numbers, it is tedious to use in a dynamic,
failure-prone environment. In the event of a link

Figure 1. A simple four-stage workflow applica-
tion. Arrows indicate data flow between compo-
nent applications. Application B is an n-process
parallel application.

240

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

failure, TCP primitives will generate a “broken
pipe” exception, which require explicit handling.

The channel abstraction has its early begin-
nings in Kahn’s Process Networks (Kahn, 1974)
and Communicating Sequential Processes (Hoare,
1985). This abstraction is the basis of current
process calculi. Many coordination languages use
the channel model, e.g. MoCha (Guillen-Scholten
and Arbab, 2005), POLYLITH (Purtilo, 1994),
Programmer’s Playground (Goldman et al., 1995),
Conic (Magee et al., 1989), and Netfiles (Chan
and Abramson, 2001). Channels are provided in
Grid programming environments, e.g. Ibis (van
Nieuwpoort et al., 2005) and Vishwa (Reddy et al.,
2006). Vishwa applications communicate through
a pipe mechanism called DP (Johnson and Ram,
2001). However, these systems do not support
fault-tolerance in the communication.

Communication persistence was previously
explored by at least the following: (a) persistent
pipes for transactions (Hsu and Silberschatz,
1991); (b) persistent connections over TCP (Zhang
and Dao, 1995); and more recently, (c) the per-
sistent streaming protocol (Hua et al., 2004) and
(d) NapletSocket (Zhong and Xu, 2004). Unlike
π-Spaces/π-channels, these lack a logical name
space for communication endpoint coupling. For
example, IP addresses and ports are necessary for
configuring endpoints in (Hsu and Silberschatz,
1991) and (Zhang and Dao, 1995). Moreover,
π-Spaces/π-channels support asynchronous com-
munication.

Message-oriented middleware (MoM), e.g.
IBM’s Websphere MQ (IBM Websphere MQ,
2008) and the Microsoft Message Queueing
System (MSMQ) (Microsoft, 2008), present a
suite of asynchronous communication services
suitable for general transaction processing. The
message transfer times are in the order of minutes
instead of seconds or milliseconds (Tanenbaum
and Steen, 2007), reducing their applicability for
high-performance scientific applications. Further-
more, queue management requires tedious setup
and configuration, while the π-Spaces/π-channels

model is designed for efficient pipe creation/
retrieval, including dynamic binding of channel
endpoints.

π-Channels in Context with
Netfiles and GriddLeS

Our earlier work on Netfiles (Chan and Abramson,
2001, 2008) investigated file I/O as metaphor
for interprocess communication. The idea was
inspired from the Nimrod project (Abramson
et al., 1995, 1997). Nimrod is a middleware for
the executing large-scale parametric models (or
sweeps) over distributed systems. These para-
metric sweep applications can be built without
modifying the existing programs. For many such
applications, the component programs commu-
nicate by through data files, with file transfers
performed by the runtime.

In GriddLeS (Abramson and Kommineni,
2004), the file I/O metaphor is extended for wide-
area environments like Grids, implemented over
Web Services. The GriddLeS runtime provides
an I/O multiplexer, which transparently performs
file transfers and buffered remote I/O operations
to couple applications that read/write files. This
enables Grid workflows to be composed without
rewriting any program code, a feature useful
when existing legacy codes are executed over
computational grids.

The π-channel abstraction extends Netfiles
and GriddLeS with persistence and efficient
asynchronous operations. Furthermore, GriddLeS
offer static associations of names to process loca-
tions, while π-Spaces/π-channels provide dynamic
π-channels binding.

Message Passing

Message Passing Interface (MPI) is widely used for
writing parallel programs. However, Grid applica-
tions like scientific workflows require coupling
of multiple separate applications. For this, the
MPI-2 standard provides Unix socket-like inter-

241

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

face for accepting and establishing connections
between two MPI applications, enabling com-
munication with MPI_Send() and MPI_Recv().
Although fault-tolerance may be incorporated
into this mechanism, current projects (Fagg and
Dongarra, 2004; Batchu et al., 2004; Bouteiller et
al., 2006; Gropp and Lusk, 2004) are focused on
fault-tolerant IPC within an application.

In the MPI model, each process is identified
by an integer rank. Elegant and simple, this model
works very well on SPMD applications where the
number of processes is known and fixed. Phoenix
(Taura et al., 2003), for example, modifies the
process naming scheme so that processes may join
and leave the computation without the need to re-
assign ranks. When coupling multiple applications
in a workflow, it is useful to have a user-intuitive
convention to identify communication endpoints
(Chan and Abramson, 2007, p. 6).

Generative Communication Models

Linda (Carriero and Gelernter, 1989) is a genera-
tive communication model that features decoupled
communication. In Linda, processes communicate
by posting and retrieving ordered sequences of
values called tuples onto a logical shared space
called tuplespace. Its elegance has inspired many
systems such as Sun’s Javaspaces (Freeman et
al., 1999), and IBM’s T-spaces (Wyckoff et al.,
1998). The Linda tuplespace model encourages
decoupled communication along two dimensions.
First, tuples are posted and retrieved anonymously
from tuplespace, achieving space decoupling.
Second, since tuples are persistent, temporal
decoupling is possible, allowing non-concurrent
processes to communicate.

Workflows require efficient data transfers,
which is challenging to achieve in Linda. Exten-
sions have thus been proposed, e.g. WCL (Row-
stron, 1998) supports bulk transport of tuples.
Taskspaces (Sterck et al., 2003, 2005) provide
direct communication using the tuples to identify
communication endpoints (IP/port) and TCP to

connect processes. However, it lacks support for
communication fault-tolerance.

Π-CHANNELS: A PERSISTENT
PIPE MECHANISM

A π-channel is an enhanced unidirectional
(MRSW) pipe that has a unique user-specified
string name and a FIFO sequence of arbitrary-
length typed data segments, each treated as in-
divisible units. Fault-tolerant communication is
achieved by persistence, enabling π-channels to
be created and written to at any time, independent
of the sink/reader, thus encouraging temporal
decoupling.

During π-channel creation, if the matching
reader is known, a direct connection (if possible) is
used to efficiently transfer pipe segments. Due to
persistence (Chan and Abramson, 2007), delivery
of the π-channel to the π-Space continues (Figure
2a). This enables π-channel writes to proceed even
if the link and/or reader have failed during com-
munication. At this point, the pipe segments will
be written to the π-Space (Figure 2b). When the
reader resumes, a communication state transfer
re-establishes the connections between the reader,
the π-Space, and the writer.

π-Channels: Programming Model
and Semantics

Table 1 summarises the API for π-channels. This
is inspired from file-based I/O and connection-
oriented socket communication. The key dif-
ference is that a thread is employed to receive
data asynchronously. The read/write operations
resemble the standard Unix I/O operations, with
specifications of the segment data type, for het-
erogeneous communication.

242

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

THE Π-CHANNEL API

The π-channels programming interface consists
of the following:

1. pi_attach(str n, int s): attaches to a π-channel
with name n on space s, does not block even if
π-channel is absent. It initiates asynchronous
receive, allowing segments to be buffered
locally even before the pi_read() is issued.
This primitive returns a descriptor represent-
ing the “read” end.

2. int pi_create(str n, int s, int mode): creates
a π-channel with name n on space s. The
mode argument is used to specify if this is a
CREATE – for new π-channels; or APPEND
– to resume writing. On success, it returns
a descriptor representing the “write” end of
the created π-channel.

3. int pi_read(int d, ptr b, int len, dtype_t1t):
reads a segment of len elements of type t
into buffer b from the descriptor d, blocks
if no segments are available. It returns the
number of elements successfully read or -1
if end of the pipe is reached.

4. int pi_write(int d, ptr b, int len, dtype_t t):
writes a segment of len elements of type t
from buffer b into the descriptor d.

5. int pi_close(int d), int pi_detach(int d): closes
the “write” and “read” end of the π-channel
d, respectively.

6. int pi_seek(int d, int seg_id): moves the logi-
cal pipe pointer for d to start reading from
segment seg_id, with 0 as the first segment.
This only works at the read end. On success,
it returns 0.

7. pi_tell(int d): returns the segment ID of the
logical pipe pointer of the π-channel.

Figure 2. Dual π-channel behaviours: (a) when reader-to-writer link is available; and (b) during a
link failure, writer continues transmitting data to the space, delivery to the reader resumes upon link
restoration.

Table 1. A brief overview of the key π-channels primitives

π-channel Primitive Brief Description

pi_create() Creates a new π-channel.

pi_attach() Attach and retrieve a given π-channel.

pi_write() Writes a pipe segment.

pi_read() Reads a pipe segment.

pi_seek() Seek to a new read segment position.

pi_tell() Return the segment ID of upcoming segment.

pi_close() Closes a π-channel that is opened for writing.

pi_detach() Detach from reading a π-channel.

pi_unlink() Marks a closed π-channel for deletion.

243

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

8. pi_unlink(str n): marks the π-channel n for
deletion, returns -1 for open π-channels.

With persistence, a π-channel behaves as
both: (a) an archival file – writes can proceed
without readers; and (b) an online pipe – when
the reader/s and the writer are concurrent. This
duality makes pi_seek() possible, when such an
operation would be meaningless on conventional
pipes. All π-channels are immutable, so pi_seek()
is disabled at the “write” end.

SEMANTICS OF Π-CHANNEL
OPERATIONS

Figure 3 shows a state-transition diagram for
π-channels. The top three states show the life-
cycle of a π-channel as it is created, written-to,
closed, and deleted. The remaining states show
the transitions when there is a concurrent reader.
In particular, the Read/Write applies when the
π-channel has one active writer and at least one
active reader. At the Reading state, the π-channel

behaves like a stored file object, with data seg-
ments retrieved from π-Space.

This simple semantics facilitates a straightfor-
ward failure recovery mechanism. The key is to
enable the application to resume π-channel op-
erations upon recovery, without affecting its cor-
rectness. During writer recovery, pi_create() and
pi_write() operations are “redone.” If segments
are already cached, the sequence of pi_write()
operations are replayed, without changing
π-channel segments that are already on π-Space.
Eventually, a new segment is written marking to
start of normal operation. During reader recovery,
all pi_attach() and pi_read() are performed on
cached π-channels, with pipe segments delivered
from the cache. Processes are assumed to be
piecewise deterministic, thus able to repeat the
results it generated in a previous failed execution.

π-Spaces: Abstraction of
Shared Space for π-Channels

Process coordination is through one or more
π-Spaces. Similar to Linda tuplespace, a π-Space
is a shared space abstraction for π-channels, which

Figure 3. The states of a π-channel

244

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

are explicitly posted and retrieved by processes
(Figure 4). A π-Space is a logical name space for
π-channels, providing dynamic binding of chan-
nel endpoints.

Persistence fits elegantly with the model of
shared spaces. When a π-channel is created, a
copy is automatically posted on the π-Space.
During a pi_attach(), the π-Space is accessed to
retrieve the named π-channel. Within a single
π-Space, a name is bound to at most one π-channel.
To reuse an existing name, the π-channel has to
be marked for deletion. The programming model
includes operations to create, access, and close
π-Spaces, enabling the use of multiple spaces
within a single application.

Support for Fault-Tolerance
and Application Migration

During a workflow execution, the following
events may occur:

1. The source application (writer) leaves the
workflow. Unless the downstream compo-
nents do not require any further data from this
writer, the entire workflow may be stalled.
This also occurs when all outstanding data
segments has been consumed.

2. The sink application (reader) leaves the
workflow. The writer continues streaming
to the cache (π-Space), ignoring the loss of
the reader. When the reader recovers, it can
resume reading from the π-Space.

3. The link between applications is severed.
Assuming that the π-Space is implemented
as a reliable service; this is considered as
a combination of source failure – from the
perspective of the sink; and sink failure –
from the perspective of the source.

An application may leave a workflow vol-
untarily or involuntarily. A voluntary departure
occurs when it migrates to another resource.
Communication state transfer is employed to re-
establish connections with migrated applications.
An involuntary departure may be due to machine
failure and/or application crash. We assume the
fail-stop failure model, i.e., the process crashes
and performs no further communication. A con-
nection loss is treated as a component failure
and is detected when a communication operation
cannot be completed.

Figure 4. Shared space communication in π-Space/π-channels

245

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

DESIGN AND IMPLEMENTATION

The π-Spaces/π-channels model is implemented
as an API with a runtime system, and a multi-
threaded server that provides the dynamic lookup
and storage of π-channels. A π-Server manages
a single π-Space, which encourages deploying
multiple servers to improve the distribution of
load. Furthermore, a π-Server may execute at the
cluster head node, serving as a communication
gateway to processes on remote clusters.

Basic Components and General
Functional Description

Figure 5 (right) presents the π-Server components.
The server maintains a thread pool for incoming
and outgoing transmissions, providing a non-
archival pipe storage service. The thread count
is configurable to support different application
loads. The in-bound threads handle incoming data
streams from sources, while out-bound threads
forward/push π-channel data to sinks. Data streams
are transported using a TCP protocol, while look-
ups are implemented using a lightweight UDP
protocol with retransmission capability.

Figure 5 (left) shows the client-side compo-
nents. Each π-Spaces/π-channels application is
capable of accepting incoming transmissions

asynchronously. During a pi_attach(), the reader
informs the server of its identity. This allows data
streams to be forwarded to the reader while it is
busy performing computations. A single event-
driven in-bound thread stores incoming segments
into a buffer (by the data store component). When
buffer capacity is reached, data segments are
stored into a local file, identified by the pipe_id.
During a pi_read(), this buffer/file is accessed to
retrieve the requested segment.

General Description of the
Distributed Algorithm

Table 2 presents the distributed algorithm for
the π-Spaces/π-channels. We adopt the Python
convention to indicate block structure (i.e., the
statement alignment determines a block). The
notation (#line_no) is used in-text when referring
to the algorithm.

The pair (pipe_id, space_id) represents a
system-wide π-channel identifier, and pipe_id is
unique within each π-Space. Since the algorithm
assumes a single π-Space, we remove reference
to the space_id.

Each participating application maintains the
following variables:

Figure 5. Client-side components and design of the π-server

246

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

Table 2. Distributed algorithm for π-spaces/π-channels

Client API 39 check_restore (pipe_id):

1 pi_attach (n): 40 query π-Server for status of migrated reader

2 send 〈 get, n, my_id 〉 to π-Server 41 if migrated reader found:

3 recv 〈 get, &pipe_id 〉 from π-Server 42 fd ← connect to migrated reader

4 id ← free entry on local id_tab 43 update fd_list with new fd

5 if buffer for pipe_id does not exist: 44 remove reader from hold_list

6 create buffer for pipe_id

7 associate pipe_id & buffer with id Algorithm of the π-server

8 return id 45 On 〈 get, &n, &src 〉:

46 entry ← find n on π-table

9 pi_create (n): 47 if entry does not exist:

10 send 〈 put, n, my_id 〉 to π-Server 48 entry ← create n on π-table

11 recv 〈 get, &pipe_id, &dest_list 〉 from π-Server entry.reader ← src

12 foreach dest in dest_list: 50 entry.has_reader ← true

13 fd_list [dest] ← connect to dest 51 pipe_id ← entry.pipe_id

14 id ← free entry on local id_tab 52 send 〈 get, pipe_id 〉 to src

15 associate fd_list & pipe_id with id 53 if entry.is_cached:

16 return id 54 initiate forwarding to src

17 pi_read (id, m, len): 55 On 〈 put, &n, &src 〉:

18 off ← compute offset 56 entry ← find n on π-table

19 buffer ← retrieve buffer for id 57 if entry does not exist:

20 block until seg [off, len] in buffer || eoc 58 entry ← create n on π-table

21 if segment was found: 59 dest_list ← ()

22 get seg [off, len] from buffer 60 if entry.has_reader:

23 store segment into m 61 append entry.reader to dest_list

24 return len 62 append my_id to dest_list

25 return –1 /*end of channel */ 63 pipe_id ← entry.pipe_id

64 entry.is_cached ← true

26 pi_write (id, m, len): 65 send 〈 put, pipe_id, dest_list 〉 to src

27 pipe_id ← map pipe_id from id

28 fd_list ← retrieve fd_list for id Algorithm of the in-bound thread

29 off ← compute offset 66 On CON 〈 &src, &pipe_id 〉:

30 success_count ← 0 67 fd ← accept inbound connection

31 foreach dest in fd_list: 68 buffer ← retrieve buffer for pipe_id

32 write SEG 〈 pipe_id, m, off, len 〉 to dest 69 if buffer does not exist:

33 if write successful: 70 create buffer for pipe_id

34 success_count++ 71 associate fd with pipe_id

35 if success_count < len(fd_list):

36 check_restore(pipe_id) 72 On SEG 〈 &pipe_id, &m, &off, &len 〉:

37 update status of pipe_id 73 buffer ← retrieve buffer for pipe_id

38 return len 74 store m at offset off

continued on following page

247

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

1. my_id – unique ID, implemented as an IP/
port pair. The port number is dynamically
generated during application startup.

2. id_tab – a local table (#4, #14) associating
the pipe_id with open file descriptors fd_list,
channel read-write pointers, and other local
state information. This table corresponds to
the π-channel internal state component in
Figure 5.

During a pi_create(), a put request (#10) is
sent to the π-Server, which creates (#58–#65) an
entry for this π-channel on a hash table and re-
turns a unique pipe_id. It replies (#58, #61, #62)
with a list (possibly empty) of destinations. If the
reader’s identity is known, the reader’s address
appears first, followed by the server’s address.
The pi_create() establishes (#12, #13) a connec-
tion with the destinations and associates the pipe
with the file descriptors. It returns as descriptor
(#14, #16) the position of the π-channel on id_tab.

The pi_attach() sends a get request to the server
(#2), which replies (#51, #52) with the unique
pipe_id for the π-channel, even if non-existent. The
server creates an entry for this π-channel, storing
the reader’s address for use in channel creation.

A pi_read() does not read directly from the open
connection with the source. Instead, incoming
data segments are handled by the in-bound thread
(#66–#74), which listens and accepts TCP opera-
tions on behalf of the application. The π-Server
manages a thread pool for the same purpose of
enabling asynchronous read operations. When the
in-bound thread accepts a π-channel, it allocates
a buffer (#70) for pipe segments. Each segment
(#72–#74) contains type information, length,
offset, and pipe_id. The received segments are

stored in a shared buffer, so that pi_read() can
retrieve (#19, #22) them. The out-bound thread
pushes π-channels to sinks (#54, #75–#78). Dur-
ing reader recovery, these threads send missed
segments to the reader.

We only outline the migration mechanism
(Table 3), showing when application state is saved
and restored after migration. The idea (#79–#86)
is to attempt a graceful connection shutdown
before migrating. Since pipes are cached, unde-
livered data segments can be retrieved from the
π-Server. The hold_list (#89, #44) identifies the
migrating processes.

Communication state migration, similar to
(Chanchio & Sun, 2004), performs a connection
hand-over with the migrated reader (#39–#43).
In Figure 6, the migrated peer re-establishes con-
nection with the writer so that: (1) Seg 2 is retrieved
from the π-Server; and at the same time (2) Seg
3 is streamed from the writer.

EXPERIMENTAL RESULTS

Two aspects of the implementation are evaluated.
First, we measure the rate in which π-channel
lookup operations are handled by the π-Server
under two scenarios: (a) π-Server and clients are
on one cluster; and (b) clients perform lookups
over a wide-area network. Second, we measure
the throughput when communication takes place
between two applications over our WAN testbed.
This test shows how asynchronous read operations
improve the bandwidth utilisation. Table 4 lists the
resources we used. VPAC (Victorian Partnership
for Advanced Computing) is an HPC consortium

Algorithm of the out-bound thread

75 if forwarding π-channel pipe_id to dest:

76 fd ← open connection to dest

77 foreach segment ∈ local buffer:

78 send segment to fd

Table 2. continued

248

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

of universities in Victoria, Australia. Our wide-area
testbed uses both Monash and VPAC resources.

π-Server Lookup Performance

We evaluate the request-handling rate of the
π-Server, with up to 32 clients concurrently gen-

erating lookup requests. Table 5 presents results
conducted over mahar, measuring the execution
time of all clients when looking up 25 366 unique
but randomly generated π-channel names. Each
client performed 40 000 lookups, without chan-
nel read/write operation. Clients were assigned
on execute nodes, with the π-Server on the head
node. At least 12 runs were performed for each
test case, using only the timings from the middle
10 runs.

On Table 6, we present the timings for lookups
on a WAN between Monash and VPAC. Clients
ran on mahar compute nodes with the π-Server
running on wexstan’s head node, using the same
parameters as in the LAN tests. These results
indicate that the bottleneck for grid applications
will most likely be the high latencies between the
π-Server and the clients.

Table 3. The communication migration protocol

79 if I am migrating:

80 disable sending acks for heartbeats

81 migrating ← true

82 foreach open π-channel:

83 save offset into checkpoint

84 flush and close all connections

85 perform local state checkpoint

86 send checkpoint to the new location

87 if a peer is migrating:

88 /* reject connections from this list */

89 add peer_addr to hold_list

Figure 6. Time diagrams showing concurrent reading of a π-channel from π-Server and writer. In (a),
the migrated reader resumes reading from cache. In (b), it also resumes connection with the writer.

Table 4. Participating systems in our experiments

Name Location Processor OS #CPUs

mahar.infotech.monash.edu.au Monash Intel P4 Linux 2.4.27-3 50

edda.vpac.org VPAC IBM Power5 SLES 9 Linux 80

wexstan.vpac.org VPAC AMD Opteron Red Hat Linux 246

tango.vpac.org VPAC AMD Opteron CentOS 5 Linux 760

249

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

π-Channel Throughput on a Multi-
Cluster Testbed

We evaluate and compare the data transfer through-
put using π-channels under three scenarios: (a)
matched create/attach operations; (b) create first,
then attach; and (c) asynchronous read opera-
tions. Two processes are executed, using a pair
of π-channels for communication.

For scenario one, processes use paired pi_at-
tach() and pi_create() operations, i.e., when one
process is writing, the other is reading. For
the second scenario, each process executes all
π-channel writes first, followed by reads. The
π-Server caches most of the pipe segments during
the write phase. Once the processes perform the
pi_attach(), the pipe segments are retrieved from
the π-Server rather than the writer.

In the third scenario, processes initiate a non-
blocking pi_attach() on an inbound channel first,
before a pi_create(), followed by the write and
then read operations. This notifies the π-Server of
a pending request for a channel, providing writers
with the destination addresses and encouraging

direct streaming. The performance results show
a reduced dependence on the π-Server to store
pipe segments.

Figure 7 shows the segment send rates while
Figure 8 presents the measured bandwidth. The
π-Server executed on edda, one application on
tango and another on wexstan. The best perfor-
mance is achieved under asynchronous operation
(scenario three). The detailed results are presented
on Table 7. The tests were conducted with at least
12 trials per case. Of these, the mean is computed
using ten results, discarding the highest and
lowest values. The standard deviation given is
for the throughput, i.e., the mean message send
rates for each of the segment sizes. Note the
absence of observable performance differences
for Scenario 1 and 2. This means that matching
pi_attach() with pi_create() operations does not
lead to any improvement in data transfer rates.
Thus, π-Space/π-channels applications may be
written without using an odd-even rule to match
reads and writes.

In Scenario 3, the use of pi_attach() notifies
the π-Server of a pending request to retrieve a

Table 5. UDP request-reply performance within a cluster

Number of Clients 2 4 8 16 32

Number of Requests Served 80 000 160 000 320 000 640 000 1 280 000

Mean Execution Times (s) 21.99 25.51 38.72 44.65 96.58

Standard Deviation 0.822 0.813 0.741 0.430 0.170

Request Rate (per second) 3 642.6 6 277.6 8 267.1 14 335 13 390

Standard Deviation 138.89 200.85 162.38 137.58 23.82

Table 6. UDP request-reply performance on a WAN

Number of Clients 2 4 8 16 32

Number of Requests Served 10 000 20 000 40 000 80 000 160 000

Mean Execution Times (s) 10.58 11.02 11.52 12.34 24.74

Standard Deviation 0.518 0.340 0.285 0.122 0.268

Request Rate (per second) 946.4 1 815.6 3 473.8 6 480.8 6 467.6

Standard Deviation 46.32 56.53 86.53 64.07 70.39

250

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

π-channel. This makes it possible for the writer
of that π-channel to transmit the channel segments
directly to the reader, showing a substantial im-
provement in the data transfer performance over
that of the first two scenarios. Furthermore, the
overlap of sends and receives results in better
utilisation of the available bandwidth.

CONCLUSION

We have presented π-Spaces/π-channels, a com-
munication mechanism for scientific workflows
on dynamic environments, where resources
may fail and network links may be disrupted.
The key feature of π-channels is persistence,
enabling communication despite process failures
or departures. This article presents its design and
implementation. In particular, we describe the
distributed algorithm showing how persistence

Figure 7. Measured message-send rates with a ping-pong benchmark

Figure 8. Measured bandwidth with a ping-pong π-Space/π-channels application. The horizontal bar
shows the measured bandwidth using iperf2

251

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

is achieved with the caching mechanism and the
asynchronous operation using the in-bound thread.
A communication state transfer mechanism is
employed, which re-establishes connections with
migrated components to improve the data stream
transfer time. Experimental results show that the
caching mechanism is able to buffer channel data
segments and when asynchronous operation is
employed, throughput is substantially increased.
With asynchronous operation, sending and receiv-
ing of messages can be overlapped, resulting in
improved message sending rates than normal
non-asynchronous operation.

ACKNOWLEDGMENT

We thank the Victorian Partnership for Advanced
Computing (VPAC) for the use of their facilities
and for their continuing support for this project.

REFERENCES

Abramson, D., Foster, I., Giddy, J., Lewis, A.,
Sosic, R., Sutherst, R., & White, N. (1997). Nim-
rod Computational Workbench: A Case Study in
Desktop Metacomputing. In Australian Computer
Science Conference (ACSC 97). Macquarie Uni-
versity, Sydney.

Abramson, D., & Kommineni, J. (2004). A Flex-
ible IO Scheme for Grid Workflows. In Proc. of
the 18th International Parallel and Distributed
Processing Symposium. Krakow, Poland.

Abramson, D., Sosic, R., Giddy, J., & Hall, B.
(1995). Nimrod: A Tool for Performing Parameter-
ised Simulations using Distributed Workstations.
In Proc. of the 4th IEEE Symposium on High
Performance Distributed Computing. Virginia.
IEEE Press.

Batchu, R., Dandass, Y. S., Skjellum, A., & Beddhu,
M. (2004). MPI/FT: A Model-Based Approach to
Low-Overhead Fault Tolerant Message-Passing
Middleware. Cluster Computing, 7(4), 303–315.
doi:10.1023/B:CLUS.0000039491.64560.8a

Table 7. Results from the bandwidth and throughput measurements

Size of Segment (bytes) 1024 2048 4096 8192 16384 32767 65535

Scenario 1

Throughput 6781.586 3638.966 1794.872 871.818 460.053 230.603 120.902

Std. Dev. 186.270 25.994 37.553 7.248 7.471 3.927 1.467

Bandwidth (MB/s) 6.623 7.107 7.011 6.811 7.188 7.206 7.556

Scenario 2

Throughput 6646.947 3627.420 1773.944 892.972 454.091 235.335 117.091

Std. Dev. 140.815 26.239 29.443 7.959 7.517 2.163 1.622

Bandwidth (MB/s) 6.491 7.085 6.929 6.976 7.095 7.354 7.318

Scenario 3

Throughput 8841.626 3983.438 2166.548 1185.448 575.914 300.792 152.712

Std. Dev. 249.939 15.483 19.652 14.235 8.900 4.880 1.309

Bandwidth (MB/s) 8.634 7.780 8.463 9.261 8.999 9.399 9.544

252

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

Bouteiller, A., Hérault, T., Krawezik, G., Le-
marinier, P., & Cappello, F. (2006). MPICH-V
Project: A Multiprotocol Automatic Fault-Tolerant
MPI. International Journal of High Perfor-
mance Computing Applications, 20(3), 319–333.
doi:10.1177/1094342006067469

Carriero, N., & Gelernter, D. (1989). How to
Write Parallel Programs: A Guide to the Per-
plexed. ACM Computing Surveys, 21(3), 323–357.
doi:10.1145/72551.72553

Chan, P., & Abramson, D. (2001). NetFiles: A
Novel Approach to Parallel Programming of
Master/Worker Applications. In Proc. of the
5th International Conference and Exhibition on
High-Performance Computing in the Asia-Pacific
Region (HPCAsia 2001), Queensland, Australia.

Chan, P., & Abramson, D. (2007). π-spaces:
Support for Decoupled Communication in Wide-
Area Parallel Applications. In Proc. of the Sixth
International Conference on Grid and Coopera-
tive Computing, (pp. 3–10). Urumchi, Xinjiang,
China: IEEE.

Chan, P., & Abramson, D. (2008). Netfiles:
An Enhanced Stream-based Communication
Mechanism. In J. Labarta, K. Joe, & T. Sato
(Eds.), High-Performance Computing, Revised
Selected Papers. Sixth International Symposium,
ISHPC 2005 and First International Workshop
on Advanced Low Power Systems, ALPS 2006,
4759 of Lecture Notes in Computer Science, (pp.
254–261). Springer-Verlag.

Chanchio, K., & Sun, X.-H. (2004). Communi-
cation State Transfer for Mobility of Concurrent
Heterogeneous Computing. IEEE Transactions
on Computers, 53(10), 1260–1273. doi:10.1109/
TC.2004.73

Fagg, G. E., & Dongarra, J. (2004). Building
and Using a Fault-Tolerant MPI Implementa-
tion. International Journal of High Performance
Computing Applications, 18(3), 353–361.
doi:10.1177/1094342004046052

Foster, I., & Kesselman, C. (1999). Computational
Grids. In The Grid: Blueprint for a New Comput-
ing Infrastructure, (pp. 15–51).

Freeman, E., Hupfer, S., & Arnold, K. (1999).
JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley.

Goldman, K. J., Swaminathan, B., McCartney, T.
P., Anderson, M. D., & Sethuraman, R. (1995).
The Programmers’ Playground: I/O Abstraction
for User-Configurable Distributed Applications.
IEEE Transactions on Software Engineering,
21(9), 735–746. doi:10.1109/32.464547

Gropp, W., & Lusk, E. (2004). Fault Toler-
ance in Message Passing Interface Programs.
International Journal of High Performance
Computing Applications, 18(3), 363–372.
doi:10.1177/1094342004046045

Guillen-Scholten, J., & Arbab, F. (2005). Coor-
dinated Anonymous Peer-to-Peer Connections
with MoCha. In N. Guelfi, G. Reggio, & A.
Romanovsky, (Eds.), Scientific Engineering of
Distributed Java Applications, Revised Selected
Papers. 4th International Workshop, FIDJI 2004,
3409 of Lecture Notes in Computer Science, (pp.
68–77). Springer-Verlag.

Hoare, C. (1985). Communicating Sequential
Processes. Prentice Hall.

Hsu, M., & Silberschatz, A. (1991). Unilateral
Commit: A New Paradigm for Reliable Distrib-
uted Transaction Processing. In Proc. of the 7th
International Conference on Data Engineering,
(pp. 286–293). IEEE Computer Society.

253

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

Hua, K. A., Jiang, N., Peng, R., & Tantaoui, M.
A. (2004). PSP: A Persistent Streaming Protocol
for Transactional Communications. In ICCCAS
2004: Proc. of the 2004 International Conference
on Communications, Circuits and Systems, 1,
529–533. IEEE Computer Society.

IBM Websphere MQ. (2008). The IBM Websphere
MQ Family. [online]. URL: http://www.ibm.com/
software/websphere. (March, 2008).

Johnson, B. K., & Ram, D. J. (2001). DP: A Para-
digm for Anonymous Remote Computation and
Communication for Cluster Computing. IEEE
Transactions on Parallel and Distributed Systems,
12(10), 1052–1065. doi:10.1109/71.963417

Kahn, G. (1974). The Semantics of Simple Lan-
guage for Parallel Programming. In Proc. of the
1974 IFIP Congress, (pp. 471–475).

Magee, J., Kramer, J., & Sloman, M. (1989).
Constructing Distributed Systems in Conic. IEEE
Transactions on Software Engineering, 15(6),
663–675. doi:10.1109/32.24720

Microsoft. (2008). Microsoft Message Queue-
ing. [online]. URL: http://www.microsoft.com/
windowsserver2003/technologies/msmq/default.
mspx (March, 2008).

Purtilo, J. M. (1994). The POLYLITH Soft-
ware Bus. ACM Transactions on Program-
ming Languages and Systems, 16(1), 151–174.
doi:10.1145/174625.174629

Reddy, M. V., Srinivas, A. V., Gopinath, T., &
Janakiram, D. (2006). Vishwa: A Reconfigurable
P2P Middleware for Grid Computations. In Proc.
of the 2006 International Conference on Parallel
Processing (ICPP 2006). IEEE Press.

Rowstron, A. (1998). WCL: A Co-ordination
Language for Geographically Distributed Agents.
World Wide Web (Bussum), 1(3), 167–179.
doi:10.1023/A:1019263731139

Sterck, H. D., Markel, R. S., & Knight, R. (2005).
A Lightweight, Scalable Grid Computing Frame-
work for Parallel Bioinformatics Applications. In
HPCS’05: Proc. of the 19th International Sympo-
sium on High Performance Computing Systems
and Applications. IEEE Press.

Sterck, H. D., Markel, R. S., Pohl, T., & Rüede,
U. (2003). A Lightweight Java Taskspaces Frame-
work for Scientific Computing on Computational
Grids. In SAC2003: Proc. of the ACM Symposium
on Applied Computing, (pp. 1024–1030). New
York, NY, USA: ACM Press.

Stevens, W. R. (1998). Unix Network Program-
ming: Networking APIs: Sockets and XTI, 1 (2nd
ed.). Prentice-Hall PTR.

Tanenbaum, A. S., & Steen, M. V. (2007). Distrib-
uted Systems: Principles and Paradigms. Pearson
Prentice Hall, 2 edition.

Taura, K., Kaneda, K., Endo, T., & Yonezawa, A.
(2003). Phoenix: A Parallel Programming Model
for Accommodating Dynamically Joining/Leav-
ing Resources. In PPoPP ’03: Proc. of the Ninth
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, (pp. 216–229),
New York, NY, USA: ACM Press.

van Nieuwpoort, R. V., Maassen, J., Wrzesinska,
G., Hofman, R. F. H., Jacobs, C. J. H., Kielmann,
T., & Bal, H. E. (2005). Ibis: a Flexible and Ef-
ficient Java-based Grid Programming Environ-
ment. Concurrency and Computation, 17(7–8),
1079–1107. doi:10.1002/cpe.860

Wyckoff, P., McLaughry, S. W., Lehman, T. J.,
& Ford, D. A. (1998). T Spaces. IBM Systems
Journal, 37(3), 454–474. doi:10.1147/sj.373.0454

Zhang, Y., & Dao, S. (1995). A ‘Persistent Connec-
tion’ Model for Mobile and Distributed Systems.
In ICCCN ’95: Proc. of the 4th International
Conference on Computer Communications, (pp.
300–307). IEEE Computer Society.

254

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

Zhong, X., & Xu, C.-Z. (2004). A Reliable Con-
nection Migration Mechanism for Synchronous
Transient Communication in Mobile Codes. In
Proc. of the 2004 International Conference on
Parallel Processing. IEEE Press.

ENDNOTES

1 The dtype_t covers various data types, e.g.
PI_INT, PI_FLOAT, etc.

2 http://sourceforge.net/projects/iperf

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1,
Issue 3, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 18-36, copyright 2009 by IGI Publishing (an imprint of IGI Global).

255

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

DOI: 10.4018/978-1-60960-603-9.ch016

INTRODUCTION

Foster (2002) offers a checklist for recognizing a
“grid”. A grid allows

• Coordination of resources that are not sub-
ject to centralized control;

• Use of standard, open, general-purpose
protocols and interfaces; and

• Delivery of nontrivial qualities of service.

The emergence of the Wireless Grid meets
all these criteria and is fueled by technological
advances in grid computing and wireless technol-
ogy. The ultimate vision of the grid is that of an
adaptive network offering secure, inexpensive,
and coordinated real-time access to dynamic,
heterogeneous resources, potentially traversing
geographic boundaries but still able to maintain
the desirable characteristics of a simple distributed
system, such as stability, transparency, scalability

Ashish Agarwal
Carnegie Mellon University, USA

Amar Gupta
University of Arizona, USA

Self-Configuration and
Administration of Wireless Grids

ABSTRACT

A Wireless Grid is an augmentation of a wired grid that facilitates the exchange of information and
the interaction between heterogeneous wireless devices. While similar to the wired grid in terms of its
distributed nature, the requirement for standards and protocols, and the need for adequate Quality of
Service; a Wireless Grid has to deal with the added complexities of the limited power of the mobile
devices, the limited bandwidth, and the increased dynamic nature of the interactions involved. This
complexity becomes important in designing the services for mobile computing. A grid topology and
naming service is proposed which can allow self-configuration and self-administration of various pos-
sible wireless grid layouts.

256

Self-Configuration and Administration of Wireless Grids

and flexibility. The technologies originally de-
veloped for use in a wired environment are now
being augmented to operate in wireless situations.
The development of the wireless technologies
such as 802.11, GPRS, and 3G has extended the
reach of wireless services to all the individuals.
With the ubiquity and indispensability of wireless
technologies established, these technologies are
now making inroads into grids.

A wireless grid has to face added complexity
due to the limited power of the mobile devices,
the limited bandwidth, and the increased dynamic
nature of the interactions involved. This added
complexity has to be considered while designing
service oriented architecture for mobile devices
(Oliveira et al, 2006). This article highlights the key
characteristics of the wireless grids and suggests
various possible grid layouts. A grid topology and
a naming protocol have been proposed to address
the self-configuration and self-administration
requirements of these grid layouts. This article
is organized as follows. Section 2 describes the
key characteristics of the wireless grids. Section
3 describes various possible grid layouts. Section
4 mentions the technical challenges associated
with these layouts. Section 5 introduces a grid
topology and a naming protocol to address the self
configuration and self administration challenges.
Section 6 concludes the article.

KEY CHARACTERISTICS

The development of the wireless grid technologies
is governed by three driving forces:

• New User Interaction Modalities and
Form Factors: Traditional applications
that can exist on the Wired Grid need to
expand their scope by extending the inter-
actions to mobile devices through adapting
the user interface to small screens, small
keyboards, and other I/O modalities such
as speech. The mobile access interface

needs to address the issue of connectivity
of mobile devices.

• Limited Computing Resources: Wireless
applications need to share the resources
and to provide access to additional com-
putational resources to mitigate the con-
straints imposed by limited storage, com-
putational capability, and power of mobile
devices.

• Additional New Supporting
Infrastructure Elements: New applica-
tions, especially ones involving dynamic
and unforeseen events, need to be ad-
dressed through the rapid provisioning of
major amounts of computational and com-
munications bandwidths. For example, the
occurrence of an urban catastrophe could
trigger a dynamic adaptive wireless net-
work to alert people to organize remedial
actions in a coordinated fashion, and to
provide better control of available resourc-
es and personnel.

Grid Resources

A Wireless Grid must provide a virtual pool of
computational and communications resources
to consumers at attractive prices. Various grid
resources are described below:

• Computing Power: Wireless devices pos-
sess limited computation power. Wireless
grids can overcome this limitation by dis-
tributing the computational tasks across
multiple power-constrained devices. But
this raises the need for establishing ap-
propriate collaborative processes between
these geographically distributed tasks.

• Storage Capacity: Wireless devices pos-
sess limited storage capability. Grids can
overcome this limitation by distributing the
data storage over multiple devices. Data
can be recombined into a single entity and
then made available to the users. However,

257

Self-Configuration and Administration of Wireless Grids

this creates the need to enable data access
and update to occur simultaneously and to
avoid contention through the application of
advanced synchronization techniques.

• Communications Bandwidth: Wireless
grids can harness the power of wireless
technology to allow remote access. At the
same time, the grid infrastructure should
be robust enough to ensure high Quality of
Service (QoS).

• Multiplicity of Applications: Wireless
Grids should allow the users ubiquitous
access to a wide variety of applications.
However, one needs to overcome the need
to install these applications on separate
mobile devices.

GRID LAYOUT

Drawing upon the paradigm of the wired grids
(Gentzsch, 2001; Ong, 2003 and Tiang, 2003),
various layouts of the wireless grids are possible.
The classification schemes can be based on the
architecture or on the function of the grids.

Classification by Architecture

One way to characterize the architecture of the
wireless grid is by the degree of heterogeneity
of the actual devices and the level of control
exercised by those who own and administer the
devices (figure 1). It can vary from a simple net-
work of homogeneous devices bound by a single
set of policies and rules to a complex network
of heterogeneous devices spread across multiple
organizational, political and geographical bound-
aries, as categorized below:

• Local Cluster or Homogeneous Wireless
Grid: This simplest form involves a local
collection of identical or similar wireless
devices that share the same hardware ar-
chitecture and the same operating systems.
Because of the homogeneity of the end
systems, the integration of these devices
into the wireless grid, as well as the conse-
quent sharing of resources, becomes a
much easier task. Today, this type of orga-
nization is more likely to be found in a
single division of an organization where
one single administrative body exercises
control over all the devices. An example

Figure 1. A simplified depiction of the 3-tier wireless Grid architecture (adapted from Ong, 2003)

258

Self-Configuration and Administration of Wireless Grids

would be a network of mobile handheld
devices for coordinating medical person-
nel in the hospital. A local cluster can be
used to coordinate field personnel engaged
in collaborative tasks such as construction,
mining, or repair services. It can also be
used in a remote sensor network for moni-
toring crops or seismic activities. It re-
mains to be seen whether market forces
will result in convergence of hardware
(virtual or real) and software and the emer-
gence of a dominant design, which can ex-
ploit resource-sharing strategies that are
more intimately bound to the device.

• Wireless Intra-Grids: An intra-grid en-
compasses wireless devices that belong to
multiple divisions or communities within
an actual organization (AO). The divisions
may be located in different geographies
and maybe governed by a separate set of
policies, but there exists a level of trust and
oversight so that “ground truth” may be
known with respect to identity and charac-
teristics. AOs are the point where resolu-
tion can occur between the virtual presence
of a wireless entity and its actual name and
location. AOs also tend to be persistent in
time, and become the point of composition
among other AOs. An example of an intra-
grid would be a wireless grid that simul-
taneously supports the mobile sales force
of a company and the networks of wireless
sensors used by the manufacturing division
for tracking inventory. Similarly, an intra-
grid can be used by a facilities management
company to monitor its facilities and to co-
ordinate its personnel to address service re-
quests from the facilities. One can expect a
detailed interaction among the constituents
of an intra-grid due to tighter interaction
in the business processes. A salesperson
can request the status of inventory for his
or her customer through the intra-grid that

connects the sales network to the inventory
tracking system.

• Inter-Grid: An inter-grid encompass-
es multiple AOs and transcends greater
amounts of geographical, organizational,
and other types of differences, such as ones
related to intellectual property rights and
national laws. Multiple AOs may come
together to form Virtual Organizations
(VOs) where they can collaborate and
share resources such as information,
knowledge, and even market access to
exploit fast-changing market opportuni-
ties. The relationship can be long or short
term (Ong, 2003). Resource management
and policy integration (security, authenti-
cation and data management tasks) attain
greater complexity due to the scalability
requirements. To move beyond mere ad
hoc composition of AOs, a (potentially)
universal composition of declarative poli-
cies must be proposed and accepted. An
example of an inter-grid interaction would
be a scenario involving an American tour-
ist visiting Japan and trying to conduct a
local e-commerce transaction using his/her
cell phone. The transaction would involve
a handshake between the traveler’s cell
phone service provider, traveler’s credit
card company, the Japanese wireless ser-
vice provider and the e-commerce vendor.
Mobile devices with internet access are
another example an inter-grid implementa-
tion. Each device has a unique id associat-
ed with an IP address. It allows the device
to access web pages from any other node
connected through the internet using the
internet protocols. The scope of such inter-
actions would be limited due to the loose
connections between the constituents of an
inter-grid.

259

Self-Configuration and Administration of Wireless Grids

Classification by Usage Pattern

Wireless grids can be classified by usage patterns
as summarized in Table 1.

• Computational Grid: In a computational
grid, the need for creating the wireless grid
is driven primarily by the need to borrow
computational resources from others. This
arises, in part, because of the power con-
straints on mobile devices, which in turn
limits their computational capability. The
computational grid may be cooperative or
parasitic (Barabasi et al, 2001). In a coop-
erative setup, inputs from multiple nodes
are needed to analyze a particular scenario.
For example, sensor network deployed in
the battlefield would present the enemy’s
position. Similarly, a wireless sensor net-
work will be used to monitor conditions for
predicting natural calamities like earth-
quakes or volcanoes. In a parasitic setup,
the nodes would rely on each other to man-
age the power constraints. Any remote
setup, will allow for this possibility due to
lack of other power resources. Some kind
of redundancy would be built in such a
setup.

• Data Grid: In this case, the need for creat-
ing the wireless grid is dictated primarily
by the need to provide shared and secure
access to distributed data. Since data can
be presented in various contexts on vari-
ous systems, reconciling the underlying
semantics continues to challenge evolv-
ing technology. One example involves an

urgent search for donors with a rare blood
type. A hospital would issue a query to the
medical history databases in the region
through its mobile network. The mobile
service providers will notify potential do-
nors through the alert messages transmit-
ted to their respective mobile devices, and
the resulting responses would be processed
and reconciled. Internet serves as a mas-
sive data grid where the information re-
sides on multiple servers and such infor-
mation can be accessed using portals and
search engines or by directly request to a
particular IP address.

• Utility Grid: Here the motivation for the
wireless grid is derived from the need to
provide ubiquitous access to specialized
pieces of software and hardware. Users
can request resources when needed (on-de-
mand) and only be charged for the amount
being used. This model can subsume both
Computational and Data grids. For exam-
ple, users might tap Wireless Utility grids
for information such as the traffic condi-
tions and routing, and for making instan-
taneous transactions related to commercial
products and services.

TECHNICAL CHALLENGES

Among the many challenges wireless grids face,
these grids must overcome the following set of
initial technical challenges:

• Dynamic Configurability: Wireless grids
are characterized by changing topology

Table 1. Wireless Grid usage patterns

Grid Type Possible Architecture Mainly Provides

Computational Cluster, Intra, Inter Computational Power

Data Cluster, Intra, Inter Data Access and Storage

Utility Intra, Inter On-demand Access various of Resources

260

Self-Configuration and Administration of Wireless Grids

due to the mobile nature of the grid com-
ponents. Grids should provide self-config-
uring and self-administering capability to
allow these dynamic changes for all pos-
sible grid layouts.

• Routing Plasticity: Efficient routing pro-
tocols are required to address the power
limitation of the end devices along with
the consideration for stable wireless con-
nectivity, route optimization and efficient
use of the limited bandwidth.

• Discovery Semantics and Protocols:
Service description protocols are needed to
describe the services provided by various
components of the wireless grid. Once the
services are published, a discovery proto-
col is needed to map the mobile resources
to the services.

• Security: Because of the inherent nature
of the wireless connection, the diversity of
the link quality, the potential unreliability
of the end-devices, the power constraints
of the mobile device, and the enforcement
of security and privacy policies all present
major challenges in the wireless grid en-
vironment. Effective security requires ad-
equate computational power to execute the
security algorithms in acceptable times. In
addition, sufficient radio power is required
to achieve an effective signal-to-noise ratio
(in the face of encrypted signaling streams)
and to close the link. This suggests a care-
ful husbanding of access points and the
hand-over to ensure that the minimum pos-
sible power is required from each of the
wireless devices.

• Policy Management: Grid architecture
designers need to address policies that
govern the usage, privileges, access to re-
sources, sharing level agreements, quality
of service, and the composability and the
automated resolution of contradictory poli-
cies among organizations; as well as other
technical issues mentioned above.

SELF-CONFIGURING AND SELF-
ADMINISTERING DYNAMIC
ADDRESS SERVICES ACROSS
VIRTUAL ORGANIZATIONS

To flourish, grids must exist for the benefit of the
members and users. To add tangible value, infra-
structures that support wireless grids must address
the issue of dynamic updates to the grid to account
for network node failure, and the entry or exit of
nodes. Previous work on Self-Configuring and
Self-Administering Domain Name Service (DNS)
has led to a reliable, intelligent and distributed
lightweight protocol for automatically adapting to
the changes in the networks (Huck et. al., 2002);
this protocol can be modified and extended for
use in the wireless grid environment.

Grid Topology

Several researchers have evaluated the topology
and configuration of mobile networks (Nesargi
and Prakash, 2002; Vaidya, 2002; Mohsin and
Prakash, 2002; Weniger and Zitterbart, 2004).
However, these ad hoc systems are standalone
in nature. We believe that the commercial grids
will possess some access to the wired Internet
infrastructure and thereby follow a hybrid model
(figure 2). It will consist of Mobile Ad-hoc Net-
works (MANET) type systems with multiple-hop
paths between mobile nodes and access points
to the wired network. An application of this hy-
brid setup has been the Mesh Networks (Bruno
et al. 2005). Data will need to flow across the
grid using a combination of Mobile IP (Perkins,
2002) or the new Mobile IPv6 and Ad-Hoc rout-
ing protocols such as Dynamic Source Routing
Protocol (DSR) (Hu, Perrig and Johnson, 2005)
and Ad hoc On-Demand Distance Vector Routing
(AODV) (Perkins and Royer, 1999; Papadimitra-
tos and Haas, 2005).At a high level, one needs to
support the critical role of the management and
composition of subnets and arbitrary collections
of wireless members. There must be a Root Sta-

261

Self-Configuration and Administration of Wireless Grids

tion (RS) present in some form as well as a Base
Station (BS). The RS maintains cognizance over
a set of wireless devices and serves as the final
mapping of logical to physical devices. The BS
manages and enforces policy within and among
groups. A grid layout can include a root station
for a community or an actual organization (AO)
of wireless nodes (figure 3). A root station will
maintain up-to-date information about its own
network and the associated nodes as well as
serve as the gateway to the wired network. Mul-
tiple organizations may come together to form a
virtual organization (VO). An AO can belong to
multiple VOs. A base station (BS) can be envis-
aged for a VO. A BS will maintain information
about networks for various organizations and the
associated root stations. For a homogeneous grid,
the same server can perform both the RS and BS
functions. In case of an inter-grid, which can span
multiple virtual organizations, several BSs are
needed to coordinate to maintain the inter-grid
information. Redundancy can be maintained by
having secondary servers to perform the RS and
BS functions. Both RS and BS should not be
resource-constrained devices. Instead, the RS
and the BS could be a simple PC, workstation, or
server equipped with an appropriate interface to
communicate with the edge nodes such as sensor
nodes or other mobile nodes.

Self-Configuration and
Administration of Wireless Grid

As previously stated, wireless grids possess a
unique dynamic quality that is not found readily
in the wired grids. Therefore, technologies that
support self-configuration and self-administration
are critical to the continued growth of the wire-
less grid paradigm. Wireless grids should allow:

• Configuration of addresses for the grid
components: nodes, RS and BS

• Name- to- address resolution for the grid
components

• Maintenance of the state information for
the grid

The address for the nodes can be obtained in
several different ways. It is possible that the ad-
dress may not be an IP address in case the device
is a sensor with no IP stack. We envision that an
IP incapable node could use, as its own address,
either the MAC address of the system chip or
a unique serial number provided at the time of
manufacturing the device. A name, unique to the
AO domain, can be assigned to the device through
an automatic handshake process between the de-
vice and the RS. RS and BS are connected to the
wired infrastructure and can obtain IP addresses
using the DHCP protocol (Droms, 1997).

Figure 2. A hybrid wireless network

262

Self-Configuration and Administration of Wireless Grids

RS and BS provide the naming service for
resource discovery across the AOs and VOs.
The notion of grid service (Foster et. al, 2001)
can be extended to the wireless grids. In such a
scenario, the RS can provide a naming service for
resource discovery based on service description
(Winoto et. al., 1999; Zhu et al, 2003, Sharmin et
al., 2006)) at the node level. Resource discovery
can be extended to a virtual organization where
a BS can provide a naming service for resource
discovery within various actual organizations.
Multiple BSs can coordinate to provide service
discovery across multiple VOs.

Each node maintains information about itself
and the AO it belongs to. The RS maintains infor-
mation about its AO such as the name and address
pairs for its nodes, number of nodes, name of its
AO, names of the VOs to which its organization
belongs and the associated base stations. The BS
maintains information about its VO, the names
of associated AOs, names and addresses of as-
sociated RSs, and also the names and addresses
of other BSs. Note that the root stations and the
base stations can be part of the existing cellular
and internet infrastructure; they can be configured
to handle communication for one or more grids.

In such a case, the grid owners pay a fee to the
internet and cellular service providers to handle
their specific communication requests.

• Messages: Messages are used for commu-
nication between the grid components and
are a mechanism for resource discovery.
Figure 4 shows the structure of a message.
It consists of a three-field header followed
by a payload section. The header fields are
explained in Table 2. The payload holds
the data from the message specific to each
Opcode. Table 3 lists the possible opcode
values.

• Message Behavior: Enter and leave mes-
sages are used by the grid components to
announce their entry or exit from the over-
all system. Discover messages are used to
discover the grid resources. Hello messag-
es are used to validate the existence of the
grid components.

Figure 3. Wireless Grid spanning multiple virtual organizations

263

Self-Configuration and Administration of Wireless Grids

GRID OPERATION

Node Management

Node Entry or Exit

Mobile nodes register <address, name> tuple with
the Root Station (RS) as they enter the network
under the RS coverage. Node sends an enter_node
message. If the node cannot directly establish con-
nection with the RS, it uses multiple hops to pass
on the registration information. This can happen in
a setup where the wired node (RS) is out of opera-
tion or when reach and wireless signals are weak
in strength. When the RS receives the request, it
sends enter_node response to the node and adds
the information related to the node. The response
includes the information about RS and AO. For
example, in an emergency situation, appropriate
personnel such as police or fire workers may ar-
rive or leave the site. A local cluster can be formed
to handle both voice and data communications.
Entry and exist messages can help to maintain the

status of the emergency workers, to efficiently
distribute critical data they may possess, and to
better coordinate the activities.

Node Discovery

A chain-of-responsibility pattern (Gamma et. al.,
1995) is used for node discovery. A node No sends
a discover_node request to RSo seeking connec-
tion to a different node Na. The request contains
the name of the requested node. RSo looks up its
AOo information to locate the node and sends
a discover_node response to node No with the
address information of Na. If node Na does not
exist in the AOo then RSo sends the discover_node
request to the BSo. This request includes the RSo

Figure 4. Message format

Table 2. Message header fields

Header Field Description

Message Id The unique message id for the message

Opcode The operation code for the message.

S/R flag Send/Response Flag. A flag indicating whether the message is a send request or response to a
send request

Table 3. Opcode values

Opcode Values Brief Description

Enter_node Informs members of the entry of the node

Leave_node Informs member of the exit of the node

Enter_RS Informs members of the entry of the RS

Leave_RS Informs member of the exit of the RS

Enter_BS Informs members of the entry of the BS

Leave_BS Informs member of the exit of the BS

Discover_node Used to discover node

Hello Used to verify if the members exist

264

Self-Configuration and Administration of Wireless Grids

information. BSo in turn broadcasts the request to
all the RSs associated with its VOo. If RSa locates
the node in its AOa then it notifies the BSo about
the availability of the node. BSo in turn sends the
discover_node response to the requesting RSo
with the address of Na., which is then forwarded
to No. For example, a taxi dispatch service may
be designed to respond to a customer request by
broadcasting messages to all the taxis. These can
be routed through root stations associated with
different localities. An empty taxicab nearest to
the customer location picks up the message and
sends a confirmation back. The same mechanism
can work if the nodes belong to different virtual
organizations. In this case, the request will be
routed to all other base stations by the BSo when
it fails to hear back from the RSs in its VO. The
broadcast request to the BS will include informa-
tion about the requested node Na, requesting node
No and the associated RS and the BS. Each BS
will route this request to its own set of RSs. In the
previous example, the customer request is routed
to the taxi service through the customers cellular
provider which connects both the customer and
the taxi service.

RS Management

Business partners can engage in a dynamic rela-
tionship to form a virtual organization (Walton and
Whicker, 1996). This can lead to ad hoc creation
of a VO, dynamic changes to the VO and the
need for resource discovery across several AOs
within a VO. For example, during a disaster event,
several agencies can come together for purposes
of disaster management. In such a situation, one
can envisage a VO being formed between several
agencies to facilitate communication. The rules of
engagement are pre-determined. A central agency
may coordinate activities of several agencies. De-
pending on the requirement, new agencies can be
called upon to deal with the situation. Once their
work is done, these agencies leave. An appropri-
ate RS management protocol can ensure that the

VO structure is transparent at all times and that
the process of exchange of is efficient.

VO Creation

Several AOs will come together to form a VO.
An assumption is that a BS will be available to
create a VO with a unique name and address.
Each RS will send an enter_RS message to the
BS with the information about AO such as AO
name, RS name and RS address. In its response,
BS will send the VO information such as the VO
name, BS name and BS address. BS will maintain
a list of all AOs and the associated RS names and
addresses. RS Entry or Exit

It is possible that a new AO can join a VO, or
an existing AO can leave a VO. Any AO can be
associated with multiple VOs at the same time. In
such a scenario, we need to provide a capability
to dynamically configure the RS. Entry mecha-
nism and registration will be the same as the VO
creation. In case an AO is leaving the VO, the RS
will broadcast exit_RS message to the associated
base stations and delete information about the VO.
On receiving the message, the BS will delete the
RS and AO information from its record.

BS Management

In dynamic markets, two or more virtual organiza-
tions can come together to conduct business. This
will lead to dynamic associations between the VOs
and the need for resource discovery across several
VOs. In the example for disaster management, it is
possible that the concerned agencies are grouped
under different VOs which in turn coordinate with
each other. So a virtual organization can handle the
relief work for people affected. This can include
coordinating food supplies, shelter, and medicine
for the victims through different agencies. Another
virtual organization can deal with the reconstruc-
tion work that involves activities like assessing the
magnitude of damage and managing the process
of repairs. Coordinating activities across multiple

265

Self-Configuration and Administration of Wireless Grids

VOs will require the protocol to enable dynamic
access to multiples AOs with each VO.

BS Entry or Exit

It is possible that two or more BS discover one
another. In that case, they will send broadcast mes-
sages describing their VO. Each BS will receive an
acknowledgement in response and the information
about other BS. Through such interactions each
BS will be able to generate a list of existing VOs
and the names and addresses of the associated BSs.
A BS will broadcast its entry or exit. Remaining
BSs will update their lists accordingly.

Multiple RS and BS

In the description so far, we have assumed that
there is only one RS for each AO and only one
BS for each VO. However, depending on the
size of the network and the distances between
the components, there could be several RSs per
AO and several BSs per VO to facilitate address
assignment and resource discovery.

Nodes

Within an AO, the nodes will register with the
nearest RS. Each RS will maintain information
about all other RS within an AO. It is possible
that registration request for a node is sent to more
than one RS. In this case, the first RS to receive
the information will send an enter_node response
to all other RSs within the AO in order to avoid
duplicate registration. For the node discovery,
the RS will first check with the local RSs before
forwarding the discover request across the VO.

RS

When a new RS is added to the grid, it will send
enter_RS message to all the existing RSs within
an AO, as well as to the associated VOs and BSs.
In response, the RSs will send their information

to the new RS. BS will update its list of RSs and
send the VO information back to the RS.

BS

In case of multiple BSs within a VO, the entry of
a new BS will be broadcasted to all the existing
BSs. In response, the BSs will send their informa-
tion to the new BS. This will include information
about their AOs. For the node discovery, a BS will
first check with the BSs within the VO before
forwarding the request across multiple VOs.

Addressing Transient
Nature of Wireless Grid

Wireless networks are characterized by weak
transmission signals and message losses. Power
constrained nodes may suddenly crash. These
types of events can create inconsistencies in the
information maintained by the grid components

Node Failure: In order to detect the node fail-
ure, the RS can periodically send hello requests to
the registered nodes. In case of no response from
the node, the RS will send the hello requests to
the specific node. After a threshold number of
requests, the RS assumes that the node has failed
and deletes the node information.

Message Losses: Message losses can manifest
themselves in the same fashion as the node failure.
The message initiator, i.e., node, RS or BS, will
make multiple attempts to elicit a response from
others. One of the retries will succeed in obtaining
the response. There may be cases where the mes-
sages are lost only for a set of recipients. A RS or
a BS can lookup its organization information and
send messages to only the set of the recipients that
did not respond to the previous attempts. A leav-
ing node or a RS may not wait for a confirmation
from all the recipients. Existing members in the
network can periodically send hello messages to
confirm their individual presence. When a RS
or BS does not receive a response to the hello
messages from certain members, they make an

266

Self-Configuration and Administration of Wireless Grids

assumption that the members are no longer part
of the network.

Other Considerations

Redundancy: We have assumed that there is
only one RS per AO and only one BS per VO.
However, depending on the size of the network
and the distances between the components there
can be several RSs per AO and several BSs per
VO to facilitate address assignment and resource
discovery. This will also be important in order to
increase the throughput capacity of the network
(Liu et. al., 2003). The concept of electing a new
leader when the group DNS server leaves the
group (Huck et. al., 2002) could be extended to
the network of RS or BS nodes that communicate,
share and manage hand-offs across boundaries. In
the case where one RS or BS leaves the group, a
pre-configured secondary BS can take over the
concerned responsibility automatically.

Security Issues: Throughout our discussions
we have assumed that nodes or the stations do not
operate in a malicious. A rogue node or a station
can manipulate the configuration of the network.
By such actions, the rogue node can corner a
number of addresses, making them unavailable
for other nodes that may wish to join the AO.
Subsequently, the rogue node can also respond on
behalf of the phantom nodes making it difficult
to clean up their addresses. If IP addresses are in
short supply, such an action can prevent some
bona-fide nodes from joining the AO. Also, the
rogue node can significantly overload the system
by generating several requests within a short time.
It is also possible for a malicious node to gener-
ate exit messages for nodes that are still part of
the network.

Many approaches assume the existence of a
Security Association (SA) between the end hosts,
which choose to employ a secure communication
scheme and, consequently, need to authenticate
each other (Papadimitratos and Haas, 2002). This
SA could have been established via a secure key

exchange (Asokan and Ginzboorg, 2000), or
through initial distribution of credentials.

The attacks mentioned above can be thwarted
by the use of digital certificates that the nodes may
have obtained a priori from some trusted Authen-
tication Servers (ASs). Using such certificates and
knowledge of the AS public key, the grid nodes
and stations can authenticate each other and sign
their messages even when the AS is not reachable.
Further work is needed to evaluate all possible
security mechanisms.

Policy Management: Since the end-devices
or nodes can be power constrained, one cannot
assume that the devices are capable of running
complex protocols such as Lightweight Direc-
tory Access Protocol (LDAP) or Common Open
Policy Service (COPS). The technical aspects of
policy management, such as privileges and access
to resources, can be potentially handled through
the root stations and the base stations. The RS
should be capable of not only handling the resource
intensive protocols but also maintaining the latest
information on the nodes in the network and their
capabilities. RS could maintain the policy database
that could be populated manually or through a
messaging mechanism between the nodes and the
RS. When a node leaves the local grid, the policies
relevant to the node are discarded. Similarly, when
a new node enters the local grid, it can configure
its policies on the RS through lightweight mes-
saging. Alternatively, the policies could be pre-
configured on the RS based on a classification of
the resources into one of several classes, i.e., low
power resource class, highly secure class, etc. This
means that the devices, when they register must
also communicate their capabilities.

Similar to the RS, a base station (BS) for
centralized control can be envisaged for the en-
terprise or the virtual organization with intra-grid
architecture. For an inter-grid, two or more BSs
need to interact in order to conform to end-to-end
Quality of Service guarantees while traversing
across multiple enterprises.

267

Self-Configuration and Administration of Wireless Grids

CONCLUSION

In the real world, a grid environment is usually
heterogeneous at least for the different comput-
ing speeds at different participating sites. The
heterogeneity presents a challenge for effectively
arranging load sharing activities in a computational
grid. This article develops adaptive processor al-
location policies based on the moldable property
of parallel jobs for heterogeneous computational
grids. The proposed policies can be used when a
parallel job, during the scheduling activities, can-
not fit in any single site in the grid. The proposed
policies require users to provide estimations of job
execution times upon job submission. The poli-
cies are evaluated through a series of simulations
using real workload traces. The results indicate
that the adaptive processor allocation policies
can further improve the system performance of
a heterogeneous computational grid significantly
when parallel jobs have the moldable property. The
effects of inexact runtime estimations on system
performance are also investigated. The results
indicate that the proposed adaptive processor
allocation policies are effective as well as stable
under different system configurations and can
tolerate a wide range of estimation errors.

REFERENCES

Adjie-Winoto, W., Schwartz, E., Balakrishnan, H.,
& Lilley, J. (1999). The Design and Implementa-
tion of an Intentional Naming System. Proc. 17th
ACM SOSP, Kiawah Island, SC, Dec.

Asokan, N., & Ginzboorg, P. (2000, November).
Key Agreement in Ad Hoc Networks. Com-
puter Communications, 23(17), 1627–1637.
doi:10.1016/S0140-3664(00)00249-8

Barabasi, A.-L., Freeh, V. W., Jeong, H., &
Brockman, J. B. (2001). Parasitic Computing.
Nature, 412.

Bruno, R., Conti, M., & Gregori, E. (2005). Mesh
Networks: Commodity Multihop Ad Hoc Net-
works. IEEE Communications Magazine, 43(3),
123–131. doi:10.1109/MCOM.2005.1404606

Droms, R. (1997). Dynamic Host Configuration
Protocol. IETF RFC 2131.

Foster, I. (2002). What is the Grid? A Three Point
Checklist. Argonne National Laboratory, http://
www- fp.mcs.anl.gov/~foster/Articles/WhatIs-
TheGrid.pdf.

Foster, I., Kesselman, C., & Tuecke, S. (2001) The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. Supercomputer
Applications, 15(3).

Gamma, E., Helm, R., Johnson, R., & Vlissides, J.
(1995). Design Patterns. Reading, MA: Addison-
Wesley.

Gentzsch, W. (2001). Grid Computing: A New
Technology for the Advanced Web. White Paper,
Sun Microsystems, Inc., Palo Alto, CA.

Huck, P., Butler, M., Gupta, A., & Feng, M. (2002).
A Self-Configuring and Self-Administering Name
System with Dynamic Address Assignment. ACM
Transactions on Internet Technology, 2(1), 14–46.
doi:10.1145/503334.503336

Liu, B., Liu, Z., & Towsley, D. (2003). On the
Capacity of Hybrid Wireless Networks. Proc. of
IEEE Infocom.

Mohsin, M., & Prakash, R. (2002). IP Address
Assignment in a Mobile Ad Hoc Network. IEEE
Military Communications Conference (MILCOM
2002), 2(10), 856-861.

Nesargi, S., & Prakash, R. (2002). MANETconf:
Configuration of Hosts in a Mobile Ad Hoc
Network. Proceedings of INFOCOM’02, (pp.
1059-1068.L).

268

Self-Configuration and Administration of Wireless Grids

Oliveira, L., Sales, L., Loureiro, E., Almeida, H.,
& Perkusuch, A. (2006). Filling the gap between
mobile and service-oriented computing: issues
for evolving mobile computing towards wired
infrastructures and vice versa. International
Journal of Web and Grid Services, 2(4), 355–378.
doi:10.1504/IJWGS.2006.011710

Ong, S. H. (2003). Grid Computing: Business
Policy and Implications. Master’s Thesis, MIT,
Cambridge, MA.

Papadimitratos, P., & Haas, Z. J. (2005). Secure
Routing for Mobile Ad Hoc Networks. Advances
in Wired and Wireless Communication, IEEE/
Sarnoff Symposium, (pp. 168-171).

Perkins, C., & Royer, E. (1999). Ad Hoc On-
Demand Distance Vector Routing. In 2nd IEEE
Workshop on Selected Areas in Communication,
2, 90–100.H.

Perkins, C. E. (2002). Mobile IP. Communica-
tions Magazine, IEEE, 40(5), 66–82. doi:10.1109/
MCOM.2002.1006976

Sharmin, M., Ahmed, S., & Ahamed, S. I. (2006).
An Adaptive Lightweight Trust Reliant Secure
Resource Discovery for Pervasive Computing
Environments. Proceedings of the Fourth Annual
IEEE International Conference on Pervasive Com-
puting and Communications, March, 258-263.

Tiang, H. (2003). Grid Computing as an Integrat-
ing Force in Virtual Enterprises. Master’s Thesis,
MIT, Cambridge, MA.

Vaidya, N. H. (2002). Weak Duplicate Address
Detection in Mobile Ad Hoc Networks. MIBI-
HOC2002, June.

Walton, J., & Whicker, L. (1996) Virtual Enter-
prise: Myth and Reality. Journal of Control, (pp.
22-25).

Weniger, K., & Zitterbart, M. (2004). Mobile ad
hoc networks – current approaches and future di-
rections. Network, IEEE, 18(4), 6–11. doi:10.1109/
MNET.2004.1316754

Zhu, F., Mutka, M., & Mi, L. (2003). Splendor:
A secure, private, and location-aware service
discovery protocol supporting mobile services
(pp. 235–242). Pervasive Computing and Com-
munications.

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1,
Issue 3, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 37-51, copyright 2009 by IGI Publishing (an imprint of IGI Global).

269

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 17

DOI: 10.4018/978-1-60960-603-9.ch017

INTRODUCTION

The rapid developing of Internet has boosted
the bloom of network computing technology. As
typical systems, cluster computing, peer-to-peer
computing, grid computing, as well as cloud com-
puting, commonly focus on the goal of sharing
various resources distributed in a certain network

environment, and provide services for a large
number of users. The resources to be shared in
such systems include CPU cycles, storage, data,
and, as particularly discussed in this work, the
memory.

As one of the most important resources in
computer architecture, memory plays a key role
in the factors impacting the system performance.
Especially for the memory-intensive applications
that have large work sets, or the I/O-intensive appli-

Rui Chu
National University of Defense Technology, China

Nong Xiao
National University of Defense Technology, China

Xicheng Lu
National University of Defense Technology, China

Push-Based Prefetching in
Remote Memory Sharing System

ABSTRACT

Remote memory sharing systems aim at the goal of improving overall performance using distributed
computing nodes with surplus memory capacity. To exploit the memory resources connected by the
high-speed network, the user nodes, which are short of memory, can obtain extra space provision. The
performance of remote memory sharing is constrained with the expensive network communication cost.
In order to hide the latency of remote memory access and improve the performance, we proposed the
push-based prefetching to enable the memory providers to push the potential useful pages to the user
nodes. For each provider, it employs sequential pattern mining techniques, which adapts to the charac-
teristics of memory page access sequences, on locating useful memory pages for prefetching. We have
verified the effectiveness of the proposed method through trace-driven simulations.

270

Push-Based Prefetching in Remote Memory Sharing System

cations that massively access the disk, the memory
capacity may dominate the overall performance.
The ultimate reason is that there exist large gaps
on performance and capacity between memory
and disk (Patterson, 2004), thus the traditional
computer systems have to supplement the memory
capacity using the low-speed disk based virtual
memory, or improve the disk performance using
the limited memory based cache. Accordingly, an
intermediate hierarchy between memory and disk
is needed to relax such restrictions.

Remote memory sharing, which aggregates a
large number of idles nodes in the network en-
vironment, and exploits their memory resources
for fast storage, could meet the requirements of
intermediate hierarchy with adequate performance
and capacity (Feeley, et al., 1995; Hines, Lewan-
dowski, et al., 2006; Newhall, et al., 2008; Pakin,
et al., 2007). The memory-intensive applications
can swap obsolete local memory pages to remote
memory instead of local disk (Feeley, et al.,
1995), or the I/O-intensive applications can also
benefit from the large data cache with better hit
ratio (Vishwanath, et al., 2008). Various remote
memory sharing schemes were proposed in the
past decades. Their difference mainly exists on
the underlying network environments. The net-
work memory or cooperative caching stands on
a single cluster (Deshpande, et al., 2010; Wang,
et al., 2007), while our previous work named
RAM Grid devotes to the memory sharing in the
high-speed wide-area network such as a campus
network (Chu, et al., 2006; Zhang, et al., 2007),
and the recently proposed RAM Cloud also tries
to aggregate the memory resources in the data
center (Ousterhout, et al., 2010). Their common
ground is to boost the system performance with
shared remote memory.

In order to study the potential performance
improvement of remote memory sharing system,
we will use our previous work RAM Grid as an
example, to compare the overheads of data access
for an 8KB block over local disk, local network
file system and remote memory resource across

the campus network with average 2ms round-
trip latency and 2MB bandwidth. From Table 1,
we can observe that the remote memory access
only reduces the overhead by 25%~30%, and the
major overhead mainly comes from the network
transmission cost (nearly 60%). Therefore, the
performance of remote memory sharing can be
obviously improved if we reduce or hide some
of the transmission cost. Prefetching is such an
approach to hide the cost of low speed media
among different levels of storage devices (Shi, et
al., 2006; Vanderwiel, et al., 2000; Yang, et al.,
2004). In this work, we will employ prefetching
in remote memory sharing in order to reduce the
overhead and improve the performance. Differing
from traditional I/O devices, the remote nodes
providing memory resources often have extra
CPU cycles. Therefore, they can be exploited
to decide the prefetching policy and parameters,
thus releasing the user nodes, which are often
dedicated to mass of computing tasks, from the
process of prefetching. In contrast to traditional
approaches, in which the prefetching data are
decided by a rather simple algorithm in a user
node, such a push-based prefetching scheme can
be more effective.

To facilitate later description, we will classify
the nodes in RAM Grid into different categories.
The user node is the consumer of remote memo-
ry, while the corresponding memory provider is
called the memory node. Before that, there also
exist manager nodes which act as information

Table 1. Data access overhead in different ways

 remote
memory

 local
disk

 LAN file
system

 memory ac-
cess <0.01ms

 net latency 2ms 0.68ms

 net transmit 4ms 0.06ms

 disk latency 7.9ms 7.9ms

 disk transmit 0.1ms 0.1ms

 total ≈ 6ms 8ms 8.74ms

271

Push-Based Prefetching in Remote Memory Sharing System

directories. In later sections, the system architec-
ture and the prefetching design will be discussed
among these nodes distributed in a high-speed
wide-area network environment.

OVERVIEW

In traditional systems, an actual disk I/O op-
eration only occurs when it misses the local file
system cache in the operating system. Sarkar
et al. mentioned that the cache must be large
enough otherwise the costly disk accesses will
dominate the system performance (Sarkar, et al.,
1996). The effect of RAM Grid, as well as other
remote memory sharing systems, is that it provides
abundant memory resources, which serves as an
intermediate cache hierarchy between the local
file system cache and local disk.

Another problem of the traditional file system
cache comes from the mechanism of read ahead.
The system often read several sequential blocks
when accessing just the first block of the sequence.
We can take the read ahead as a “blind” pull based
prefetching; the shortcoming of such prefetching
is two-fold. Firstly, the user node should decide
the number of blocks that it needs to read ahead,
which will unnecessarily take extra CPU cycles.
Secondly, read ahead on sequential blocks with-
out pattern analysis may have the risk of wasting
disk or network bandwidth and memory buffers
for the fact that not all of the applications will
access sequential blocks, which is usually called
“cache pollution”. In this paper, we propose a
push-based prefetching to solve the first problem,
and a “smart” prefetching based on the pattern
analysis instead of a “blind” one to address the
second problem.

In order to study the operations of traditional
file system cache, we collect disk access traces
from a very busy running web server with about 2
million page views per day. The server configura-
tion includes 2 Intel Pentium4 3.0GHz CPU with
2GB physical memory and 80GB SCSI hard disk,

running Windows 2003 Enterprise Edition operat-
ing system and IIS 6.0. We collect the disk access
trace using the DiskMon toolkit. Note that the web
server is providing contents for real users, thus
the disk I/O also comes from the real browsing
activities. After record 2,380,370 disk accesses in
50 hours, including all of the hits and misses in
the local cache, we can observe from the collected
traces that many of the disk accesses have specific
patterns, which results from the hyperlink relation-
ships and the fact that the users often have their
browsing habits. For a generic example, the access
on sector 76120651 has 1,295 occurrences in our
traces, and most of them are near to the access on
sectors 76120707 and 76120735. Although they
are not sequential numbers and there are often
several outlying accesses between them, we can
infer that 76120651…76120707…76120735 is
a pattern. In most of cases, the access on sector
76120651 indicates that the access on 76120707
and 76120735 will come soon.

Therefore, we can design a prefetching algo-
rithm based on pattern forecasting, which is ex-
ecuted by the memory nodes in RAM Grid. After
a number of accesses fall into the remote caching
provided by a memory node, it can forecast the
most probable disk blocks referred by sequential
accesses, and actively pushes these probable
disk blocks to the user node. Such a push-based
prefetching algorithm will make time overlapping
in network communication and boost the system
performance, as illustrated in Figure 1.

Compared with the traditional read ahead
mechanism, the advantages of the push-based
prefetching can be listed as follows. Firstly, the
user nodes in RAM Grid are usually burdened
with heavy workloads, while the memory nodes
often have extra CPU cycles. Thus the latter fit
for the forecast process of prefetching much bet-
ter than the former, and a consumptive but precise
prefetching algorithm can be employed. Sec-
ondly, besides the computational overhead, a
prefetching algorithm may have considerable
space consumption, and the memory nodes have

272

Push-Based Prefetching in Remote Memory Sharing System

plenty resources to do that instead of the user
nodes with limited available memory. Moreover,
since the prefetching algorithm is executed by the
memory node, the potential used data blocks can
be pushed without a prefetching command comes
from the user node, and the extra communication
cost can also be prevented.

The basic operations of the remote caching are
“put page” and “get page” upon the basic element
“memory pages”, which correspond to write or
read operations on local disks upon disk blocks.
In most cases, the “write” or “put page” can be
overlapped by an asynchronous operation, thus,
their access latency can be ignored. As a conse-
quence, we only consider the “read” or “get page”
operations and do not distinguish between them.

SYSTEM DESIGN

VanderWiel et al. concluded that a data prefetching
mechanism should address three basic questions
(Vanderwiel, et al., 2000): 1) When is prefetch-
ing initiated, 2) where are prefetched data placed,
and 3) what is prefetched? In this section, we will
mainly discuss these questions.

Prefetching Buffer

For each prefetched disk block, memory pages
must be allocated to hold it before the actual

reading starts. If the free physical memory is not
enough, the operating system has to evict some
of the obsolete memory pages. However, the
prefetched memory pages may not be used at
all. In this case, the allocated memory pages are
wasted. Therefore, we need to design a prefetch-
ing algorithm to maximize the possibility that a
user node will use the prefetched memory pages
pushed by a memory node.

We will firstly propose a system policy that
a user node determines whether a prefetched
memory page should be accepted. The policy is
important because not all of the pushed memory
pages should be accepted, otherwise the cache
will be polluted, while the network bandwidth will
also be wasted if the user node rejects too much
pushed pages. In our scheme, a prefetching buffer
is assigned for each user node. The prefetching
buffer is a queue of free memory pages with the
maximal size of k (0 < k < F), and F is the number
of free memory pages in the user node. The system
should maintain the prefetching buffer as follows:

• If the prefetched page can be found in the
file system cache, just reject it; else accept
it when k > 0;

• Else if the size of the current prefetching
buffer is less than k, allocate memory for
the accepted page and add the page to the
tail of queue;

Figure 1. Time overlapping in network communication

273

Push-Based Prefetching in Remote Memory Sharing System

• Otherwise, the length of the queue equals
k, it means that the size of the prefetching
buffer has reached the maximum limit.
Discard the oldest page at the head of the
queue, and add the accepted page to the
queue tail;

• When a page in prefetching buffer is actu-
ally accessed, it will be read into the file
system cache, then remove it from the
prefetching buffer.

The parameter k is a key factor for the prefetch-
ing buffer and it is related to the free physical
memory of the system. If a user node lacks physical
memory, its k should be set to a smaller value to
minimize the memory waste, while k should be set
larger to hold more prefetched pages when the free
memory is larger. The relationship between k and
free memory will be studied in the simulations.

Access Trace

In our prefetching policy, the memory node
selects the memory pages to be pushed through
the access patterns of a user node, which can be
analyzed from the historical traces of the user. The
memory node should also record current access
traces for future analysis. Every “get page” opera-
tion from a user node contains the ID of the disk
block corresponding to a desired memory page, it
seems appropriate to record each disk block ID as
historical trace data and analyze request patterns
from it. Unfortunately, in most file systems, a file
corresponds to a certain number of disk blocks;
while their relationship may be changed at any
moment. This means that a block may belong to
different files in different time once the file was
moved or deleted. Therefore, instead of disk block
ID, we consider a file ID and an offset in the file
for trace recording. When a user node gets a page
from a memory node, it also sends the file ID
(supported by the file system, such as the inode
in Unix-like file systems) and offset within the

file. The memory node will record and analyze
both of the file ID and offset in the historical trace.

There is another problem in the access trace.
When multiple applications are accessing the file
system in parallel, the access pattern of one appli-
cation can be interblended by other applications.
For example, an application A may read block
A1, A2, A3, and application B will read B1, B2, B3.
While their access trace may be considered as A1,
A2, A3, B1, B2, B3, or A1, B1, A2, B2, A3, B3,. We can
also observe this occasion in the real web server
traces described in last Section. The accesses on
sectors 76120651, 76120707 and 76120735 can
be taken as a pattern, but there are many outlying
traces between every two of them. Therefore, the
prefetching algorithm should recognize each of the
patterns in a mixed access sequence, as explained
later in the prefetching algorithm.

Trace Recording Process

When a memory node is recording the access
trace of the user node, it maintains a sequence of
file IDs and offsets which is ordered by their ac-
cess timestamp. The sequence can be denoted as
S o o o on= 1 2 3, , , ..., , where each o i ni ∈

()1,

is a combination of file ID and offset.
Each sequence should be partitioned into some

small ones when recording. If the difference of
access time for two neighboring items oi and oi+1
in a sequence is longer than a threshold t, we can
split the sequence into two halves between the
neighboring items. The rationale for splitting is
that if the memory node pushes oi+1 when oi is ac-
cessed, oi+1 will stay in the prefetching buffer for
a long time and may possibly be discarded by the
user node before it is actually accessed. In other
words, prefetching for oi+1 is useless because its
intended access time is too late. Therefore, we
can partition a sequence into small sequences
through a parameter t and find access patterns in
each small sequence. We will call a partitioned
small sequence a “trace item”. Indeed, the selec-

274

Push-Based Prefetching in Remote Memory Sharing System

tion of t can have an impact on the performance
of prefetching. We will analyze this parameter in
the simulations.

Besides of the memory nodes and user nodes,
we also exploit the manager nodes, which often
have idle CPU cycles and less churn, to collect
and merge the trace items from each memory node
and compose a trace library from the accumulated
trace items. The manager nodes should also dis-
patch the trace library to new memory nodes for
prefetching. There is a maximum number for the
trace items in a trace library, denoted as M. It is
related with the system performance. Indeed, the
larger M means more user patterns and more ac-
curate results in the prefetching algorithm, while
the larger M also needs more memory space to
hold the trace library and more transmission cost
between manager nodes and the memory nodes.
We will evaluate the impact of M later.

PREFETCHING ALGORITHM

The goal of the prefetching algorithm is to pre-
dict the most likely pages of future requests that
start with the current request issued by the user
node. The memory node needs to determine those
pages based on the user patterns derived from
the trace library and other necessary parameters,
such as the maximum prefetching buffer length
of the user node, k. In order to reduce the network
communication cost, we want the predicted and
prefetched memory pages to have the highest
probability to be used by the user node. In fact,
selecting proper pages is a data mining problem,
which can be defined as follows.

Let o o on1 2, , ...,{ } be a set of all possible items,
where each item is a recorded access. A sequence
S, which can be denoted as S o o on= 1 2, , ..., ,
is an ordered list of items. The number of items
in sequence S, denoted as length(S). A sequence
α = a a an1 2, , ..., is contained in another se-

quence β = b b bm1 2, , ..., , denoted as α β⊆ , iff

there exist integers 1 1 2≤ < < < ≤i i i mn... ,
such that a bi1 1

= , a b a bi n in2 2
= =, ..., . A se-

quence can be appended to another sequence
using a concatenation operator ‘+’. For example,
α β+ = a a a b b bn m1 2 1 2, , ..., , , , ..., . The first
occurring position of an item a in a sequence S is
denoted as first S a(,) , thus first b nn(,)β =
(b b b b b bn n n n1 2 1≠ ≠ ≠−, , ...,). A trace library L is
an ordered set consisting of multiple sequences,
that is, L S Sn= S1 2, , ..., .

For a given sequence S, if there exists a trace
library L S Sn= S1 2, , ..., , and S S i ni⊆ ∈

()1, ,

then we say that L supports S, and the support of
S in trace library L is the number of Si in L which
satisfies S SiÍ . The problem of mining prefetch-
ing sequences can be described as follows.

For a given access oc, search S o o o oc n= , , , ...,1 2
with the maximum support in the trace library,
where length S()³ 2 . S is called the prefetching
list. The memory node obtains the prefetching list
S and sequentially pushes pages in the list to the
user node, when the latter performs a “get page”
operation with an access oc.

According to the definition ofα β⊆ , the com-
mon items in a and b is not necessary to be con-
secutive. Supposing S B A B A B1 1 2 2 3 3= A1, , , , , ,
S A A2 2 3= A1, , , then we have S S2 1Í . This
definition solves the problem mentioned in last
section.

In fact, the background of the prefetching
algorithm is inspired by the traditional sequential
pattern mining (Agrawal, et al., 1995, 1996). Al-
though the there exist similarities, the problem is
quite different. Firstly, an item in sequential pat-
tern mining can be composed by several numbers,
while for prefetching it is just a single number
that indicates the block identification. Moreover,
the output of sequential pattern mining is the se-
quence whose support is higher than a threshold

275

Push-Based Prefetching in Remote Memory Sharing System

H, in prefetching, however, the problem focuses
on the maximum support among the sequences.
Such differences make the prefetching algorithm
much more efficient. Furthermore, for practical
usage, we design some additional constraints for
mining prefetching pages:

• length S k()≤ +1, where S is the prefetch-
ing list and k is the maximum prefetching
buffer size of the user node. Supposing we
push more than k pages to the user node
each time, some of the pushed pages may
be discarded due to the limit of the prefetch-
ing buffer size.

• We can add a constraint in the definition of
α β⊆ that i i dx x+ − ≤1 , where
x n∈ −[,]1 1 and d is a given integer
threshold. Because the prefetched pages
should not be far away from the accessed
pages in a sequence of the trace library,
otherwise its may be discarded before
accessed.

Our prefetching algorithm named PrefixSpan-
Prefetching (PSP) can be described as Algorithm 1.

The algorithm PSP is efficient since it has no
recursion. The time cost of PSP primarily comes
from the iteration from step 4 to step 26, the
condition to stop this iteration is that length(S)>k+1
or it cannot find possible item P when spanning
S in step 16. In other words, in the worst case this
iteration should run k times for a prefetching list
of length k. In each iteration, steps 5-17 need to
scan the trace library, whose maximum size is M.
Suppose that the maximum length of sequences
in the trace library is m, in order to perform a
binary search in each sequence, we build a sorted
index in advance for the first occurrence of each
item in the sequence. Therefore, for each item in
the prefetching list, the time cost of PSP is

O(Mlog2m) in the worst case, and the extra space
cost from each sorted index is O(m) in the worst
case.

The correctness of PSP is discussed as follows.

Lemma. The support of a sequence α+β is always
not greater than the support of α.

Proof. Assuming that {Si} is the set of sequences
whereα β+ ⊆ Si , it is obvious that for each
Si, we have α ⊆ Si , which indicates the
support of α+β is always not greater than α.
■

From the lemma, we have the corollary as
follows:

Corollary. If the support of a sequence α is not
the maximum, the support of a sequence α+β
cannot be the maximum either.

Based on the lemma and the corollary, the
following theorem proves the correctness of
algorithm PrefixSpan-Prefetching:

Theorem. After algorithm PrefixSpan-Prefetch-
ing, the support of sequence S is the maxi-
mum for a l l poss ib le S , where
2 1≤ ≤ +length S k() .

Proof. Step 14 in PSP is only executed in the first
iteration and it can get a sequence S=<oc,P>,
which has the maximum support; step 16 is
executed after the first iteration, it only ac-
cepts item P if the support of S+<P> is equal
to that of S. Before step 19, if the support of
any sequence T is less than that of S, then
there is no sequence that has the maximum
support, with the prefix of T (due to the
corollary). Thus, T should not be spanned
in step 19. Hence, the support of sequence S
is always the maximum in each iteration. ■

276

Push-Based Prefetching in Remote Memory Sharing System

PERFORMANCE EVALUATION

Simulation Methodology

Our application scenario is composed of abundant
PCs and several server stations loosely coupled in

a high-speed wide-area network. Some PCs are
idle and have free memory resources, whereas
servers are usually busy for tasks with mass
non-consequence data accesses (such as a web
server or DBMS), whose local physical memory
is intended to be utilized as much as possible. A

Algorithm 1. PrefixSpan-Prefetching (PSP)

 Input: Current access o
c
, the trace library L, factor k and d.

 Output: Prefetching list S, where 2 1≤ ≤ +length S k() .

1 As an initial sequence, let S oc=< > ;

2 let L L' = . L ' is a copy of L and will prevent the latter from any modifies
during the algorithm;

3 let last oc= { } . The set last will contain all possible postfix items in the
prefetching list;

4 while length S k()≤ +1 do
5 for each S Li Î ', do

6 if ∀ ∈ ⇒ ∈P P last P Si() then

7 select P lastx Î where first S Pi x(,) is the minimal;

8 supposing first S P ni x(,)= , trim the first n items

of S
i
;

9 else
10 delete S

i
 in L '

11 end
12 end

13 if S oc=< > then

14 scan L ' once, find all possible items P, where
() (') (,)P S S L first S P di i i∈ ∧ ∈ ∧ ≤ , and <P> has the maximum support in L ' ;
15 else
16 scan L ' once, find all possible items P, where
∀ ∈ ⇒ ∃ ∈ ∧ ≤S S L P P S first S P di i i i(' ((,))) ;
17 end
18 let last = ϕ ;
19 for each possible items P in steps 13-17, do
20 let S S P= + < > ;

21 let last last P= ∪ { };
22 end
23 if last = ϕ then
24 terminate the algorithm;

25 end
26 end

277

Push-Based Prefetching in Remote Memory Sharing System

typical example of this configuration is a campus
or enterprise network with many heterogeneous
computers. In order to simulate such scenario by
the disk I/O traces of the very busy running web
server that we have collected, we assume that
servers in our scenario are all web servers with
many users. The disk I/O traces in our simulation
have already been mentioned before.

We have built a discrete event based simulator
of the environment with 1000 different nodes. The
simulation topology of 1000 nodes is generated
using the ASWaxman model through the topol-
ogy generator BRITE (Medina, et al., 2001). We
use the TopDown method in BRITE to generate
a 2-level network topology, which includes 10
ASes and each AS has 100 router-level nodes
respectively, the nodes placement follows the
heavy-tailed distribution. The generated topology
is a DAG, where vertices are simulation nodes
and each edge is an overlay path between two
vertices. The routing between any two vertices
is the shortest path between them computed by
Dijkstra’s Algorithm.

We define parameters of hard disks and the
remote memory to calculate local and remote I/O
overheads. When performing a disk read with n
successive blocks, the overhead is given by:

T T n T n
S
BS L W
p

d

+ + − × + ×()1

where TS is the seeking time, TL the latency time,
TW the waiting time between two successive read-
ings, Sp the block size, and Bd the disk bandwidth.
Typical values of these parameters are TS =4.9
milliseconds, TL =3.0milliseconds, TW =0.2 mil-
liseconds, Sp =4KB, and Bd =80MB/s.

For the remote memory, the read overhead for
n successive block readings is given by:

T T n
S
BU RTT
p

N

+ + ×

where TU is the start-up time, TRTT the round-
trip time, and BN the network bandwidth. In our
simulation, TU is set to 5 microseconds, TRTT varies
from 1 millisecond to 4 milliseconds following a
uniform distribution, and BN varies from 0.5MB/s
to 3MB/s following a uniform distribution. These
parameters are from the actual testing of our
campus network.

Results

Simulation 1. The effect of proportion of user
nodes

In this set of simulations, we test the effect of the
proportion of user nodes on average overheads.
The proportion of user nodes is set to around
c c()0 1£ £ in our simulation. Both overheads
of RAM Grid without or with prefetching would
change when the proportion of user nodes chang-
es. As illustrated in Figure 2. When the proportion
of user nodes is within the range from 20% to
30% the overhead changes rapidly. When the
proportion falls out of this range, curves become
flat. This is reasonable, since when the proportion
of user nodes is less than 20%, most of them can
obtain sufficient memory resources, and if it is
more than 30%, the number of user nodes that
can capture resources becomes smaller and curves
thus change little with the increasing proportion
of user nodes. Therefore, bounds 20% and 30%
can be considered as critical proportions. In Fig-
ure 3, we compare three types of hit ratios in the
proposed scheme: 1) the hit ratios of local and
remote memory, which means the percentage of
all accesses except the ones that do not hit any
type of cache and cause the actual disk I/O op-
erations; 2) the hit ratios of local buffer cache,
meaning the percentage of all accesses which hit
the local cache of file system, or hit the prefetch-
ing buffer in our scheme; 3) the hit ratios of
prefetching buffer only, that is, the probability of
hitting the prefetching buffer if the access does

278

Push-Based Prefetching in Remote Memory Sharing System

not hit the local cache of the file system. It is
interesting that the hit ratios of remote and local
memory decease rapidly with the increasing of
user nodes proportion, however hit ratios of the
local buffer cache and prefetching buffer are
slightly increasing. We can infer that the increas-
ing overhead in Figure 2 is mainly due to the
insufficient memory in the entire environment.
However, the performance of our prefetching
algorithm would not decease in this case.

Simulation 2. The effect of prefetching buffer
size

The prefetching buffer is one of key factors in
our scheme. It shares the free memory capacity
with the file system cache, and its maximum size
is restricted. In this set of simulations, we let the
upper bound of prefetching buffer to be from 1/2
to 1/128 of the free physical memory capacity.
The overhead and hit ratio with prefetching are
reported in Figure 4 and Figure 5, respectively.
Similarly, there exists a critical proportion range
for the prefetching buffer. When the proportion
of the prefetching buffer is within the range from
1/4 to 1/16, the performance of the algorithm
changes rapidly. The proportion of 1/3 is close
to the optimal, since it does not take much local
memory, and thus has the good performance of

prefetching. We can also see from Figure 5 that
the hit ratio of prefetching buffer decreases rapidly
with the decreasing prefetching buffer, whereas
that of the local cache and the prefetching buf-
fer does not change very much. This lies on the
fact that the free local memory is constant. The
decreasing prefetching buffer causes the increase
of the local cache, which reduces the effect of
prefetching buffer.

Simulation 3. The effect of trace library size

The effectiveness of the PSP algorithm is re-
lated to the amount of user patterns contained in
the trace library. We set a maximum trace library
size and the old traces should be discarded. By
default, the trace library contains at most 3000
traces. Indeed, it is near optimal value in Figure
6 and Figure 7. Obviously, when trace library
becomes small, the performance of PSP drops
rapidly. This is because there are not enough
training data to get the right prefetching list.
However, the larger size of the trace library can
also decrease the performance of the algorithm.
Both the overhead and hit ratio in the case of 8000
traces of the trace library are the worst in Figure 6
and Figure 7. This situation is true with not only
the transmission overhead of large trace library,

Figure 2. Reading overhead with different user
node proportion

Figure 3. Hit ratio with different user node pro-
portion

279

Push-Based Prefetching in Remote Memory Sharing System

but also old traces that are kept in the large trace
library for a long time, which would not help
improve the accuracy of the algorithm. Therefore,
the desired algorithm should either wash out the
old traces in time, or reduce their impact, which
are interesting topics for our future work.

Simulation 4. The effect of splitting threshold

According to the trace recording process, a se-
quence is split into small ones when the recording

time interval of two neighboring items is greater
than a threshold. In the last set of simulations, we
vary this time interval threshold from 10ms to
150ms (the default value is 30ms), and illustrate
the overhead and hit ratio with prefetching in
Figure 8 and Figure 9, respectively. We observe
that here also exists an optimal value for this
threshold. In particular, short traces would miss
some long sequences during the trace collecting
process, while a large time interval threshold that
may keep longer traces would take a long time to
collect enough traces for prefetching, resulting in
the slow increase of the trace library size and thus
less accuracy of the algorithm.

RELATED WORK

The history of remote memory sharing system
can be retrospect to 1990s. As an initial work,
several memory sharing schemes, which are
usually called network memory systems, have
been proposed. We can category these systems
into three major types based on the objectives,
which are high-speed paging device (Feeley,
et al., 1995; Hines, Lewandowski, et al., 2006;
Hines, Wang, et al., 2006; Markatos, et al., 1996;
Oleszkiewicz, et al., 2004), data cache for local

Figure 4. Reading overhead with different maxi-
mum prefetching buffer proportion

Figure 5. Hit ratio with different maximum
prefetching buffer proportion

Figure 6. Reading overhead with different maxi-
mum trace library size

280

Push-Based Prefetching in Remote Memory Sharing System

or networked file systems (Chang, et al., 1999;
Dahlin, et al., 1994; Jiang, et al., 2006; Sarkar, et
al., 1996; Voelker, et al., 1998), or remote RAM
disk respectively (Flouris, et al., 1999). Unlike
network memory schemes, RAM Grid tries to
share the plentiful memory resources distributed
in a wide area network (Chu, et al., 2006). It ag-
gregates resources in a large scale and avoids the
inadequate idle memory resources problem within
a single cluster, while it must also deal with the
dynamic and heterogeneous resources effectively
using a decentralized architecture.

The effect of prefetching mainly depends on
the prediction of the data access. For magnetic
disk I/O, the prediction is restricted in millisec-
ond level. It means that the prediction algorithm
should output a result in milliseconds; otherwise
the prefetching cannot speed up the I/O access.
Griffioen et al. build a directed probability graph
among the files (Griffioen, et al., 1994), a directed
edge means that the files are opened very closely.
Using the probability graph, the system can predict
the next opened file with slight overhead, while

Figure 7. Hit ratio with different maximum trace
library size

Figure 8. Reading overhead with different trace
time interval threshold

Figure 9. Hit ratio with different trace time interval threshold

281

Push-Based Prefetching in Remote Memory Sharing System

the prediction has a coarse granularity. Choi et al.
present a prediction based on disk blocks(Choi,
et al., 2000). The algorithm classifies disk ac-
cess into several predefined patterns, and predict
current pattern when accessing disk blocks. The
work of Gniady et al. predicts I/O access using
the program counter (Gniady, et al., 2004). The
system maintains a hash table from the program
counter to the access pattern and predict the pat-
tern. Different with those previous works, our
system predict the I/O access using a data mining
method, which usually has finer granularity and
better precision.

Our algorithm for collecting the trace and infer-
ring the pattern of users is based on the problem of
sequential pattern mining. Agrawal et al. first de-
fined the problem of sequential patterns (Agrawal,
et al., 1995, 1996). However, their algorithms are
not applicable to for very long sequences which
are often the case in grid environments. Pei et
al. proposed PrefixSpan algorithm (Pei, et al.,
2001), which improves upon Apriori and reduces
the overhead. These algorithms are based on the
general problem of sequential pattern mining in
very large databases (Ayres, et al., 2002); while
the background of our algorithm is quite specific,
some of the restrictions in traditional sequential
pattern mining can be released and the algorithm
is also more effective.

CONCLUSION

With the rapid development of the network
technology, several remote memory sharing sys-
tems have been proposed to aggregate memory
resources through definite network environment.
Our previous work, RAM Grid, made use of the
remote memory to boost the performance of
memory-intensive and I/O-intensive applications.
In this paper, in order to reduce the network com-
munication cost of accessing the remote memory,
based on a push strategy and inspired by traditional
sequential patterns mining techniques, we propose

a prefetching algorithm to push more pages to a
user node. By mining the historical information,
a memory node can push the required data to user
nodes efficiently. We demonstrate the efficiency
and effectiveness of the proposed prefetching
scheme through comprehensive trace-driven
simulations.

ACKNOWLEDGMENT

The work was supported by the National
Natural Science Foundation of China under
Grant No.61003076 and the National Basic
Research Program of China (973) under Grant
No.2011CB302600.

REFERENCES

Agrawal, R., & Srikant, R. (1995). Mining se-
quential patterns. Paper presented at the 17th
International Conference on Data Engineering.

Agrawal, R., & Srikant, R. (1996). Mining se-
quential patterns: Generalizations and perfor-
mance improvements. Paper presented at the 5th
International Conference on Extending Database
Technology: Advances in Database Technology.

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002).
Sequential pattern mining using a bitmap repre-
sentation. Paper presented at the 8th International
Conference on Knowledge Discovery and Data
Mining Edmonton, Alberta, Canada.

Chang, E., & Garcia-Molina, H. (1999). Medic:
A memory and disk cache for multimedia clients.
Paper presented at the IEEE International Con-
ference on Multimedia Computing and Systems,
Florence, Italy.

282

Push-Based Prefetching in Remote Memory Sharing System

Choi, J., Noh, S. H., Min, S. L., & Cho, Y. (2000).
Towards application/file-level characterization of
block references: A case for fine-grained buffer
management. Paper presented at the ACM SIG-
METRICS International Conference on Measure-
ment and Modeling of Computer Systems Santa
Clara, California, United States.

Chu, R., Xiao, N., Zhuang, Y., Liu, Y., & Lu, X.
(2006). A distributed paging RAM Grid system
for wide-area memory sharing. Paper presented
at the 20th International Parallel and Distributed
Processing Symposium, Rhodes Island, Greece.

Dahlin, M. D., Wang, R. Y., Anderson, T. E., &
Patterson, D. A. (1994). Cooperative caching:
Using remote client memory to improve file
system performance. Paper presented at the 1st
Symposium on Operating Systems Design and
Implementation, Monterey, California.

Deshpande, U., Wang, B., Haque, S., Hines, M.,
& Gopalan, K. (2010). MemX: Virtualization
of cluster-wide memory. Paper presented at the
International Conference on Parallel Processing.

Feeley, M. J., Morgan, W. E., Pighin, F. H., Karlin,
A. R., Levy, H. M., & Thekkath, C. A. (1995).
Implementing global memory management in a
workstation cluster. Paper presented at the Sym-
posium on Operating Systems Principles, Copper
Mountain Resort, Colorado.

Flouris, M. D., & Markatos, E. P. (1999). The
network RamDisk: Using remote memory on
heterogeneous NOWs. Cluster Computing, 2(4),
281–293. doi:10.1023/A:1019051330479

Gniady, C., Butt, A. R., & Hu, Y. C. (2004).
Program-counter-based pattern classification
in buffer caching. Paper presented at the 6th
Symposium on Operating Systems Design and
Implementation, San Francisco, CA.

Griffioen, J., & Appleton, R. (1994). Reducing file
system latency using a predictive approach. Paper
presented at the USENIX Summer Conference.

Hines, M., Lewandowski, M., Wang, J., & Go-
palan, K. (2006). Anemone: Transparently har-
nessing cluster-wide memory. Paper presented
at the International Symposium on Performance
Evaluation of Computer and Telecommunication
Systems, Calgary, Alberta, Canada.

Hines, M., Wang, J., & Gopalan, K. (2006).
Distributed Anemone: Transparent low-latency
access to remote memory in commodity clusters.
Paper presented at the International Conference on
High-Performance Computing, Bangalore, India.

Jiang, S., Petrini, F., Ding, X., & Zhang, X. (2006).
A locality-aware cooperative cache management
protocol to improve network file system perfor-
mance. Paper presented at the 26th IEEE Inter-
national Conference on Distributed Computing
Systems, Lisbon, Portugal.

Markatos, E. P., & Dramitinos, G. (1996). Imple-
mentation of a reliable remote memory pager.
Paper presented at the USENIX Annual Technical
Conference, San Diego, CA.

Medina, A., Lakhina, A., Matta, I., & Byers, J.
(2001). BRITE: An approach to universal topology
generation. Paper presented at the International
Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems,
Cincinnati, Ohio.

Newhall, T., Amato, D., & Pshenichkin, A.
(2008). Reliable adaptable network RAM. Paper
presented at the International Conference on
Cluster Computing.

Oleszkiewicz, J., Xiao, L., & Liu, Y. (2004). Par-
allel network RAM: Effectively utilizing global
cluster memory for large data-intensive parallel
programs. Paper presented at the International
Conference on Parallel Processing, Montreal,
Quebec, Canada.

283

Push-Based Prefetching in Remote Memory Sharing System

Ousterhout, J., Agrawal, P., Erickson, D., Ko-
zyrakis, C., Leverich, J., & Mazieres, D. (2010).
The case for RAMClouds: Scalable high-perfor-
mance storage entirely in DRAM. ACM SIGOPS
Operating Systems Review, 43(4), 92–105.
doi:10.1145/1713254.1713276

Pakin, S., & Johnson, G. (2007). Performance
analysis of a user-level memory server. Paper
presented at the International Conference on
Cluster Computing.

Patterson, D. A. (2004). Latency lags bandwith.
Communications of the ACM, 47(10), 71–75.
doi:10.1145/1022594.1022596

Pei, J., Han, J., Mortazavi-Asl, B., & Pinto, H.
(2001). PrefixSpan: Mining sequential patterns
efficiently by prefix-projected pattern growth.
Paper presented at the 17th International Confer-
ence on Data Engineering.

Sarkar, P., & Hartman, J. (1996). Efficient coop-
erative caching using hints. Paper presented at
the Symposium on Operating Systems Design
and Implementation, Seattle, WA.

Shi, X., Yang, Z., Peir, J.-K., Peng, L., Chen,
Y.-K., Lee, V., et al. (2006). Coterminous local-
ity and coterminous group data prefetching on
chip-multiprocessors. Paper presented at the 20th
International Parallel and Distributed Processing
Symposium, Rhodes Island, Greece.

Vanderwiel, S. P., & Lilja, D. J. (2000). Data
prefetch mechanisms. ACM Computing Surveys,
32(2), 174–199. doi:10.1145/358923.358939

Vishwanath, V., Burns, R., Leigh, J., & Seablom,
M. (2008). Accelerating tropical cyclone analysis
using LambdaRAM, a distributed data cache over
wide-area ultra-fast networks. Future Generation
Computer Systems, 25(2), 184–191. doi:10.1016/j.
future.2008.07.005

Voelker, G. M., Anderson, E. J., Kimbrel, T.,
Feeley, M. J., Chase, J. S., Karlin, A. R., et al.
(1998). Implementing cooperative prefetching and
caching in a globally-managed memory system.
Paper presented at the Joint International Confer-
ence on Measurement and Modeling of Computer
Systems, Madison, Wisconsin, United States.

Wang, N., Liu, X., He, J., Han, J., Zhang, L., &
Xu, Z. (2007). Collaborative memory pool in
cluster system. Paper presented at the International
Conference on Parallel Processing.

Yang, C.-L., Lebeck, A. R., Tseng, H.-W., &
Lee, C.-H. (2004). Tolerating memory latency
through push prefetching for pointer-intensive
applications. ACM Transactions on Architec-
ture and Code Optimization, 1(4), 445–475.
doi:10.1145/1044823.1044827

Zhang, Y., Li, D., Chu, R., Xiao, N., & Lu, X.
(2007). PIBUS: A network memory-based peer-
to-peer IO buffering service. Paper presented at
the 6th International IFIP-TC6 Conference on Ad
Hoc and Sensor Networks, Wireless Networks,
Next Generation Internet.

284

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 18

INTRODUCTION

Recently, grid computing is one of attractive
architectures for high-performance computing.
The grid computing system is an Internet-scale
distributed computing system for sharing distrib-
uted resources across the traditional organization

boundary. In grid systems, the most important
issues include how to integrate the dynamically
heterogeneous distributed resources, and how
to improve the utilization of these integrated
resources (Dandamudi, 1995). Although these
various grid projects aim at sharing distributed
resources from different virtual organizations
(VOs), it is still difficult to share distributed

You-Fu Yu
National Taichung University, Taiwan, ROC

Po-Jung Huang
National Taichung University, Taiwan, ROC

Kuan-Chou Lai
National Taichung University, Taiwan, ROC

Distributed Dynamic Load
Balancing in P2P Grid Systems

ABSTRACT

P2P Grids could solve large-scale scientific problems by using geographically distributed heterogeneous
resources. However, a number of major technical obstacles must be overcome before this potential can
be realized. One critical problem to improve the effective utilization of P2P Grids is the efficient load
balancing. This chapter addresses the above-mentioned problem by using a distributed load balancing
policy. In this chapter, we propose a P2P communication mechanism, which is built to deliver varied
information across heterogeneous Grid systems. Basing on this P2P communication mechanism, we
develop a load balancing policy for improving the utilization of distributed computing resources. We also
develop a P2P resource monitoring system to capture the dynamic resource information for the decision
making of load balancing. Moreover, experimental results show that the proposed load balancing policy
indeed improves the utilization and achieves effective load balancing.

DOI: 10.4018/978-1-60960-603-9.ch018

285

Distributed Dynamic Load Balancing in P2P Grid Systems

resources due to the different goals in building
different VOs.

The peer-to-peer (P2P) computing system is
another Internet-scale computing model where
computers share distributed resources via ex-
changes among the participating computers (An-
droutsellis-Theotokis et al., 2004; Li et al., 2006).
The widespread deployment of P2P computing
systems offers great potential for resource sharing.
The P2P system has the similar objective of the
grid system to coordinate large sets of distributed
resources. Therefore, many projects attempt to
integrate these two complementary technologies
to form an ideal distributed computing system
(Amoretti et al., 2005; Shan et al., 2002; Shudo
et al., 2005)

In this chapter, we propose a P2P-based mecha-
nism to form a P2P Grid platform for achieving
load balancing of distributed computing resources.
In general, the job submission in grid systems is
carried out by a global resource broker to distrib-
ute load. Here, we propose a campus-to-campus
Uni-P2P communication model to integrate the
Taiwan UniGrid (Taiwan UniGrid, 2009) and
the Taiwan TIGER system (Yang et al., 2005) by
using a P2P communication mechanism which
builds the communication pipes among sites in
different grid systems. This campus-to-campus
Uni-P2P communication model also supports a
P2P resource monitoring system that captures the
dynamic resource usage. In the P2P Grid platform,
super peers are employed to manage grid sites.
The concept of super peers, which exhibit more
powerful computing ability, bandwidth and hard-
ware capacity, is also considered in this Uni-P2P
communication model to improve the efficiency
of searching distributed resources. Moreover, we
propose a dynamic distributed load balancing
policy to improve the idle resource utilization in
the P2P Grid platform.

The rest of this chapter is structured as follows:
related works are discussed in section 2 followed
by the discussion of the system architecture in
sections 3. Experimental results are shown in

section 4. Section 5 describes conclusions and
future research directions.

RELATED WORKS

There are many middlewares (e.g., Globus Toolkit,
Unicore, gLite, etc.) which have been developed
for grid systems. Most of them focus on providing
the core middleware services for supporting the
development functionality of high-level applica-
tions. However, they usually depend on special-
ized servers to maintain the distributed resource
information. On the other hand, P2P systems
adopt decentralized resource discovery approaches
and thus do not rely on any specialized servers
to capture distributed resource information. In
this section, we present the related works of grid
information systems and load balancing policies.

Resource Monitoring Systems

There are resource monitoring software for cap-
turing the resource information, such as Ganglia,
Gstat (LCG), MDS, NWS and REMOS. Ganglia
is a distributed resource monitoring system; it
monitors system performance and system infor-
mation such as CPU load, memory usage, hard
disk usage, I/O load, and network bandwidth.
Gstat is the resource monitoring tool developed by
ASGC in order to support the members of EGEE
in handling global grid resources. Gstat supports
information such as the number of CPUs and their
load, the number of waiting/running jobs, and
the response time from GIIS. MDS (Monitor and
Discovery System) is one of the Globus Toolkits;
it supports information services and monitors/
searches grid resources. NWS (Network Weather
Services) is also a distributed resource monitoring
system. It monitors the performance of networks
and computing resources periodically, and then
predicts future system performance by real time
information. REMOS (REsource MOnitoring
System) allows the application to capture the

286

Distributed Dynamic Load Balancing in P2P Grid Systems

shared resource information in the distributed
computing environment. However, the above
resource monitoring systems do not support the
P2P mechanism for sharing resource information
among sites, and result in the system bottleneck
in the hierarchical architecture. Therefore, we
propose a dynamic, distributed resource monitor-
ing systems in the Uni-P2P communication model
for the P2P Grid platform to capture the dynamic
distributed resource status.

Resource Broker

The load balancing mechanisms in grid systems
can be classified into the global approach and
the local approach. The global load balancing
approach usually adopts the resource broker to
distribute load. Resource brokers consider the
usage information of grid resources, e.g., CPU
load, hard disk usage, memory load, etc., to
make decisions in order to achieve better system
performance. gLite is the middleware developed
by the E-Science project (Enabling Grids for
E-Science and Industry in Europe). The global
resource broker takes charge of distributing jobs
to different VOs in the gLite middleware. These
distributed jobs are sent to the job queues in each
VO for execution. After job submission, the global
resource broker cannot dynamically adjust the
load in each job queue, i.e., the global resource
broker does not support the function of dynamic
job migration.

In previous studies (Hu et al., 2006; Xia et al.,
2006; Xu et al., 2006), authors propose distributed
load balance mechanisms for computational grids
with the unstructured P2P architecture. In their
systems, every computing node has a job queue to
manage the job execution. These studies demon-
strate that their model always converges to a steady
load balancing state without complete knowledge
about other nodes. However, they assume that the
computational grid is a homogeneous unstructured
P2P network where computing nodes in the grids
are homogeneous. It is not practical under the as-

sumption that different computing nodes have the
same processing speed, memory size, and storage
space. These studies also assume that the process
of load balancing is relatively short, during which
there are neither new tasks submitted nor old
tasks finished. They claim that they could solve
the problem of archiving perfect load balance in
decentralized architecture. However, load balanc-
ing is a time-consuming process even when new
jobs are submitted or submitted jobs are migrated.
In this paper, our Uni-P2P communication model
can support dynamic job migration to balance
loads among different grid sites.

Process Migration

Process (or Job) migration is the action which
transfers a process between two computing nodes.
A process migration (Tanenbaum, 2007) involves
data, stacks, register contents, and the state for the
underlying operating system, such as parameters
related to process, memory, and file management
information. Process migration could improve the
load balance (Eager et al., 1986; Eager et al., 1988;
Hu et al., 2006, Iyengar et al., 2006) and the reli-
ability of distributed computing systems. Recently,
some migration technology has been raised by
adopting the checkpoint/restart technology in the
migration process. A previous study (Milojičić et
al., 2000) mentions about many process migration
algorithms in distributed computing systems. Ea-
ger copy is the simple and most common process
migration algorithm. Many previous studies (e.g.,
Lazy copy and Pre-copy) (Richmond et al., 1997)
also focus on how to enhance the effectiveness of
process migration, such as the information state
transfer, the transfer order, the process resumption,
and the network traffic reduction.

Load Balance Policy

To fully exploit the P2P Grid computing system,
load balancing is one of the key issues in achiev-

287

Distributed Dynamic Load Balancing in P2P Grid Systems

ing high performance. There are three goals of
the load balancing policy shown in the following:

• To distribute the workload from high-load-
ing sites to low-loading sites.

• To maximize the resource utilization.
• To minimize the job execution time.

According to the decision making approach,
load balancing policies can be categorized into
two types.

Static Policy

The static load balancing policy (Pan et al.,
2007) makes the balance decision by the resource
information before executing jobs. It is easy to
implement the static load balancing policy, and
the overhead of implementing the static policy
is lower than that of implementing the dynamic
policy. However, it is more difficult for the static
policy to obtain the optimal performance due to
that it can not adjust the decision at runtime. In
the high variation system, the performance of the
static policy is very poor.

Dynamic Policy

The dynamic load balancing policy (Chen et al.,
2008; Duan et al., 2008) makes decisions of the
resource allocations by the runtime information.
Although the dynamic policy (e.g., JRT (Wu et
al., 2008), Max-Min (Ali et al., 1999), Min-Min
(Ali et al., 1999) and RESERV (Vincze et al.,
2008)) brings better performance, it is difficult
to be implemented due to that it needs to collect
the dynamic information for making the optimal
decision. In general, the dynamic policy has the
better performance than that of the static policy.
In addition, the dynamic policy can maximize
the system performance in the high variation
environment.

On the other hand, according to the manage-
ment approach, load balance policies could also
be categorized into two types.

Centralized Policy

The centralized load balancing policy adopts one
computing node to be the resource manager and
makes the load balance decision. The centralized
resource manager manages global resource infor-
mation by collecting information from all sites.
The global resource information facilitates the
resource manager to allocate resources. Therefore,
the centralized policies manage resources easily
and achieve better performance. However, central-
ized resource manager could be the bottleneck of
the system; moreover, it may become the single
point of failure.

Distributed Policy

The distributed load balancing policy allows every
computing site in the distributed system to make
load balance decisions. In addition, the computing
site only needs to collect the information from its
linked sites. Although the cost of obtaining and
maintaining the dynamic system information is
very high, the distributed policy still could make
the decision successfully when one or more sites
join or leave the system. Therefore, the stability
of the distributed policy is better than that of the
centralized policy. The distributed policy is usu-
ally used in distributed system. Shah et al. (2007)
propose a decentralized load balancing algorithm
which employs the job arrival rates and the job
response for making load balancing decisions. Lei
et al. (2007) make the load balancing decisions
according to the CPU and memory status. Tang
et al. (2008) improve the system stability through
the resource-constrained load balancing control-
ler. Liang et al. (2008) propose an adaptive load
balancing algorithm which makes the workload
of all nodes as evenly as possible. Subrata et al.
(2008) propose a decentralized game-theoretic

288

Distributed Dynamic Load Balancing in P2P Grid Systems

approach which not only provides the similar
performance with centralized approach, but also
remain the advantage of distributed approaches.
Li et al. (2009) propose a hybrid strategy to bal-
ance the workload according to the average-based
and immediate resource information. Moreover,
the hybrid strategy improves the performance of
sequential tasks.

This paper proposes a Uni-P2P communication
model to connect grid sites and also proposes a
P2P resource monitoring system to collect the
resource information. A preliminary load balanc-
ing prototype (Huang et al., 2010) for P2P Grid
systems is also implemented. It employs limited
system information to achieve the load balanc-
ing and improve the resource utilization. In this
chapter, we integrate the proposed load balancing
prototype into the Uni-P2P communication model
to make P2P Grid systems more efficient.

SYSTEM ARCHITECTURE

P2P Grid System

The P2P Grid computing system is a distributed
computing systems based on the grid computing
system, which employs the P2P approach to ex-
change information. In the P2P Grid system, each

site consists of one super node and several general
nodes. Super nodes exchange the site information
with each other by adopting the P2P approach
and manage resources and jobs in general nodes.
General nodes are responsible both for job execu-
tion and for supplying the resource information
of the general node to the super node. The P2P
Grid system architecture is shown in Figure 1.

Uni-P2P Communication Model

The Uni-P2P communication model is developed
by JXTA. The JXTA project (Gong et al., 2002)
was proposed to enable P2P routing services which
locate and communicate with peers.

In our system architecture, we build the Uni-
P2P communication model on the Globus Toolkit
as shown in Figure 2.

Uni-P2P communication model includes five
modules, as shown in Figure 3: the configuration
module, the information service module, the file
transfer module, the load balance module, and
the execution management module.

The functions of the configuration module
include the basic parameters setup, P2P pipe
startup, and the initialization of peers. This mod-
ule is fundamental in the Uni-P2P communication
model. The file transfer module supports the
universal pipes among computing nodes to trans-
fer job files, data files, command messages, and
the job description files. The information service
module includes three sub-modules: the resource
discovery, the resource collection and the resource
aggregation. The information service module
manages the global resource information among

Figure 1. P2P Grid system Figure 2. P2P Grid system architecture

289

Distributed Dynamic Load Balancing in P2P Grid Systems

sites and the local resource information among
computing nodes. The load balance module takes
charge of load measurement, best cost site deci-
sion, job queue check and job description gen-
eration. The execution management module is
responsible for job execution. Jobs waiting in the
Condor queue can be handled in this module.

Because security is not a major concern in
P2P systems, we omit the security consideration
and instead focus on research issues about job
migration in this study.

In this chapter, the computing nodes in each site
are classified into super peers and general peers.
The general peer that starts with JXTA RDV and
Relay Service becomes a super peer, and then

the super peer starts up the resource load balance
module. The attributes and resource information
of computing nodes for general peers are sent to
the super peer. In our Uni-P2P communication
model, there are six function modules to handle
P2P communication, as shown in Figure 4.

The P2P communication mechanism first
configures the basic setting before starting the
Uni-P2P services. Then, the resource discovery
module searches and records the peer information
in the host table. The resource loading module
collects the resource usage (e.g., CPU and mem-
ory load) of general peers and records the infor-
mation in the resource table. The message receiv-
ing/sending module listens to the services at any

Figure 3. System architecture of the Uni-P2P communication model

Figure 4. P2P communication mechanism

290

Distributed Dynamic Load Balancing in P2P Grid Systems

time for receiving and sending messages. The
pipeline module establishes the pipeline between
peers. The input-pipe and output-pipe are used in
message passing or file transferring. After estab-
lishing the pipeline between peers, the P2P com-
munication mechanism delivers messages, files,
and tasks via the socket module.

In order to measure the resource load, the
resource loading module is also built in the super
peer. When the member peer sends a request to
the super peer, the super peer will actively search
for the appropriate resources, and the super peer
selects the suitable resources according to the load
balance policy. The pipeline and socket modules
start the job migration. And then, the overloaded
jobs would be migrated to other super peers which
have enough (or suitable) computing resources.

P2P Resource Monitoring System

Basing on the above P2P communication mecha-
nism, we propose a dynamic distributed resource
monitoring system named the P2P-Grid smart
monitor, which captures the dynamic distributed
resource status in the Uni-P2P communication
model for the P2P Grid platform. The snapshot

of the P2P-Grid smart monitor system is shown
in Figure 5.

Load Balance Policy

In this section, we present the proposed Self-
Adaptive Load Balance (SALB) policy for P2P
Grid systems. SALB is a distributed dynamic load
balance policy by applying the sender-initiated
strategy. The sender-initiated strategy means that
when the node becomes overloaded, it starts to find
out other nodes to migrate jobs. SALB consists
two phases: the neighbor selection phase and the
job migration phase. Therefore, when the grid
site is overloaded, it picks several low-loading
neighbors from neighbors in the neighbor selec-
tion phase, and then selects the neighbor with the
shortest job completion time for migrating jobs
in the job migration phase.

Neighbor Selection Phase

In the P2P Grid system, each grid site only con-
nects with some neighbor grid sites. According
to the small world theory (Six Degrees of Separa-
tion), the minimal number of neighbors of one

Figure 5. P2P-Grid smart monitor system

291

Distributed Dynamic Load Balancing in P2P Grid Systems

site should be greater than six square root of the
number of all the grid sites. We denote the num-
ber of all the grid sites by N, and the minimal
number of neighbors should be greater than or
equal to N6 . Therefore, each grid site maintains
at least N6 neighbors to ensure the network
connectivity. In addition, in order to improve the
load balancing, SALB estimates the remaining
resources capability of each neighbor site and
selects the neighbors with more remaining capa-
bilities for migrating jobs. Suppose that a grid site
has m kinds of resources, and each resource’s
remaining capability of site s is denoted by RCi(s),
where i = 1 … m. The weight of each resource is
denoted by Wi(s). Assume that DRC(l, r) is the
difference of remaining capability between the
local site l and the remote site r. Then,

DRC l r W l
RC l

RCi ri
i

m
i(,) ()
()

()
=

=

∑
1

 (1)

When a gird site joins the P2P Grid system, it
randomly selects 2 N6 sites as the candidates of
neighbors and picks the first N6 sites with the
smaller DRC as its neighbors. Thus, these neigh-
bors have more remaining resources capability
for load balancing. To avoid the out-of-date in-
formation, we also set a time interval t for each
grid site to re-select neighbor sites periodicity. In
addition, SALB estimates the relative loading
(RL) and the absolute loading (AL) of grid sites
to determine whether the local site is sendable
and which neighbor sites are receivable. We define
the utilization of resource i in site s by Ui(s).

Besides, the average utilization, the maximum
utilization and the minimum utilization of resource
i of site s are defined by U_AVGi(s), U_MAXi(s)
and U_MINi(s) respectively. Therefore, the RL of
site s is defined as

RL s W s
U U AVG s

U MAX s U MIN si
i i

m
i i

i i

() ()=
−

−=

∑
_ ()

_ () _ ()

(2)

while the AL of site s is defined as

AL s W s U s
i i

i

m

() () ()=
=

∑
1

 (3)

Moreover, SALB predefines the high threshold
of RL by RL_H, the low threshold of RL by RL_L,
the high threshold of AL by AL_H, and the low
threshold of AL by AL_L. The status of different
combinations of RL and AL are described as fol-
lows: When RL is greater than or equal to RL_H,
the status is set to be “High”. When RL is less than
RL_H and is greater than RL_L, the status is set
to be “Moderate”. When RL is less than or equal
to RL_L, the status is set to be “Low”. When AL
is greater than or equal to AL_H, the status is set
to be “High”. When AL is less than AL_H and is
greater than AL_L, the status is set to be “Moder-
ate”. When AL is less than or equal to AL_L, the
status is set to be “Low”. The statuses of different
combinations of RL and AL are shown in table 1.

According to the statuses of RL and AL, we
classify the status of local sites to be “Sendable”

Table 1. States of RL and AL

RL status AL status

RL ≧ RL_H High AL ≧ AL_H High

RL_H > RL > RL_L Moderate AL_H > AL > AL_L Moderate

RL ≦ RL_L Low AL ≦ AL_L Low

292

Distributed Dynamic Load Balancing in P2P Grid Systems

or “Unsendable”, and the status of its neighbor
sites to be “Receivable” or “Unreceivable”. In
order to further improve the load balancing per-
formance, we refine the definition of the status
set. As long as the status of one of RL or AL is
“High”, the grid site becomes “Sendable”. More-
over, when the status of only one of RL or AL is
“High”, the grid site becomes “Unreceivable”.
When a grid site becomes “Sendable”, it means
that the grid site is overloaded. Therefore, the
sendable site starts to pick out its neighbors which
are “Receivable”, and enables the job migration
phase. The statuses of different combinations in
gird sites are shown in table 2.

Job Migration Phase

In the job migration phase, the sendable site cal-
culates the possible job turnaround time for each
receivable neighbor site if this neighbor site is the
candidate site. And then, the job is migrated to the
neighbor site which has the minimal job turnaround
time. The job turnaround time is the sum of the
forecasted waiting time, the execution time and the
migration time which are respectively denoted by
Tw, Te, and Tm. Tw is the forecasted waiting time of
the migrated job J in the destination site s. SALB
forecasts the total remaining execution time, Tr,
of the running jobs and the total execution time,
Ti, of the idle jobs in the destination site s. Then,

assume that the number of CPU in the site s is NCPU.
Then, the forecasted waiting time is defined as

T
w

T T

N
CPU

r i=
+ (4)

Te is the executing time of job J in the site s. Tm
is the migration time of job J which is migrated
from the local site to the destination site. The
migration involves the job’s program code and
some required data files. Thus,

T
m
=

The size of program code file and data file
The bandwidthh between the local site and destination site

(5)

Denoting the job turnaround time by Tjt, then

Tjt = Tw + Te + Tm. (6)

Figure 6 shows the algorithm of SALB. Each
grid site changes their neighbors periodically to
improve the global load balancing. In addition, due
to that SALB applies the sender-initiated strategy,
only when the grid site becomes “Sendable”, the
load balancing policy is enabled. The sendable site
picks out the neighbors which are “Receivable”
according to the statuses of RL and AL. Then, the
neighbor’s job turnaround time (Tjt) is calculated
and the neighbor which has the minimal job turn-

Table 2. The status of grid sites

RL status AL status Local site’s status Neighbor site’s status

High High Sendable Unreceivable

High Moderate Sendable Unreceivable

High Low Sendable Unreceivable

Moderate High Sendable Unreceivable

Moderate Moderate UnSendable Receivable

Moderate Low UnSendable Receivable

Low High Sendable Unreceivable

Low Moderate UnSendable Receivable

Low Low UnSendable Receivable

293

Distributed Dynamic Load Balancing in P2P Grid Systems

around time is chosen to be the destination site r.
Finally, Tjt for each site is compared. If Tjt of site
r is less than that of the site l, site l will migrate
job J to site r, otherwise site l retains job J until
the next time interval.

EXPERIMENTAL RESULTS

This section introduces the experimental environ-
ment and results of SALB. In our discussion of
the experimental results, we particularly focus on
the efficiency of load balancing.

Experimental Environment

In this experiment, we adopts JXTA with version
2.5.1, Java with version 1.6.0 and Condor with
version 6.7.20 to implement SALB in Taiwan
UniGrid for evaluating load balancing. In addition,
we construct five grid sites, and each site consists
of one super node and some general nodes. Super
nodes are responsible for the communication with
other neighbor sites, assigning jobs to their general
nodes and executing SALB strategy. General nodes
are responsible for executing the jobs assigned
by the super nodes. Moreover, SALB can be
extended to larger scale systems. Table 3 shows
the specification of the experimental platform.

Figure 6. SALB algorithm

Table 3. System specification

Site Hosts Peer Types CPU clock Memory

1 Host201 Super node Intel P-D 3.40GHz x 2 512M

1 Host204 General node Intel P-D 3.40GHz x 2 512M

2 Host205 Super node Intel P-4 3.40GHz x 2 512M

2 Host208 General node Intel P-4 3.40GHz x 2 512M

3 Host206 Super node Intel P-4 3.40GHz x 2 512M

3 Host207 General node Intel P-4 3.40GHz x 2 512M

4 Host221 Super node Intel P-4 3.40GHz 256M

4 Host223 General node Intel P-4 3.40GHz 256M

5 Host222 Super node Intel P-4 3.40GHz x 2 512M

5 Host224 General node Intel P-4 3.40GHz x 2 512M

294

Distributed Dynamic Load Balancing in P2P Grid Systems

This experiment employs five benchmarks,
including f77split, fd_predator_prey, fd1d_heat_
explicit, satisfiability and linpack_bench. Because
each benchmark consumes different computing
resources, we employ these five benchmarks as
five different jobs. All the jobs are firstly submit-
ted to site 5. In addition, we compare the load
balancing performance of SALB with those of
FIFO (Fist In First Out) strategy and JRT strategy
when the numbers of jobs are 50, 100, 150 and
200 respectively. We employ CPU, memory and
bandwidth to represent the computing resources,
and their weights are denoted as WCPU, WMemory
and WBandwidth respectively. Table 4 shows the
definitions of related arguments.

Evaluation of SALB

Figure 7 shows the average execution time of
each strategy with different numbers of jobs. We
can observe that SALB spends a little more time
than JRT. This is because SALB spends more
time in picking out neighbors and calculating the
job turnaround time. Therefore, the time SALB
spends for load balancing is longer than those
other strategies spend when the number of jobs
is small. However, SALB performs better with
the increasing number of jobs.

Figure 8 shows the average CPU utilization
of each strategy with different numbers of jobs.
It shows that SALB has the maximum average
CPU utilization. This is because SALB picks the

neighbors with the most remaining resources for
migrating jobs. Therefore, the average utilization
of computing resources could be improved.

Figure 9, 10, 11 and 12 show the average CPU
utilization of each strategy with different numbers
of jobs. In these figures, we can observe that
SALB is steadier than other strategies. This is
because it is more possible for the grid sites with
more remaining resources to be the candidates
for migrating jobs. Therefore, the CPU utilization
keeps steadily until finishing all the jobs.

CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

In this chapter, we propose a Uni-P2P communica-
tion model which supports the resource discovery,

Table 4. Definitions of relate arguments

RL_H 20%

RL_L -20%

AL_H 60%

AL_L 40%

WCPU 60%

WMemory 30%

WBandwith 10%

t 60 second

Figure 7. Average execution time

Figure 8. Average CPU utilization

295

Distributed Dynamic Load Balancing in P2P Grid Systems

Figure 9. Average CPU utilizations of executing 50 jobs

Figure 10. Average CPU utilizations of executing 100 jobs

Figure 11. Average CPU utilizations of executing 150 jobs

296

Distributed Dynamic Load Balancing in P2P Grid Systems

loading balance and job migration functions to
establish a P2P Grid platform. Basing on this P2P
Grid platform, we propose a load balancing policy
named SALB. SALB picks out the neighbors with
more remaining resources to be the candidate
sites in the neighbor selection phase, and then
migrates jobs to the candidate neighbor with the
minimal job turnaround time in the job migration
phase. In addition, experimental results show that
SALB indeed improves the resource utilization
and achieves effective load balancing.

In the future, we plan to improve the neighbor
selection mechanism and deploy the policies to
UniGrid to verify its performance. On the other
hand, we will adopt the grid simulator, such as
GridSim, as the experiment environment for our
load balancing strategy to enlarge the experi-
mental scale.

ACKNOWLEDGMENT

An earlier version of this paper was published
in International Journal of Grid and High Per-
formance Computing 1(4) as “Exploring Job
Migration Technique for P2P Grid Systems” by
Kuan-Chou Lai, Chao-Chin Wu, and Shih-Jie Lin.

REFERENCES

Ali, S., Siegel, H. J., Hensgen, D., & Freund, R. F.
(1999). Dynamic mapping of a class of indepen-
dent tasks onto heterogeneous computing systems.
Journal of Parallel and Distributed Computing,
59(2), 107–131. doi:10.1006/jpdc.1999.1581

Amoretti, M., Zanichelli, F., & Conte, G. (2005).
SP2A: A service-oriented framework for P2P-
based Grids. 3rd International Workshop on
Middleware for Grid Computing, (pp. 1-6).

Androutsellis-Theotokis, S., & Spinellis, D.
(2004). A survey of peer-to-peer content distri-
bution technologies. ACM Computing Surveys,
36(4), 335–371. doi:10.1145/1041680.1041681

Chen, J., & Lu, B. (2008). Load balancing ori-
ented economic Grid resource scheduling. IEEE
Pacific-Asia Workshop on Computational Intel-
ligence and Industrial Application, (pp. 813-817).

Dandamudi, S. (1995). Performance impact of
scheduling discipline on adaptive load sharing
in homogeneous distributed system. 15th IEEE
International Conference on Distributed Comput-
ing Systems, (pp. 484-492).

Figure 12. Average CPU utilizations of executing 200 jobs

297

Distributed Dynamic Load Balancing in P2P Grid Systems

Duan, Z., & Gu, Z. (2008). Dynamic load bal-
ancing in Web cache cluster. 7th International
Conference on Grid and Cooperative Computing,
(pp. 147-150).

Eager, D. L., Lazowska, E. D., & Zahorjan, J.
(1986). A comparison of receiver initiated and
sender initiated adaptive load sharing. Perfor-
mance Evaluation, 6(1), 53–68. doi:10.1016/0166-
5316(86)90008-8

Eager, D. L., Lazowska, E. D., & Zahorjan, J.
(1988). The limited performance benefits of mi-
grating active processes for load sharing. 1988
ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, (pp. 63-72).

Gong, L., Oaks, S., & Traversat, B. (2002). JXTA
in a nutshell a desktop quick reference. Sebastopol,
CA: O’Reilly & Associates.

Hu, J., & Klefstad, R. (2006). Decentralized load
balancing on unstructured Peer-2-Peer computing
Grids. 5th IEEE International Symposium on Net-
work Computing and Applications, (pp. 247-250).

Huang, P. J., Yu, Y. F., Chen, Q. J., Huang, T. L.,
Lai, K. C., & Li, K. C. (2010). A self-adaptive
load balancing strategy for P2P grids. In C. H.
Hsu, et al. (Eds.), ICA3PP 2010, part II, LNCS
6082, (pp. 348-357). Heidelberg/Berlin, Germany:
Springer-Verlag.

Iyengar, M. S., & Singhalc, M. (2006). Effect
of network latency on load sharing in distrib-
uted systems. Journal of Parallel and Distrib-
uted Computing, 66(6), 839–853. doi:10.1016/j.
jpdc.2005.09.005

Lei, S., Yuyan, S., & Lin, W. (2007). Effect of
scheduling discipline on CPU-MEM load sharing
system. 6th International Conference on Grid and
Cooperative Computing, (pp. 242-249).

Li, J., & Vuong, S. (2006). Grid resource discov-
ery based on semantic P2P communities. 2006
ACM Symposium on Applied Computing, (pp.
754-758).

Li, Y., Yang, Y., & Zhu, R. (2009). A hybrid load
balancing strategy of sequential tasks for compu-
tational Grids. IEEE International Conference on
Networking and Digital Society, (pp. 112-117).

Liang, G. (2008). Adaptive load balancing al-
gorithm over heterogeneous workstations. 7th
International Conference on Grid and Cooperative
Computing, (pp. 169-174).

Milojičić, D. S., Douglis, F., Paindaveine, Y.,
Wheeler, R., & Zhou, S. (2000). Process migra-
tion. ACM Computing Surveys, 32(3), 241–299.
doi:10.1145/367701.367728

Pan, Y., Lu, W., Zhang, Y., & Chiu, K. (2007). A
static load-balancing scheme for parallel XML
parsing on multicore CPUs. 7th IEEE International
Symposium on Cluster Computing and the Grid,
(pp. 351-362).

Richmond, M., & Hitchens, M. (1997). A new
process migration algorithm. ACM SIGOPS
Operating Systems Review, 31(1), 31–42.
doi:10.1145/254784.254790

Shah, R., Veeravalli, B., & Misra, M. (2007). On
the design of adaptive and decentralized load
balancing algorithms with load estimation for
computational Grid Environments. IEEE Transac-
tions on Parallel and Distributed Systems, 18(12),
1675–1686. doi:10.1109/TPDS.2007.1115

Shan, J., Chen, G., He, J., & Chen, X. (2002).
Grid society: A system view of Grid and P2P
environment. International Workshop on Grid and
Cooperative Computing, (pp. 19-28).

298

Distributed Dynamic Load Balancing in P2P Grid Systems

Shudo, K., Tanaka, Y., & Sekiguchi, S. (2005).
P3: P2P-based middleware enabling transfer and
aggregation of computational resources. IEEE
International Symposium on Cluster Computing
and the Grid, (pp. 259- 266).

Subrata, R., Zomaya, A. Y., & Landfeldt, B. (2008).
Game-theoretic approach for load balancing
in computational Grids. IEEE Transactions on
Parallel and Distributed Systems, 19(1), 66–76.
doi:10.1109/TPDS.2007.70710

Taiwan UniGrid. (n.d.). Retrieved October 13,
2009, from http://www.unigrid.org.tw/index.html.

Tanenbaum, A. S. (2007). Modern operating
systems (3rd ed.). Prentice Hall.

Tang, Z., Birdwell, J. D., & Chiasson, J. (2008).
Resource-constrained load balancing controller
for a parallel database. IEEE Transactions on
Control Systems Technology, 16(4), 834–840.
doi:10.1109/TCST.2007.916305

Vincze, G., Novák, Z., Pap, Z., & Vida, R. (2008).
RESERV: A distributed, load balanced Information
System for Grid applications. 8th IEEE Interna-
tional Symposium on Cluster Computing and the
Grid, (pp. 596-601).

Wu, Y. J., Lin, S. J., Lai, K. C., Huang, K. C.,
& Wu, C. C. (2008). Distributed dynamic load
balancing strategies in P2P Grid systems. 5th
Workshop on Grid Technologies and Applica-
tions, (pp. 95-102).

Xia, Y., Chen, S., & Korgaonkar, V. (2006). Load
balancing with multiple hash functions in peer-to-
peer networks. IEEE 12th International Conference
on Parallel and Distributed Systems, (pp. 411-420).

Xu, Z., & Bhuyan, L. (2006). Effective load
balancing in P2P systems. 6th IEEE International
Symposium on Cluster Computing and the Grid,
(pp. 81-88).

Yang, C. T., Li, C. T., Chiang, W. C., & Shih, P.
C. (2005). Design and implementation of TIGER
Grid: An integrated metropolitan-scale Grid
environment. 6th International Conference on
Parallel and Distributed Computing Applications
and Technologies, (pp. 518-520).

299

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 19

DOI: 10.4018/978-1-60960-603-9.ch019

INTRODUCTION

In recent years, the use of context information has
attracted a lot of attention from researchers and
industry participates in ubiquitous and pervasive
computing. Users and applications are often inter-
ested in searching and utilizing widespread context
information. Context information is characterized
as an application’s environments or situations

(Dey et al., 2000). With the vast amount of context
information spread over multiple context spaces
and the increasing needs of cross-domain context-
aware applications, how to provide an efficient
context search mechanism is challenging in the
context-aware research community.

One approach is to use a centralized search
engine to store context data and resolve search
requests. Although this approach can provide fast
responses to a context query, it has limitations
such as scalability, a single processing bottle-

Tao Gu
University of Southern Denmark, Denmark

Daqing Zhang
Institut Telecom SudParis, France

Hung Keng Pung
National University of Singapore, Singapore

An Ontology-Based P2P
Network for Semantic Search

ABSTRACT

This article presents an ontology-based peer-to-peer network that facilitates efficient search for data in
wide-area networks. Data with the same semantics are grouped together into one-dimensional semantic
ring space in the upper-tier network. This is achieved by applying an ontology-based semantic clustering
technique and dedicating part of node identifiers to correspond to their data semantics. In the lower-tier
network, peers in each semantic cluster are organized as Chord identifier space. Thus, all the nodes in
the same semantic cluster know which node is responsible for storing context data triples they are look-
ing for, and context queries can be efficiently routed to those nodes. Through the simulation studies, the
authors demonstrate the effectiveness of our proposed scheme.

300

An Ontology-Based P2P Network for Semantic Search

neck and a single point of failure. Peer-to-peer
(P2P) approaches, on the other hand, have been
proposed to overcome these obstacles and are
gaining popularity in recent years. P2P systems
such as Gnutella (Gnutella) and Freenet (Freenet)
allow nodes to interconnect freely and have low
maintenance overhead, making it easy to handle
the dynamic changes of peers and their data.
The past years have seen an increased focus on
decentralized P2P systems (Han, et al., 2006,
Li, et al., 2006, Liu, et al., 2004, Morselli, et al.,
2005). However, a query has to be flooded to all
the nodes in a network including the nodes that do
not have relevant data. The fundamental problem
that makes search in these systems difficult is that
data are randomly distributed in the network with
respect to their semantics. Given a search request,
the system either has to search a large number of
nodes or run a risk of missing relevant data. Other
P2P systems such as Chord (Stoica, et al., 2001),
CAN (Ratnasamy, et al., 2001), Pastry (Rowstron,
et al., 2001) and Tapestry (Zhao, et al., 2004) typi-
cally implement distributed hash tables (DHTs)
and use hashed keys to direct a search request to
the specific nodes by leveraging a structured net-
work. In these systems, a data object is associated
with a key which can be produced by hashing the
object name. A node is assigned with an identifier
which shares the same space as the keys. Each
node is responsible for storing a range of keys and
corresponding objects. When a search request is
issued from a node, the search message is routed
through the network to the node responsible for
the key. They can guarantee to complete search
in a logarithmic number of steps. Over years,
many applications have been developed, such as
file sharing (LimeWire) and content distribution
(Castro, et al., 2003).

In this article, we propose a two-tier semantic
P2P network to search for context information in
wide-area networks. The basic idea is to construct a
two-level semantic P2P network based on metadata
(i.e., context ontologies), which is essentially a
semantic approach, to facilitate efficient search.

In this system, context data are represented by
a collection of RDF (RDF) triples. Peers with
the same semantics are grouped together into a
semantic cluster in the upper-tier network. All
the semantic clusters are constructed as a one-
dimensional semantic ring space. This is achieved
by dedicating part of hashed node identifiers to
correspond to their data semantics. Data semantic
is extracted according to a set of schemas. Peers
in each semantic cluster can be organized as a
structured P2P network such as Chord identifier
space in the lower-tier network. Thus, all the
nodes in the same semantic cluster know which
node is responsible for storing context data triples
they are looking for, and context queries can be
efficiently routed to those nodes.

The rest of the article is organized as fol-
lows. Section 2 presents the detail of the two-tier
semantic P2P network. Section 3 evaluates the
performance of our system using simulation and
presents the results. Section 4 reviews related
works, and finally Section 5 concludes our work.

THE TWO-TIER SEMANTIC
P2P NETWORK

In this section, we first present an overview of
the two-tier semantic P2P network, followed
by a description of technical details. For ease
of discussion, we use the terms node and peer
interchangeably for the rest of the article.

OVERVIEW

In this network, a large number of nodes storing
context data are grouped and self-organized into
a two-tier semantic P2P network, in accordance
with their semantics. A node can act as producer,
consumer or both. Producers provide various
context data for sharing whereas consumers obtain
context data by submitting their context queries
and receiving results. Each node maintains a lo-

301

An Ontology-Based P2P Network for Semantic Search

cal data repository which supports RDF-based
query using RDQL (RDQL). Upon creation, each
producer will first go through the ontology-based
semantic mapping process to extract the seman-
tics of its local data. It will then join a semantic
cluster by applying the SHA1 hash function to
the semantics of its main data. These semantic
clusters logically form the upper-tier network in
which each node builds its routing index based
on the small world network model (Kleinberg,
2000). In the lower-tier network, nodes in each
semantic cluster are organized as Chord for storing
context data and routing context queries in a loga-
rithmic number of hops. Upon receiving a context
query, the node first pre-processes it to obtain the
semantic cluster associated with the query, and
then routes it to an appropriate semantic cluster.
In the lower-tier, the node routes the query using
its finger table. Nodes that receive the query do
a local search, and return results.

ONTOLOGY-BASED
SEMANTIC CLUSTERING

In this section, we describe how to use ontology-
based metadata to extract the semantics of both
RDF data and queries, and map them into appro-
priate semantic clusters. In our system, context
data are described as RDF triples based on a set
of context ontologies. We adopt a two-level hi-
erarchy in the design of context ontologies. The
upper ontology defines common concepts in a
computing domain, e.g., context-aware comput-
ing, and it is shared by all peers. Each peer can
define its own concepts in its lower ontologies.
Different peers may store different sets of lower
ontologies based on their application needs. The
upper ontology can be extended with new concepts
and properties upon the agreement among all the
peers in the network.

To illustrate the semantic mapping process, we
use an example of ontology as shown in Figure
1. All the leaf nodes in the upper ontology are

used as semantic clusters, and denoted as set E =
{Service, Application, Device, ...}. The mapping
computation is done locally at each peer. For the
mapping of RDF data, a peer needs to define a
set of lower ontologies and store them locally.
Upon joining the network, a peer first obtains the
upper ontology and merges it with its local lower
ontologies. Then it creates instances (i.e., RDF
data) and adds them into the merged ontology
to form its local knowledge base. A peer’s local
data may be mapped into one or more semantic
clusters by extracting the subject, predicate and
object of an RDF data triple. Let SCnsub, SCnpred
and SCnobj where n = 1, 2, ... denote the semantic
clusters extracted from the subject, predicate and
object of a data triple respectively. Unknown
subjects/objects (which are not defined in the
merged ontology) or variables are mapped to E.
If the predicate of a data triple is of type Object-
Property, we obtain the semantic clusters using
(SC1pred ⋃ SC2pred ⋃ ... SCnpred) ⋂ (SC1obj ⋃ SC2obj
⋃ ... SCnobj). If the predicate of a data triple is of
type DatatypeProperty, we obtain the semantic
clusters using (SC1sub ⋃ SC2sub ⋃ ... SCnsub) ⋂
(SC1pred ⋃ SC2pred ⋃ ... SCnpred). Examples 1 and
2 in Figure 2a show the RDF data triples about
the location and light level in a bedroom provided
by a producer peer. In Example 2, we first obtain
the semantic clusters from both the subject and
predicate, and then intersect their results to get
the final semantic cluster – IndoorSpace.

A context query follows the same procedure
to obtain its semantic cluster(s), but it needs all
the sets of lower ontologies. In real applications,
users may create duplicate properties in their
lower ontologies which conflict with the ones in
the upper ontology. For example, the upper ontol-
ogy defines the rdfs:range of predicate locatedIn
as Location whereas the lower ontology defines
its rdfs:range as IndoorSpace. To resolve this
issue, we create two merged ontologies, one for
clustering peers and the other for clustering que-
ries. If such a conflict occurs, we select the af-
fected properties defined in the lower ontology

302

An Ontology-Based P2P Network for Semantic Search

to generate the merged ontology for clustering
peer and select the affected properties defined in
the upper ontology to generate the merged ontol-
ogy for clustering queries. With this scheme, a
peer can extract the semantics of its data triples
more precisely without losing generality for con-
text queries. For example, predicate locatedIn
may have the rdfs:range of IndoorSpace in the
merged ontology for clustering peers (see Figure
2a) and have the rdfs:range of Location in the
merged ontology for clustering queries (see Fig-
ure 2b). Data triple <socam:John socam:locatedIn
socam:Bedroom> will be mapped to IndoorSpace;
and query <socam:John socam:locatedIn ?x>
will be mapped to both IndoorSpace and Out-
doorSpace rather than only IndoorSpace. This is
most likely the case of real life applications.

THE UPPER-TIER NETWORK

In this section, we describe the process of con-
structing the two-tier semantic P2P network. After
obtaining the semantics from its local context
data, a node needs to participate in the network.
It will first join an appropriate semantic cluster
in the upper-tier network, and then store its data

triples and participate in the lower-tier network.
As a node may obtain multiple semantics from
its local data, we choose the semantic cluster
corresponding to the largest set of data to place
the node. We call this semantic cluster the major
semantic cluster of this node. The remaining se-
mantic clusters which a node’s data corresponds
to are called minor semantic clusters of this node.

A node is assigned with an ID upon joining the
network. We use SHA1 hash function to generate
nodes’ identifier space. To incorporate semantic
information associated with a node, we dedicate
part of hashed node identifiers to correspond to
the semantic cluster. More specifically, in a k-bits
identifier space, we allocate m-bits for semantic
cluster information and n-bits for its IP address,
where k = m + n. An example of a node’s ID gen-
erated by hashing its semantic cluster Person and
its IP address “137.132.81.235” is given below.

node id = [hashm(“Person”)]
[hashn(“137.132.81.235”)]

With this encoding scheme, we are able to
construct the two-tier network and identify a node
in the network, i.e., the first m-bits of a node’s ID
(called semantic cluster ID or sid in short) cor-

Figure 1. An example of ontology for illustration

303

An Ontology-Based P2P Network for Semantic Search

responds to the semantic cluster in the upper-tier
and the last n-bits represents the node’s ID in the
lower-tier.

We follow the small world network model to
construct the upper-tier network. The small net-
work model is characterized as small average path

length between two nodes in the network and large
cluster coefficient defined as the probability that
two neighbors of a node are neighbors themselves.
Studies show that searches can be efficiently routed
in small world networks when: Each node in the
network knows its local neighbors (called short

Figure 2. An example of semantic cluster mapping

304

An Ontology-Based P2P Network for Semantic Search

range contacts); and each node knows a small
number of randomly chosen distant nodes (called
long range contacts), with probability proportional
to 1/d where d is the distance (Kleinberg, 2000).
The constant number of contacts and small aver-
age path length serve as the motivation for us to
build the upper-tier network using the small world
network model.

To construct the upper-tier network, each node
maintains a set of short range contacts to a peer in
its neighboring semantic clusters and a number of
long range contacts. As shown in Figure 3, Peer
1 maintains Peer 2 as its left short range contact
and Peer 3 as its right short range contact; and
that results all the semantic clusters are linked
linearly in a ring fashion. The long range con-
tacts are obtained by randomly choosing a node
in the upper-tier based on a distribution function
with its probability proportional to 1/d, where d
is the semantic distance (e.g., can be represented
as Euclidean distance). The long range contacts
aim at providing shortcuts to reach other semantic
clusters quickly. Via short range and long range
contacts, search in the upper-tier network can be
guided greedily by comparing sids of the desti-
nation and the traversed nodes. In addition, if a
peer has context data corresponding to its minor

semantic clusters, it needs to register the indices
of these data to a random node in each of its minor
semantic clusters, e.g., Peer 1 registers its data
indices to a random node – Peer 5 in SC2 since
it has data corresponding to semantic cluster –
OutdoorSpace. This ensures that a context query
is able to reach all the relevant nodes that store the
keys responsible for the query. The registration
process of data indices is similar to the storing
process of data triples in the lower-tier network,
and it will be described in the next section.

THE LOWER-TIER NETWORK

In the lower-tier network, peers in each semantic
cluster are organized as Chord for storing data
triples and routing context queries. This approach
divides the one-dimensional Chord identifier space
into multiple Chord identifier spaces. The number
of neighbors maintained per node is logarithmic
to the number of nodes in its semantic cluster.
Hence, the maintenance cost can be reduced as
compared to the original Chord.

A peer is organized into Chord based on the
randomly chosen node identifier by applying the
SHA1 hash function to its IP address. To facili-

Figure 3. The construction of the upper-tier network (note: the sign “+” represents appending)

305

An Ontology-Based P2P Network for Semantic Search

tate efficient context query, we build distributed
indices for each data triple. Each data triple is in
the form of subject, predicate, and object. Since
the predicate of the triple is always given in a
context query, we store each data triple two times
in Chord. We apply the hash function to the <sub
pred> and <pred obj> pairs to generate the keys
for storing each data triple. Each data triple will
be stored at the successor nodes of the hashed
key values of <sub pred> and <pred obj> pairs.
We define the Store procedure to perform the
above storing process for each data triple. Figure
4 illustrates the process that node N2 stores the
following data triples in a 3-bit Chord identifier
space of 6 nodes.

<socam:John socam:homeAddress “XYZ”>
<socam:John socam:age “30”>
<socam:John socam:favoriteSport

socam:baseball>

To register the indices of data corresponding
to the minor semantic cluster(s), a node first sends
a Register message to a random node in each of
its minor semantic clusters, and then it follows
the same procedure as above to store the indices.

QUERY ROUTING

The query routing process involves two steps:
inter-cluster routing and intra-cluster routing. A
context query will be first forwarded to the ap-
propriate semantic cluster and routed to destina-
tion peers in the lower-tier network. When a node
receives a context query, the destination semantic
cluster can be extracted from the query using the
ontology-based semantic mapping technique (de-
scribed in Section 2.2). First, we obtain the search
key by hashing the destination semantic cluster.
We then compare the search key with the most
significant m-bits of its neighbors’ identifiers, and
forward the query to the closest neighboring node.

Figure 4. An example of 3-bit Chord identifier space of 6 nodes (could hold up to 8 nodes) for the il-
lustrating of storing data triples and query routing

306

An Ontology-Based P2P Network for Semantic Search

This forwarding process is recursively carried out
until the destination semantic cluster is reached.

When the query reaches a node in the des-
tination semantic cluster, the node will use its
finger table to route the query in the lower-tier
network. An example of the finger table of node
N5 is shown in Figure 4. If a context query in the
form of SELECT ?x WHERE (<socam:John>
<socam:homeAddress> ?x) reaches node N5,
node N5 will look up the hashed <sub pred> pair
using its fingers. Finally, node N6 and the result
<socam:John socam:homeAddress “XYZ”> will
be returned.

For a given network with N nodes and M se-
mantic clusters, a query can be first routed to any

semantic cluster in O(1
s

log2M) hops where s is

the total number of long range contacts, and then
routed to the destination in log(N/M) hops.

EVALUATION

We move on to evaluate our system using simula-
tion and compare its performance to the original
Chord. We first describe our simulation model
and the performance metrics. Then we report the
results from a range of simulation experiments.
We also report the measurement results from the
prototype system we developed.

Simulation Model and Metrics

We use the AS model to generate network topolo-
gies as previous studies (Saroiu, et al., 2002) have
shown that P2P topologies follow both small world
and power law properties. The simulation starts
with having a pre-existing node in the network
and then performing a series of join operations
invoked by new coming nodes. A node joins its
major semantic cluster based on its local data, and
then stores its data triples and registers its data
indices. After the network reaches a certain size, a
mixture of node joining and leaving operations is

invoked to simulate the dynamic characteristic of
the network. Each node is assigned with a query
generation rate, which is the number of queries
that it generates per unit time. In our experiments,
each node generates queries at a constant rate. If
a node receives queries at a rate that exceeds its
capacity to process them, the excess queries are
queued in its buffer until the node is ready to read
the queries from the buffer. Queries are selected
randomly among various semantic clusters. We
set the same number of nodes for each semantic
cluster in our experiments; however, in reality
they can be different.

We use the following metrics to measure
the performance of our system: the search path
length measured as the average number of hops
traversed by a query to the destination; the cost
of node joining/leaving measured as the average
number of messages incurred when a node joins
or leaves the network.

Simulation Results

First, we evaluate the efficiency of query routing
in our system and compare it to Chord. We built
the two-tier network by defining a number of
semantic clusters in the upper-tier. In this experi-
ment, we fix the number of semantic clusters to 16
and vary network size from 25 to 213. Hence, each
semantic cluster in the lower-tier has a number
of nodes ranged from 2 to 29. Figure 5 plots the
average search path length of our system with 1
to 5 long range contacts on a logarithmic scale
in comparison with Chord. The result shows that
the two-tier network with 2 or more long range
contacts has shorter search path as compared to
Chord for a network size of 213 nodes or less.
It also shows that the search path length of the
two-tier network is logarithmic to the number of
nodes with a fixed number of semantic clusters.

In this experiment, we evaluate the impact of
semantic clustering in our system. We fix the
semantic cluster size to 8 (i.e., 8 nodes in each
semantic cluster) and vary the number of seman-

307

An Ontology-Based P2P Network for Semantic Search

tic clusters in the upper-tier from 24 to 211. Since
the number of nodes in each semantic cluster is
fixed in this experiment, the average search path
length in the lower-tier is a constant. Figure 6
plots search path length vs. number of semantic
clusters in our system in the various settings of
numbers of long range contacts. The result shows
that increasing the number of long range contacts
reduces search path length significantly. Figure

6 also reveals that search path length in the upper-
tier matches the small world phenomenon.

We compare the cost of node joining and leav-
ing between our system and Chord in this ex-
periment. We vary network size from 25 to 214. In
reality, the number of semantic clusters may in-
crease when the network size increases. To simu-
late this behavior, we increase the number of
semantic clusters with proportional to cccccccccc
by making the number of semantic clusters equal

Figure 5. Average search path length vs. number of nodes for the various numbers of long range contacts

Figure 6. Average search path length vs. number of semantic clusters in the various settings of numbers
of long range contacts

308

An Ontology-Based P2P Network for Semantic Search

to the number of nodes in each semantic cluster.
Figure 7 plots the average number of messages
incurred when a node joins or leaves the network.
The results show that our system reduces the cost
of node joining/leaving significantly as compared
to Chord whose update cost of node joining/leav-
ing is O(log2N), where N is the total number of
nodes in the network. This is also the effect of
clustering, i.e., the number of nodes in a semantic
cluster is much smaller than the number of nodes
in the whole network. Hence, each node needs
maintain a smaller size of finger table in our
system as compared to Chord.

PROTOTYPE MEASUREMENT

Aim to explore practical issues in our proposed
system, we develop a prototype system. We are
interested in finding the bootstrapping behavior
and dynamic characteristic of the network.

In the prototype, peers run on Pentium 800MHz
desktop PCs with 256MB memory. The network is
constructed when peers randomly join the network.
We test the bootstrap process by connecting all the
peers to the network in different joining sequences;
hence, the structure of the network obtained may

differ from one to another. When a peer starts, it
first goes through the semantic clustering mapping
process to identify which semantic cluster to join.
The mapping process is done by iterating each of
the RDF data triples and identifying its correspond-
ing semantic cluster. Then the peer chooses the
major semantic cluster to join. On average, the
program initialization process takes about 4.26
seconds, and the mapping process for each RDF
data triple takes about 0.251 ms. The initialization
process involves reading and merging the ontol-
ogy files stored locally and generating internal
data structures for mapping. It is done only once
when a peer starts and is only repeated if there
is a change in these ontologies. Upon joining the
network, each node creates and maintains a set
of peers in its routing table. The joining process
involves initiating the Join message, connecting
to those nodes in the JoinReply message received
and registering its reference if needed. The results
for different steps in the bootstrap process are
summarized in Table 1.

We evaluate the dynamic characteristic of the
network in our prototype by forcing peers to join
and leave different semantic clusters randomly.
Cluster splitting/merging may occur when the
cluster size is greater/lower than the default size.

Figure 7. Cost of node joining/leaving

309

An Ontology-Based P2P Network for Semantic Search

For testing the dynamic characteristic of the net-
work, we introduce a parameter: Time-to-Stabil-
ity (TS). We define the steady state of a peer as
the state in which a peer maintains live connec-
tions to the peers in its routing table. The steady
state of a peer may collapse if one of the follow-
ing events occurs:

• Its short range contacts or long range contacts
leave the network or some of these peers
change their major semantic clusters (due
to their local data change).

• Its reference peer(s) leave the network or their
major semantic clusters change.

Queries routing may be affected when peers
are not in the steady state. The TS parameter is
measured from the time when the steady state of
a peer collapses until it reaches the steady state
again. We measure the TS of the affected peers
for different test cases and the results are sum-
marized in Table 2 (note that no backup links are
used in these cases).

In a highly dynamic network, peers leave and
join frequently; this may result in high relapse
rate. A high relapse rate may affect query routing
in the network. To prevent this, we use a backup
link for each type of connections. Once the steady
state collapses, a peer can switch to the backup

link immediately for the affected connection. With
this backup scheme, we can minimize the disrup-
tion to query routing in the highly dynamic network
where peers frequently leave and join.

RELATED WORK

Centralized RDF repositories and lookup systems,
such as RDFStore ([RDFStore) and Jena (Jena 2),
have been implemented to support the storing and
querying of RDF documents. These systems are
simpler to design and reasonably fast for low to
moderate number of triples. However, they have
the common limitations of centralized approaches,
such as single processing bottlenecks and single
points of failure.

Schema-based P2P networks, such as Edutella
(Nejdl, et al., 2003), are proposed to combine
P2P computing and the Semantic Web. These
systems build upon peers that use explicit schemas
to describe their contents. They use super-peer
based topologies, in which peers are organized
in hypercubes to route queries. However, cur-
rent schema-based P2P networks still have some
shortcomings: queries have to be flooded to every
node in the network, making the system difficult to
scale. Crespo, et al. (2003) proposed the concept
of Semantic Overlay Networks (SONs) in which
peers are grouped by semantic relationships of
documents they store. Each peer stores additional
information about content classification and route
queries to the appropriate SONs, increasing the
chances that matching objects will be found
quickly and reducing the search load. However,
queries still need to be flooded in each overlay

Table 1. The results for the bootstrapping process

Processes Average Time Taken

Program Initialization 4.26 s

Semantic Clustering Mapping 0.251 ms/RDF triple

Joining Process 2.56 s

Table 2. Results on TS

Test Cases (without backup links) Average TS

Case 1: The short range contacts or long range contacts leaves the network or changes its
major cluster or cluster splitting/merging occurs 271 ms per connection

Case 2: Reference hosting nodes leave/change 87 ms per reference

310

An Ontology-Based P2P Network for Semantic Search

network resulting in redundant query messages in
the network. Cai, et al. (2004) proposed a scalable
and distributed RDF repository called RDFPeers
based on a structured P2P system. RDFPeers or-
ganize into a multi-attribute addressable network
(MAAN) (Cai, et al., 2003) which extends Chord
to efficiently answer multi-attribute and range
queries. When an RDF triple is inserted into the
network, it will be stored three times by applying
a globally-known hash function to its subject,
predicate, and object. We take a similar approach
to deploy Chord as the substrate for the lower-tier
network, however, we store the <sub pred> and
<pred obj> pairs for each data triple as the predi-
cate is always known in a context query. Thus, the
cost of inserting RDF triples into the network can
be reduced. In addition, the identifier space of the
lower-tier in our network is much smaller than the
one in RDFPeers. Hence, the maintenance cost is
lower as compared to RDFPeers since each peer
maintains fewer neighbors. Tang, et al. (2003)
applied classical Information Retrieval techniques
to P2P systems and built a decentralized P2P
information retrieval system called pSearch. The
system makes use of a variant of CAN to build
the semantic overlay and uses Latent Semantic
Indexing (LSI) (Deerwester, et al., 1990) to map
documents into term vectors in the space. Li, et
al. (2004) built a semantic small world network in
which peers are clustered based on term vectors
computed using LSI. They proposed an adaptive
space linearization technique for constructing link
structures. While we take the semantic approach
which is conceptually similar to (Tang, et al.,
2003) and (Li, et al., 2004), we propose the use of
schema-based metadata to extract data semantics.
The formal design of ontologies minimizes the
problems of synonyms and polysemy incurred by
VSM, and incurs a lower overhead than LSI does.
Kleinberg (Kleinberg, 2000) proposed the small
world network model where every node maintains
four links to each of its closest neighbors and one
long distance link to a node chosen from a prob-
ability function. He has shown that a query can

be routed to any node in O(log2n) hops, where n
is the total number of nodes in the network. We
build the upper-tier network based on the small
world network model. The small world model has
many advantages, such as it is easy to construct
and the number of state information that each
node maintains is fixed and not proportional to
the number of semantic clusters. In our earlier
work (Gu, et al., 2005), we have proposed a se-
mantic P2P network for context search by using a
Gnutella-like network as the substrate. However,
the flooding-based routing mechanism is not very
efficient in terms of search path and scalability.
This article proposes a more efficient and scal-
able semantic network based on a structured P2P
network (i.e., Chord).

CONCLUSION

In this article, we present an ontology-based
semantic P2P network for searching context
information in wide-area networks. The prelimi-
nary results have shown that our system has good
search efficiency and low cost of node joining
and leaving, and our system can scale to a large
number of peers. The use of our system is not
limited to the context-aware computing domain;
in fact, it applies to any P2P searching system
where schemas are explicitly defined.

REFERENCES

Cai, M., & Frank, M. (2004). RDFPeers: A Scal-
able Distributed RDF Repository based on A
Structured Peer-to-Peer Network. Paper presented
at the Proceedings of the 13th International World
Wide Web Conference, New York.

Cai, M., Frank, M., Chen, J., & Szekely, P. (2003).
MAAN: A Multi-attribute Addressable Network for
Grid Information Services. Paper presented at the
Proceedings of the 4th International Workshop on
Grid Computing.

311

An Ontology-Based P2P Network for Semantic Search

Castro, M., Druschel, P., Kermarrec, A.-M., Nandi,
A., Rowstron, A., & Singh, A. (2003). Splitstream:
High-bandwidth Content Distribution in a Co-
operative Environment. Paper presented at the
Proceedings of the International Workshop on
Peer-to-Peer Systems (IPTPS 2003).

Crespo, A., & Garcia-Molina, H. (2003). Semantic
Overlay Networks for P2P Systems. Technical
report, Stanford University.

Deerwester, S. C., Dumais, S. T., Landauer, T.
K., Furnas, G. W., & Harshman, R. A. (1990).
Indexing by Latent Semantic Analysis. Jour-
nal of the American Society for Information
Science American Society for Information Sci-
ence, 41(6), 391–407. doi:10.1002/(SICI)1097-
4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

Dey, A., & Abowd, G. (2000). Towards a Better
Understanding of Context and Context-Awareness.
Paper presented at the Proceedings of the Work-
shop on the What, Who, Where, When and How
of Context-awareness at CHI 2000. Freenet. http://
freenet.sourceforge.net.

Gnutella. http://gnutella.wego.com.

Gu, T., Tan, E., Pung, H. K., & Zhang, D. (2005).
A Peer-to-Peer Architecture for Context Lookup.
Paper presented at the Proceedings of the Inter-
national Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous
2005), San Diego, California.

Han, J., & Liu, Y. (2006). Rumor Riding: Anony-
mizing Unstructured Peer-to-Peer Systems. Paper
presented at the Proceedings of IEEE ICNP, Santa
Barbara, CA. Jena 2 - A Semantic Web Framework.
http://www.hpl.hp.com/semweb/jena2.htm.

Kleinberg, J. (2000). The Small-World Phenom-
enon: an Algorithm Perspective. Paper presented
at the Proceedings of the 32nd ACM Symposium
on Theory of Computing. LimeWire. http://www.
limewire.com/english/content/home.shtml.

Li, M., Lee, W.-C., & Sivasubramaniam, A.
(2006). DPTree: a Balanced Tree Based Index-
ing Framework for Peer-to-Peer Systems. Paper
presented at the Proceedings of IEEE ICNP, Santa
Barbara, CA.

Li, M., Lee, W. C., Sivasubramaniam, A., & Lee,
D. L. (2004). A Small World Overlay Network for
Semantic Based Search in P2P. Paper presented
at the Proceedings of the Second Workshop on
Semantics in Peer-to-Peer and Grid Computing, in
conjunction with the World Wide Web Conference.

Liu, Y., Liu, X., Xiao, L., Ni, L. M., & Zhang,
X. (2004). Location-aware Topology Matching in
P2P Systems. Paper presented at the Proceedings
of IEEE INFOCOM, Hong Kong, China.

Morselli, R., Bhattacharjee, B., Srinivasan, A.,
& Marsh, M. A. (2005). Efficient Lookup on
Unstructured Topologies. Paper presented at the
Proceedings of ACM PODC, Las Vegas, NV, USA.

Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C.,
Schlosser, M., Brunkhorst, I., & Lser, A. (2003).
Super-peer-based Routing and Clustering Strate-
gies for RDF-based Peer-to-Peer Networks. Paper
presented at the Proceedings of the 12th World
Wide Web Conference.

Ratnasamy, S., Francis, P., Handley, M., Karp,
R., & Shenker, S. (2001). A Scalable Content
Addressable Network. Paper presented at the
Proceedings of ACM SIGCOMM.

RDF. http://www.w3.org/RDF. World Wide Web
Consortium: Resource Description Framework.
RDFStore. http://rdfstore.sourceforge.net.

RDQL. http://www.w3.org/Submission/2004/
SUBM-RDQL-20040109/.

Rowstron, A., & Druschel, P. (2001). Pastry: Scal-
able. Distributed Object Location and Routing for
Large-scale Peer-to-Peer Systems. Lecture Notes
in Computer Science, 2218, 161–172.

312

An Ontology-Based P2P Network for Semantic Search

Saroiu, S., Gummadi, P., & Gribble, S. (2002). A
Measurement Study of Peer-to-Peer File Sharing
Systems. Paper presented at the Proceedings of
Multimedia Computing and Networking.

Stoica, I., Morris, R., Karger, D., Kaashoek, F.,
& Balakrishnan, H. (2001). Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Ap-
plications. Paper presented at the Proceedings of
ACM SIGCOMM.

Tang, C. Q., Xu, Z. C., & Dwarkadas, S. (2003).
Peer-to-Peer Information Retrieval Using Self-
Organizing Semantic Overlay Networks. Paper
presented at the Proceedings of ACM SIGCOMM
2003, Karlsruhe, Germany.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C.,
Joseph, A. D., & Kubiatowicz, J. D. (2004). Tap-
estry: A Resilient Global-scale Overlay for Service
Deployment. IEEE Journal on Selected Areas
in Communications, 22(1), 41–53. doi:10.1109/
JSAC.2003.818784

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1,
Issue 4, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 26-39, copyright 2009 by IGI Publishing (an imprint of IGI Global).

313

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 20

DOI: 10.4018/978-1-60960-603-9.ch020

INTRODUCTION

Wireless mesh networks are an attractive field for
several research labs, and they were the subject of
many papers in the few last years. These intensive
works try to solve different open issues which
concern mainly the capacity of the wireless mesh
network protocols, and especially MAC protocols
capacity (Akyildiz, Wang and Wang, 2005).

MAC protocols for wireless networks suffer
from many problems such as scalability; data
throughput degrades significantly when increas-
ing the number of nodes or hops in the network.
Furthermore, many other MAC problems persist
for example the interference effect and radio
channel allocation strategies. These problems are
caused by using advanced radio technologies such
as directional antenna, omnidirectional antenna
and multi-channel/multi-radio systems. Thus,

Djamel Tandjaoui
Center of Research on Scientific and Technical Information, Algeria

Messaoud Doudou
University of Science and Technology Houari Boumediène, Algeria

Imed Romdhani
Napier University School of Computing, UK

FH-MAC:
A Multi-Channel Hybrid MAC Protocol

for Wireless Mesh Networks

ABSTRACT

In this article, the authors propose a new hybrid MAC protocol named H-MAC for wireless mesh net-
works. This protocol combines CSMA and TDMA schemes according to the contention level. In addition,
it exploits channel diversity and provides a medium access control method that ensures the QoS require-
ments. Using ns-2 simulator, we have implemented and compared H-MAC with other MAC protocol
used in Wireless Network. The results showed that H-MAC performs better compared to Z-MAC, IEEE
802.11 and LCM-MAC.

314

FH-MAC

all existing MAC protocols must be improved
or reinvented.

Researchers have started revising the design
of wireless networks MAC protocols, especially
MAC protocols of ad hoc and sensors networks.
The international standard groups are also work-
ing on the specification of new technologies for
wireless mesh networks that includes IEEE 802.16,
802.11s, 802.15.5, and ZigBee. Several researches
issues still exist and need to be solved. In par-
ticular, the interesting research problem related
to the scalability issue of existing IEEE 802.11
networks. The most addressed solution intends
to develop a hybrid MAC protocol that combines
the strength of TDMA and CSMA while offsetting
their (Akyildiz, Wang and Wang, 2005). In the
wireless mesh network, it is important that the
underlying MAC schemes could be able to provide
high bandwidth by exploiting channel diversity
and support QoS requirements. It must have the
capacity of self-organizing, self-configuring, and
self-healing.

In Wireless MAC protocols, using hybrid
schemes outperform random-based and schedule-
based schemes. In case of random-based schemes,
throughput drops significantly when increasing
traffic intensity, number of nodes, or hops in the
network. In addition, random-based schemes can-
not guarantee contention-free transmission. The
one hop packet loss probability increase when the
number of nodes trying to transmit simultaneously
increase. This probability cumulates across mul-
tiple hops. Schedule-based schemes provide for
contention-free transmission slots to each node.
The schedule comprising of these transmission
slots is based on the network traffic and topology.
To derive and propagate the schedule, traffic and
topology information needs to be collected, which
involves network overhead. Thus, the frequent
changes in the network conditions results in high
overheads, and leading to poor performance of
schedule-based schemes.

In this article, we study the problems which
persist at wireless MAC layer in multi-hop wireless

Network. In addition, we propose a new hybrid
MAC scheme, called H-MAC (Hybrid MAC)
for wireless mesh network that combines the
strengths of TDMA and CSMA. H-MAC extends
the hybrid multi-hops scheme defined in Z-MAC
(Rhee, Warrier, Aia, and Min, 2005) to support
channel diversity and QoS requirements for wire-
less mesh network. The main feature of H-MAC
is its adaptability to the level of contention in the
network. In fact, under low contention, H-MAC
behaves like CSMA, and under high contention,
it behaves like TDMA.

H-MAC uses two contention modes: Low
Contention Level (LCL) and High Contention
Level (HCL). It also implements two allocation
algorithms. The first Receiver Based Channel
Assignment Algorithm (RBCA) is used for chan-
nel allocation and the second Sender Based Slot
Assignment Algorithm (SBSA) is used for slot
allocation. We have evaluated the performances of
our protocol by comparing it to other used MAC
protocols. In this evaluation, we have used the
ns-2 simulator and we have conducted several
simulation scenarios. The obtained result showed
that H-MAC performs better compared to Z-MAC,
IEEE 802.11 and LCM-MAC.

This article is organized as follows. In the
second section we describe the related works
and discuss the different protocols proposed for
wireless MAC. We present and detail H-MAC
protocol in section 3. In section 4, we present our
simulation and the obtained results. We conclude
our work in section 5.

RELATED WORKS

We classify MAC solutions in three main classes.
The first class is the hybrid protocols that combine
CSMA and TDMA. The second class contains
multi-channel MAC protocols, and the third class
includes MAC protocols with QoS support. In the
next sections, we will outline the strengths and
weaknesses of these classes.

315

FH-MAC

HYBRID MAC PROTOCOLS

Based on the access strategy used, MAC protocols
can be sorted into three categories: random-access
or contention-based, schedule based and hybrid.

A random-access scheme like CSMA works
well with low contention and provides better
throughput. However, the data throughput de-
grades significantly when increasing the number
of contending nodes. A scheduled scheme like
TDMA does not provide good throughput with
low contention. But, the network throughput
progresses proportionally according to the number
of contending nodes (Krishna Rana, Hua Liu,
Nyandoro and Jha, 2006; Chlamtac, Farago, My-
ers, Syrotiuk and Zaruba, 2000; Henderson, Kotz
and Abyzov, 2004).

Some approaches combining the strength of
random and schedule based schemes have been
developed. In the schema described in (Koubias
and Haralabidis, 1996), the default transmission
is random-based. However, when detecting a
collision, a round of token passing (contention-
free) transmission mode is initiated. Thus, when-
ever collision probability increases, the scheme
shifts to schedule-based contention-free transmis-
sion. PTDMA is a hybrid protocol presented by
Emphremides and Mowafi (Ephremides and
Mowafi, 1982). In this protocol the probability
of collision is controlled by programming nodes
to transmit with different probability. ADAPT
(Myers, 2002) is another protocol that employs

similar approach like PTDMA, but is much sim-
pler.

Z-MAC (Rhee, Warrier, Aia and Min, 2005) is
also an hybrid scheme based on the same approach
as ADAPT. It has been optimized for multi-hop
scenario and adapted to perform in sensor net-
work. Z-MAC uses STDMA scheduling to reduce
collision probability of CSMA based scheme
(Gronkvist, 2004). Like ADAPT, by combining
CSMA and TDMA, Z-MAC delivers a robust
scheme which even in worst case, performs as
well as CSMA scheme.

Bandwidth Aware Hybrid MAC (Krishna Rana,
Hua Liu, Nyandoro and Jha, 2006) is another pro-
tocol similar to Z-MAC. It improves the hybrid
schemes of ADAPT and Z-MAC by proposing
an algorithm that allocates slots to the nodes in
proportion to their bandwidth requirements.

MULTI-CHANNEL MAC PROTOCOLS

A large number of multi-channel MAC protocols
and TDMA scheduling algorithms have been
proposed in the literature (Kyasanur, Jungmin,
Chereddi and Vaidya, 2006). Multi-channel MAC
protocols have extended the DCF (Distributed
Coordination Function) function of IEEE 802.11
protocol (IEEE 802.11 Working Group, 1997) and
use certain type of control messages for frequency
negotiation (So and Vaidya, 2004; Fitzek, Ange-
lini, Mazzini and Zorzi, 2003; Li, Haas, Sheng

Figure 1. Throughput comparison between CSMA and TDMA

316

FH-MAC

and Chen, 2003; Jain, Das and Nasipuri, 2000;
Tzamaloukas and Garcia-Luna-Aceves, 2001).
MMAC (So and Vaidya, 2004) assumes time
synchronization in the network and time is divided
into fixed-length beacon intervals. Each beacon
interval consists of a fixed-length ATIM (Ad-hoc
Traffic Indication Message) window, followed
by a communication window. During the ATIM
window, each node listens to the same default
channel and negotiates which channel to use for
data communication. After the ATIM window,
nodes that have successfully negotiated channels
with their destinations send out data packets us-
ing 802.11 DCF for congestion avoidance (IEEE
802.11 Working Group, 1997).

Multi-channel MAC protocols in Wireless
Sensor Networks (WSNs) are also studied (Zhou
et al., 2006). Due to the limited size of the data
packets used in WSNs, authors have proposed to
use static frequency assignment to avoid the over-
head of control packets for frequency negotiation.
There are also many TDMA scheduling algorithms
proposed for ad hoc networks (Chlamtac and Kut-
ten, 1985; Chlamtac and Farago, 1994; Bao and
Garcia-Luna-Aceves, 2001; Rajendran, Obraczka
and Garcia-Luna-Aceves, 2003). These algorithms
are mainly designed for sharing a single channel
in the network and providing collision free access.
For example, the TMMAC protocol presented in
(Zhang, Zhou, Huang, Son and Stankovic, 2007)
is one these algorithms that combines TDMA
scheme and channel diversity to improve the
network throughput. It is proved that TMMAC
achieves 84% more aggregate throughput than
MMAC (Zhang, Zhou, Huang, Son and Stankovic,
2007). MMSN (Zhou et al., 2006) is another
MAC protocol that exploits channel diversity
in sensors networks. MMSN omits exchanging
RTS/CTS, because in WSN, the packet is very
small, 30~50Bytes.

MAC PROTOCOLS WITH QOS

In the design of MAC protocols with QoS support,
two basic approaches can be employed. The first
approach is to assign different priority levels to
packets (IEEE Std 802.11e, 2004; Ying, Ananda
and Jacob, 2003; Qiang, Jacob, Radhakrishna
Pillai and Prabhakaran, 2002). The major issue
with this approach is how to assign these priori-
ties. This is typically done by defining different
intervals for both the random backoff period and
AIFS (Arbitration Inter Frame Space) period,
such as the EDCA (Enhanced Distributed Chan-
nel Access) function of IEEE 802.11e. In a single
hop environment, EDCA offers better average
delay and throughput than the usual DCF. The
IEEE 802.11s working group plans to extend the
802.11e scheme for the multi-hop wireless mesh
network (Conner, Kruys, Kim and Zuniga, 2006).

The second approach to support QoS is
to reserve resources for a particular real-time
traffic flow. For example, each node between
particular source and destination nodes allocates
some dedicated time slots for this flow before
the actual transmission starts. This improves the
end-to-end throughput. However, this reservation
mechanism is much more complex than a priority
mechanism. Typically, it adds signaling overhead
to coordinate the nodes (all nodes between source
and destination must agree in distributed manner
on the reserved resources).

H-MAC PROTOCOL

In this section, we present our H-MAC protocol.
This protocol extends the hybrid multi-hops sche-
ma defined in Z-MAC (Rhee, Warrier, Aia, and
Min, 2005), which combines TDMA and CSMA
according to the contention level. Compared
to Z-MAC, H-MAC uses multi-channel hybrid
schema which guarantees the QoS requirements
for a multi-hop wireless mesh network.

317

FH-MAC

The Network Model

In our protocol, we assume that each node is
assigned a unique identifier. The network inter-
face is equipped with a single half duplex radio
transceiver. We also assume that the network
card is capable to send either unicast or broadcast
packets. The network topology is represented by
an undirected graph G = (V;E), where V is the
set of nodes, and E is the set of links between
nodes. The existence of a link (u; v) ∈ E implies
that (v; u) ∈E, and that node u and v are within
the transmission range of each other. In this case,
u and v are called one-hop neighbors of each
other. The set of one-hop neighbors of a node i
is denoted by Ni

1. Two nodes are called two-hop
neighbors of each other if they are not adjacent,
but have at least one common one-hop neighbor.
The neighbor information of node i refers to the
union of the one-hop neighbors of i itself and
the one-hop neighbors of i’s one-hop neighbors,
which is equal to:

This set contains the entire one hop and two
hops neighbors of a node i.

PROTOCOL DESCRIPTION

H-MAC uses the two contention modes LCL and
HCL similar to that of Z-MAC. It also imple-
ments two allocation algorithms. The first one is
a Receiver Based Channel Assignment Algorithm
(RBCA). In this algorithm, each node is assigned
a unique channel in which it will receive all its
packets. The second is the Sender Based Slot
Assignment algorithm (SBSA) where each node
is assigned a set of slots of which it will become
the owner. These algorithms are an extension of
NCR (Neighbor-aware Contention Resolution) al-
gorithm defined in (Bao and Garcia-Luna-Aceves,
2003), which does not require any control message
exchange. H-MAC uses a medium access function
similar to the IEEE 802.11e EDCA techniques

that support the QoS requirements (IEEE Std
802.11e, 2004).

H-MAC operates in two phases: initializa-
tion phase and communication phase. In the
initialization phase, the following operations
run in sequence: neighbor discovery, channel
assignment, slot assignment, and finally global
time synchronization. These operations run only
once during the setup phase and does not run again
until a significant change in the network topol-
ogy (such as HELLO joining, or QUIT message)
occurs. In the communication phase, each node
performs channel negotiation and runs the LCL
or HCL mode according to the contention level.

THE INITIALIZATION PHASE

a. Neighbor Discovery

At the initialization, each node broadcasts its ID.
After that, it periodically broadcasts a ping mes-
sage to its one-hop neighbors to build its one-hop
neighbors list. A ping message contains the current
list of its one-hop neighbors Ni

1. This message
is sent at a random time in each second for 30
seconds. Through this process, each node gathers
the information received from the pings from its
one-hop neighbors which essentially constitutes
its two-hop neighbor information (See Figure 2).

b. Channel Allocation Algorithm
RBCA

The Receiver Based Channel Assignment (RBCA)
is an implicit Consensus algorithm. Each node is
assigned a unique channel in which it will receive
all its packets. This algorithm uses pseudo-random
generator similar to that used by the NCR algorithm
(Bao and Garcia-Luna-Aceves, 2003). It solves a
special election problem where an entity decide
its leadership among a known set of contenders in
any given contention context. Each node calculates
a hash using its ID as a seed, and if its hash is

318

FH-MAC

the biggest among its two-hop neighbors it wins
the channel. Otherwise, it chooses the channel in
which it has obtained its max hash. Then, it broad-
casts this information to its two-hop neighbors.
The RBSA algorithm has the following structure:

Let Hash(x) be a fast message digest generator.
Cmax: number of channels, V2: two-hop neighbors,
α a node, Cα: the channel number affected to α
and ‘⊕’ is the concatenation of two operands.

c. Slot Allocation Algorithm SBSA

The Sender Based Slot Assignment (SBSA) is
also an implicit consensus algorithm. Each node
is assigned a set of transmission slots of which it
will become the owner. Thus, the node will have
the highest priority to send during these slots.
SBSA works in the same way as RBCA where a
node determines for each channel its slot using
the distributed election algorithm. We denote the
set of contenders of an entity i by Mi, and thus
its contention context by ti= (ci,, si), where ci is
the channel i and si is the slot i in channel i. To
decide the leadership of an entity without incurring
communication overhead among the contenders,
we assign each node a priority that depends on
the identifier of the node and the current conten-
tion context. Equation (1) provides a formula to

derive the priority, denoted by Hi, for node i and
contention context ti

Hi = Hash (i ⊕ ti) ⊕ i, where ti = (ci ⊕ si)
(1)

Where the function Hash is a fast message
digest generator like MD4 or MD5 that returns a
random integer in a predefined range, and the sign
‘⊕’ is the concatenation of two operands. Note
that, although the Hash function can generate the
same number on different inputs, each number is
unique because it is appended with the identifier
of the node. The set of contexts is showed by the
following matrix || T ||C * S.

A node α wins the slot tij = (ci⊕ sj) if it has the
highest hash value, i.e. the inequality presented
below must be verified for a node α, and that the
Hi are calculated using the equation (2):

argmax Hi = α
i ∈ Mi ∪ { α } (2)

argmax provides the argument of the maximum,
that is to say, the value of the given argument for
which the value of the given expression reaches
its maximum value. The SBSA algorithm has the
following structure:

Figure 2. Neighbor discovery process

319

FH-MAC

Let H be a pseudo-random hash function. Smax:
number of slots, V2: two-hop neighbors, α: a node
and Listα is a list of slots.

SBSA algorithm (α, Listα);

 { Listα = Ø; j=0;

 repeat

 { i=1; found = false;

 repeat

 { for (k ∈ V2 ∪ {α}) Hk = H(k ⊕

Si ⊕ Cj) ⊕ k;

 if (∀k ∈ V2, Hα > Hk)

 then

 found = true; Listα = Listα

∪ Sij; break;

 else

 i++;

 } while (i< Smax);

 if (found == false)

 then i = arg max Hα ; Listα =

Listα ∪ Sij;

 j++;

 } while (j< Cmax);

 }

Broadcast Listα to 2-hop neighbors.

THE COMMUNICATION PHASE

In H-MAC, a slot 0 of each local frame is re-
served to broadcast packet transmission (access
by CSMA). The channel negotiation is done in a
dedicated Control Channel (CC); this channel can
be used for transmission after the control period.

After the initialization phase, all nodes switch
to the control channel CC at slot start, and they
must be ready to run the transmission control. In
H-MAC, a node can be in one of two modes: low
contention level (LCL) or high contention level
(HCL). A node is in HCL only when it receives
an explicit contention notification (ECN) mes-
sage from a two-hop neighbor within the last
frame tECN. Otherwise, the node is in LCL. A slot
is divided into:

• Control period: to negotiate the slot i on
different channels using RTS/CTS with
priority (QoS), and the first which succeed
its CTSjn (j: channel j, n: destination node)
wins slot Sij.

• Transmission period: the winners and their
destination nodes switch to the appropriate
channel to exchange unicast packets (Figure
3).

a. The LCL mode

In LCL, any node can compete to transmit in any
slot. The control phase is divided into 3 periods
in this mode:

• High priority THP: it is reserved to owners or
to high priority packets (real time traffic).

• Medium priority TMP: it is reserved to one-
hop neighbors or to medium priority packets
(audio, video).

Figure 3. H-MAC slot structure

320

FH-MAC

• Low priority TLP: it is reserved to two-hop
neighbors or to low priority packets (best-
effort, background).

The transmission rule: according to Figure
4, as a node i acquires data to transmit, it checks
whether:

• It is the owner of the current slot on its
destination’s channel or it has a high prior-
ity packet.

• It is the one-hop neighbor of the owner of
the slot on its destination’s channel or it has
a medium priority packet.

• It is the two-hop neighbor of the owner of
the slot on its destination’s channel or it has
a low priority packet.

b. The HCL Mode

In HCL, we have only the first and the second
period. Consequently, a node can compete in the
current slot if and only if:

• It is the owner of the slot on its destination’s
channel or it has a high priority packet.

• It is the one-hop neighbor of the owner of
the slot on its destination’s channel or it has
a medium priority packet.

After the control phase, all nodes that have
already succeed their negotiation switch to the
channel of their destination nodes and start the
data packet transmission for the rest of the slot.

c. The Priority Queues
and QoS Support

H-MAC protocol uses the priority queue concept
inspired from the IEEE 802.11e protocol to sup-
port the QoS requirements. Each node maintains
3 priority queues:

• High priority queue: contains real time pack-
ets (we can also integrate transient traffic i.e.
not originated form the current node).

• Medium priority queue: contains audio and
video packets.

• Low priority queue: contains best-effort and
background packets.

d. Explicit Contention
Notification (ECN)

ECN messages notify two-hop neighbors not to
act as hidden terminals to the owner of each slot
when contention is high. Each node makes a lo-
cal decision to send an ECN message based on
its local estimate of the contention level (Figure
5). The estimation is obtained by the noise level
of the channel. ECN is similar to RTS/CTS in
CSMA/CA. But the difference is that HCL uses
topology information (i.e., slot information) to
avoid two hop collision. The cost of ECN is also
far less than RTS/CTS since it is triggered only
when contention is high.

Figure 4. The structure of the control period

321

FH-MAC

e. Local Time Synchronization

The protocol adopts the same synchronization
technique used in Z-MAC. The advantage of such
technique is that synchronization is required only
among neighboring senders and also when they
are under high contention. These points offer an
excellent opportunity to optimize the overhead of
clock synchronization because synchronization is
required only locally among neighboring senders.
In addition, the frequency of synchronization can
be adjusted according to the transmission rates
of senders so that senders with higher data rates
transmit more frequent synchronization messages.
In this scheme, receivers synchronize passively
their clocks to the senders’ clocks and do not have
to send any synchronization messages.

PERFORMANCE EVALUATION

We have implemented H-MAC using the network
simulator ns-2 (Fall and Vradhan, 1998) and
compared its performance with the existing MAC
protocols. In fact, we compared the performance
of H-MAC with Z-MAC (Rhee, Warrier, Aia, and
Min, 2005), MMAC (So and Vaidya, 2004), LCM-
MAC (Maheshwari, Gupta and Samir, 2006), and

802.11 (IEEE 802.11 Working Group, 1997).
The performance evaluation in our simulation
is achieved through a set of tests which allows
making comparison with other MAC protocols,
and it takes the following aspects: The impact
of the hybrid scheme and channel diversity on
network throughput.

HYBRID SCHEME EVALUATION

In this simulation, we have chosen to make a com-
parison between H-MAC, Z-MAC, and 802.11
MAC protocol. We have measured and compared
the effective channel utilization of H-MAC and
Z-MAC. For this purpose, we have repeated the
same simulation and used the default settings of
Z-MAC as described in (Rhee, Warrier, Aia, and
Min, 2005). We varied the backoff window sizes
to see the impact of window sizes on channel
utilization. We used three scenarios in our simula-
tion: one-hop, two-hop and multi-hop scenarios.

One-hop scenario: in this scenario 21 nodes
are placed equidistant from a receiver in a circle
(Figure 6). Before each run, we ensured that all
nodes are in a one-hop distance to each other so
that there are no hidden terminals. This scenario
is used to measure the achievable throughput of

Figure 5. Explicit Contention Notification Scheme

322

FH-MAC

different MAC protocols for different levels of
contention within a one-hop neighborhood. Since
Z-MAC has the same test, we can compare its
results to ours.

We fixed the frame size to 20 slots and varied
the number of senders. HCL is disabled because
the performance of HCL and LCL is the same
when all nodes are in a one-hop distance to each
other. Before running H-MAC, the channel al-

location algorithm RBCA and the slot allocation
algorithm SBSA are executed by each node in the
network. In addition, H-MAC runs TPSN (Ganeri-
wal, Kumar and Srivastava, 2003) to synchronize
the clocks of the senders.

The Figure 7 shows simulation results and
the throughput comparison for one-hop scenario
involving H-MAC and Z-MAC. The H-MAC
protocol shows good performance, but with a mar-

Figure 6. One hop network scenario

Figure 7. Throughput comparison in a one hop scenario

323

FH-MAC

gin similar to that of Z-MAC. This performance
similarity is explained by the fact that H-MAC
uses the same medium access scheme as Z-MAC,
and because all nodes are within one-hop distance
from the destination, so the senders can be easily
synchronized with each other.

Two-hop scenario: this scenario is used to
measure the performance of the different protocols
when hidden terminals are present. We organized
nodes into two clusters as illustrated in Figure 8.
The two clusters are placed approximately 5
meters apart. A receiver node (or routing node)
is placed in the middle of the two clusters. We
ensure that all senders find the receiver as a one-
hop neighbor and all nodes are reachable by two
hop communications. We also reduced the trans-
mission power of senders to 1 dBm (1.3 mW) to
control the number of hidden terminals.

In the tow-hop scenario, we measured the data
throughput when hidden terminals are present.
We varied the number of senders while fixing the
number of neighbors. As in the one-hop bench-
mark, all senders have always data to send. Each
additional sender is chosen from the alternating
clusters.

For H-MAC tests, we set the frame size to 20
slots. In this test, we run H-MAC with the local
clock synchronization protocol in which each

sender sends one synchronization packet in every
100 packets transmitted. The data throughput
reported by H-MAC includes the overhead of the
clock synchronization and ECN.

The Figure 9 shows the two-hop tests results.
With the ns-2 simulator, we verified that the two
node clusters do not sense each other to maximize
the number of hidden terminals. We noticed that
despite using the RTS/CTS mechanism in H-MAC
during the control period, H-MAC maintains the
same good performance but with slightly deg-
radation in channel utilization to 73%. Z-MAC
has suffered from performance degradation that
undergo until 68%. This performance degradation
is caused by the presence of the hidden terminals,
and by the overhead of ECN messages.

Multi-hop scenario: in this scenario, we cre-
ated a network of 20 nodes, placed randomly in
a 100*100m surface area. The maximum two-hop
neighborhood size of all nodes is 19 and the
maximum local frame size is set to 20 slots. We
used fixed routing paths for all tests. The purpose
behind this scenario is to measure the total network
throughput in the multi-hop environment (See the
Figure 10).

In the multi-hop scenario, each node has always
data to send. All senders are transmitting at their
full transmission power. The number of channels

Figure 8. Tow-hop network scenario

324

FH-MAC

used by H-MAC is fixed to 3 channels, and the
channel capacity is set to 1Mbps.

The Figure 11 shows the simulation results.
We varied the number of contending node and we
measured the aggregate data throughput. H-MAC
obtains its highest performance in this simula-
tion. With a number of sending nodes equal to

5, H-MAC achieves a data throughput of 2.282
Mbps than 1.251 Mbps achieved by Z-MAC.
The throughput increases progressively with the
number of sending nodes, and it can reach 3.431
Mbps with the number of sending nodes equal to
21. However, Z-MAC does not have any improve-
ment in the data throughput, which stays stable

Figure 10. multi-hop network scenario

Figure 9. The throughput comparison in a two-hop scenario

325

FH-MAC

when increasing the number of sending nodes;
and it goes no further than 1.59Mbps. This result
explains the advantage of the utilization of channel
diversity by H-MAC compared to Z-MAC which
uses one single channel.

CHANNEL DIVERSITY EVALUATION

In this simulation, we evaluated H-MAC and
compared it against two known multi-channel
protocols, LCM-MAC and MMAC. The simu-
lation scenario was performed with 100 nodes
placed randomly in 500m × 500m area. All the
radio parameters are being ns-2 defaults, and the
nominal bit rate of each channel is set to 1 Mbps.

There are 50 CBR flows with randomly selected
source-destination pairs. The shortest path routing
is used. The data packet sizes are 1000 bytes. The
data packet generation rate for each flow is varied
to vary the load in the network and simulations
are done for different number of channels. 6 and
13 channel results are presented in Figure 12 and
Figure 13.

We have simulated three protocols H-MAC,
LCM-MAC, and MMAC. For MMAC, the
specified values in (So and Vaidya, 2004) of 80ms
for data window and 20ms for the ATIM window
are used. Note that it is fair to compare the three
protocols H-MAC, LCM-MAC and MMAC to-
gether as they use one interface. LCM MAC
performs better than (or similar to) MMAC at all
times.

We noticed that, despite using time synchro-
nization, MMAC’s performance is not improved
at low loads. This is due to the large data window
size. At low loads senders run out of packets
to send to the receivers present in their current
channel. As they cannot change channel until
the end of data window, this results in wastage of
bandwidth. LCM-MAC also does not give propor-
tional improvement with the increase in channels.
Contrary to LCM-MAC and MMAC, H-MAC
shows better performance in both simulations.
By its dynamic adaptation to the contention level
between CSMA and TDMA, H-MAC maintains its
good performance, and thus the data throughput
increases progressively with the increase in the
number of used channels.

Figure 11. The throughput comparison in a multi-hop scenario

326

FH-MAC

To demonstrate the performance benefit of
using multiple channels in wireless networks, we
plotted the average throughput of H-MAC and
LCM-MAC, with varying number of channels (m)
and compared them against single channel 802.11.
Single channel 802.11 is only used for baseline

comparison. The earlier mentioned scenario with
100 nodes in 500 × 500 m area is used for this plot.

In Figure 14 note that H-MAC’s performance
increases almost linearly with increase in number
of channels. This demonstrates the efficiency
of the H-MAC scheme. It does not face control
channel bottleneck, nor does it face any control

Figure 13. Throughput comparison in 500×500 scenario with 13 channels

Figure 12. Throughput comparison in 500×500 scenario with 6 channels

327

FH-MAC

period inefficiencies as in LCM-MAC or MMAC.
Also, note that H-MAC, in fact, provides k time
the throughput relative to 802.11 while using k
channel. This is because of using the hybrid scheme
by H-MAC. LCM MAC also provides substantial
improvement over 802.11, slightly less than k
times for the 3 and 6 channel simulations. But,
the throughput does not increase proportionately
for 13 channels.

CONCLUSION

This article presents a new multi-channel MAC
protocol, called H-MAC for the multi-hop wire-
less mesh networks. H-MAC can dynamically
adjust the behavior of MAC between CSMA and
TDMA depending on the level of contention in
the network.

The observed simulation results show that our
protocol provides much superior performance

among all MAC protocols which use hybrid
scheme and channel diversity with a single radio.
H-MAC performs better than Z-MAC although
their channel utilization rate is almost the same.
In addition, the simulation results on channel
diversity show that H-MAC provides a far supe-
rior performance compared to both LCM-MAC
and MMAC.

Some of the issues not discussed in this article
are the non-negligible channel switching delay and
different data packet sizes as well as mechanisms
for broadcasts in our protocols. Thus, we have
not performed the simulation tests which allow
to evaluate the QoS support and its impact on
data throughput measurement. This is because
of non availability of MAC protocols with QoS
implementations during our simulation. In future
work, we intend to study the above issues. We will
implement and test the studied protocols in real
wireless testbeds using different software-based
MAC platforms.

Figure 14. Throughput Comparison according to the number of used channels

328

FH-MAC

REFERENCES

Akyildiz, I. F., Xudong Wang, B., & Weilin Wang,
B. (2005). Wireless mesh networks: a survey.
Computer Networks and ISDN Systems, 47(4),
445–487.

Bao, L., & Garcia-Luna-Aceves, J. J. (2001). A
New Approach to Channel Access Scheduling for
Ad Hoc Networks. Proceedings of the 7th annual
international conference on Mobile computing
and networking (pp. 210 – 221).

Bao, L., & Garcia-Luna-Aceves, J. J. (2003).
Distributed Dynamic Channel Access Scheduling
for Ad Hoc Networks. Journal of Parallel and
Distributed Computing, 63(1), 3–14. doi:10.1016/
S0743-7315(02)00039-4

Chlamtac, I., & Farago, A. (1994). Making Trans-
mission Schedules Immune to Topology Changes
in Multi-hop Packet Radio Networks. IEEE/ACM
Transactions on Networking, 2(1), 23 – 29.

Chlamtac, I., Farago, A., Myers, A., Syrotiuk, V.,
& Zaruba, G. (2000). A performance comparison
of hybrid and conventional mac protocols for
wireless networks. Proceedings of VTC 2000
(pp. 201–205).

Chlamtac, I., & Kutten, S. (1985). A Spatial-
Reuse TDMA/FDMA for Mobile Multi-hop Radio
Networks. Proceedings of IEEE INFOCOM (pp.
389-394).

Conner, W. S., Kruys, J., Kim, K. J., & Zuniga,
J. C. (2006). IEEE 802.11s Tutorial. Overview
of the Amendment for Wireless Local Area Mesh
Networking. Intel Corp, Cisco Systems, TMicro-
electronics, InterDigital Comm Corp.

Ephremides, A., & Mowafi, O. A. (1982). Analy-
sis of hybrid access schemes for buffered users
probabilistic time division. IEEE Transactions on
Software Engineering, SE-8, 52–61. doi:10.1109/
TSE.1982.234774

Fall, K., & Vradhan, K. (1998). NS Notes and
Documentation”. http://www-mash.cs.berkeley.
edu/ns/nsDoc.ps.gz.

Fitzek, F., Angelini, D., Mazzini, G., & Zorzi, M.
(2003). Design and Performance of an Enhanced
IEEE 802.11 MAC Protocol for Multihop Cover-
age Extension. IEEE Wireless Communications,
10(6), 30–39. doi:10.1109/MWC.2003.1265850

Ganeriwal, S., Kumar, R., & Srivastava, M.
(2003). Timing-sync protocol for sensor networks.
Proceedings of the First ACM Conference on
Embedded Networked Sensor Systems (SenSys).

Gronkvist, J. (2004). A distributed scheduling
for mobile ad hoc networks a novel approach.
Proceedings of the 15th IEEE International Sym-
posium on Personal, Indoor and Mobile Radio
Communications (pp. 964–968).

Henderson, T., Kotz, D., & Abyzov, I. (2004). The
changing usage of a mature campus-wide wire-
less network. Proceedings of the Tenth Annual
International Conference on Mobile Computing
and Networking (MobiCom) (pp. 187–201).

IEEE 802.11 Working Group (1997). Wireless
LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications.

Jain, N., Das, S. R., & Nasipuri, A. (2000). A
Multichannel CSMA MAC Protocol with Receiver-
Based Channel Selection for Multihop Wireless
Networks. Proceedings of the 10th IEEE Interna-
tional Conference on Computer Communications
and Networks (pp. 432-439).

Koubias, S. A., & Haralabidis, H. C. (1996).
Mition: A mac-layer hybrid protocol for multi-
channel real-time lans. Proceedings of the Third
IEEE International Conference on Electronics,
Circuits, and Systems (pp. 327 – 330).

Krishna Rana, Y., Hua Liu, B., Nyandoro, A., &
Jha, S. (2006). Bandwidth Aware Slot Allocation in
Hybrid MAC. Proceedings of 31st IEEE Confer-
ence on Local Computer Networks (pp. 89 – 96).

329

FH-MAC

Kyasanur, P., Jungmin, C., Chereddi, S., &
Vaidya, N. H. (2006). Multichannel mesh net-
works: challenges and protocols. IEEE Wireless
Communication, 13(2), 30–36. doi:10.1109/
MWC.2006.1632478

Li, J., Haas, Z. J., Sheng, M., & Chen, Y. (2003).
Performance Evaluation of Modified IEEE 802.11
MAC for Multi-Channel Multi-Hop Ad Hoc
Network. Proceedings of the 17th International
Conference on Advanced Information Networking
and Applications. (pp. 312–317).

Maheshwari, R., Gupta, H., & Samir, R. (2006).
Multichannel MAC Protocols for Wireless Net-
works. Proceedings of the 3rd IEEE Communica-
tion Society on Sensor and Ad Hoc Communica-
tions Networks (pp. 393-401).

Myers, A. D. (2002). Hybrid MAC Protocols For
Mobile Ad Hoc Networks. PhD thesis, Computer
Science, University of Texas at Dallas.

Qiang, Q., Jacob, L., Radhakrishna Pillai, R., &
Prabhakaran, B. (2002). MAC Protocol Enhance-
ments for QoS Guarantee and Fairness over the
IEEE 802.11 Wireless LAN. Proceeding of the
Conference on Computer Communication Net-
work (ICCNC).

Rajendran, V., Obraczka, K., & Garcia-Luna-
Aceves, J. J. (2003). Energy-Efficient, Collision-
Free Medium Access Control for Wireless Sensor
Networks. Proceedings of the First ACM Confer-
ence on Embedded Networked Sensor Systems
(SenSys).

Rhee, I., Warrier, A., Aia, M., & Min, J. (2005).
ZMAC: a Hybrid MAC for Wireless Sensor
Networks. Proceedings of the 3rd international
conference on Embedded networked sensor sys-
tems (pp. 90-101).

So, J., & Vaidya, N. (2004). Multi-Channel MAC
for Ad Hoc Networks: Handling Multi-Channel
Hidden Terminals Using A Single Transceiver.
Proceedings of the 5th ACM international sympo-
sium on Mobile ad hoc networking and computing
(pp. 222 – 233).

IEEE Std 802.11e. (2004). Medium Access Con-
trol (MAC) Enhancements for Quality of Service
(QoS). IEEE Draft for Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Speci-
fications, / Draft 11.0.

Tzamaloukas, A., & Garcia-Luna-Aceves, J. J.
(2001). A Receiver-Initiated Collision-Avoidance
Protocol for Multi-Channel Networks. Proceed-
ings of the 20th IEEE INFOCOM (pp. 189-198).

Ying, Z., Ananda, A. L., & Jacob, L. (2003). A
QoS Enabled MAC Protocol for Multi-Hop Ad
Hoc Wireless Networks. Proceeding of IEEE
International Conference on Performance, Com-
puting, and Communications (IPCCC).

Zhang, J., Zhou, G., Huang, C., Son, S. H., &
Stankovic, J. A. (2007). TMMAC: An Energy
Efficient Multi- Channel MAC Protocol for Ad
Hoc Networks. Proceedings of IEEE International
Conference on Communications (pp. 24-28).

Zhou, G., Huang, C., Yan, T., He, T., Stankovic,
J. A., & Abdelzaher, T. (2006). MMSN: Multi-
Frequency Media Access Control for Wireless
Sensor Networks. Proceedings of the 25th IEEE
INFOCOM (pp. 1-13).

Zhou, G., Huang, C., Yan, T., He, T., Stankovic,
J. A., & Abdelzaher, T. (2006). MMSN: Multi-
Frequency Media Access Control for Wireless
Sensor Networks. Proceedings of the 25th IEEE
INFOCOM (pp. 1-13).

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1,
Issue 4, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 40-56, copyright 2009 by IGI Publishing (an imprint of IGI Global).

330

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 21

Fabian Stäber
Siemens Corporate Technology, Germany

Gerald Kunzmann
Technische Universität München, Germany1

Jörg P. Müller
Clausthal University of Technology, Germany

A Decentralized Directory
Service for Peer-to-Peer-

Based Telephony

ABSTRACT

IP telephony has long been one of the most widely used applications of the peer-to-peer paradigm.
Hardware phones with built-in peer-to-peer stacks are used to enable IP telephony in closed networks
at large company sites, while the wide adoption of smart phones provides the infrastructure for software
applications enabling ubiquitous Internet-scale IP-telephony.

Decentralized peer-to-peer systems fit well as the underlying infrastructure for IP-telephony, as they
provide the scalability for a large number of participants, and are able to handle the limited storage
and bandwidth capabilities on the clients. We studied a commercial peer-to-peer-based decentralized
communication platform supporting video communication, voice communication, instant messaging, et
cetera. One of the requirements of the communication platform is the implementation of a user directory,
allowing users to search for other participants. In this chapter, we present the Extended Prefix Hash Tree
algorithm that enables the implementation of a user directory on top of the peer-to-peer communication
platform in a fully decentralized way. We evaluate the performance of the algorithm with a real-world
phone book. The results can be transferred to other scenarios where support for range queries is needed
in combination with the decentralization, self-organization, and resilience of an underlying peer-to-peer
infrastructure.

DOI: 10.4018/978-1-60960-603-9.ch021

331

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

INTRODUCTION

Structured peer-to-peer overlay protocols such
as Chord (Stoica et al 2001) are increasingly
used as part of robust and scalable decentralized
infrastructures for communication platforms. For
instance, users connect to an overlay network to
publish their current IP address and port number
using a unique user identifier as the keyword.
In order to establish a communication channel
to a user, the user’s identifier must be looked
up in order to learn the TCP/IP connection data.
Registration and lookup of addresses are realized
using Distributed Hashtables (DHT).

However, users in such applications do not
always know the unique identifier of the person
to be contacted. Therefore, it must be possible to
look up the identifier in a phone-book-like user
directory. When looking up an identifier, the user
might not know all data necessary to start an exact
query. For example, the user might know the last
name of the person to be searched, but not its first
name or address. Moreover, people often are not
willing to fill out all data fields, e.g. the address
of the person to be called. Therefore, the phone
book is required to support range queries, like
queries for all people with a certain last name.

A challenge arises from the non-uniform dis-
tribution of people’s names. Figure 1 shows the
frequency of last names in the city of Munich,
Germany. Last names are Pareto-distributed, or
Zipf-distributed, i.e., there are a few last names
that are very common, while most last names are
very rare.

In this article, we propose the use of Extended
Prefix Hash Trees (EPHTs) as a scalable indexing
infrastructure to support range queries on top of
Distributed Hash Tables. The EPHT is evaluated
by using real-world phone book data; experiments
show that our approach enables efficient distrib-
uted phone book applications in a reliable way,
without the need for centralized index servers. A
comparison with related work shows that this has

not been possible using techniques introduced
before.

In the following section, we review related
work and highlight the problems with current
approaches. Then, we present the EPHT algo-
rithm, and compare it with the original Prefix
Hash Tree (PHT) algorithm. Then, we evaluate its
performance by running a series of experiments.
Finally, we summarize our results and show our
conclusions.

RELATED WORK

When entries are stored in a Distributed Hash
Table, the location of an entry is defined by the hash
value of its identifier. A common way to achieve
a uniform distribution of the entries among the
peers in the DHT is to require the hash function
used to calculate the hash value to operate in the
Random Oracle Model (Bellare et al, 1993), i.e.
even if two identifiers differ only in a single Bit,
the hash values of these identifiers are two inde-
pendent uniformly distributed random variables.

While this hash function allows for good bal-
ancing of the data load in a DHT, it makes range
queries very costly. Iterating among a range of
identifiers that are lexicographically next to each
other means addressing nodes in a random order

Figure 1. Frequency of last names in Munich,
Germany

332

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

in the peer-to-peer network. A way to accelerate
range queries is to abandon the Random Oracle
Model, and to store the entries in lexicographical
order. In this section, we discuss three approaches
relying on this idea: Skip Graphs (Aspnes et al,
2003), Squid (Schmidt et al, 2004), and Mercury
(Bharambe et al, 2004). We point out the difficul-
ties arising with these approaches in scenarios like
a distributed phone book.

A comparison between EPHTs and the origi-
nal PHT algorithm (Rambhadran et al, 2004) is
presented after we introduced the EPHT.

Skip Graphs

Figure 2 shows a linear three-Bit identifier space.
The peers, as indicated by diamonds, are randomly
distributed among the identifiers. Each peer is re-
sponsible for the identifiers in the range between
itself and its predecessor or successor.

As shown in Figure 2, Skip Graphs introduce
several levels of linked lists for traversing the
peers. The higher the level of the list, the more
peers are skipped, accelerating routing to spe-
cific ranges. By maintaining several independent
lists on each level in parallel, Skip Graphs provide
balancing of the traffic load and resilience to node
failure.

However, the problem with Skip Graphs is
that the entries’ identifiers are not distributed
uniformly among the linked list, while the peers
are randomly distributed. Entries for a last name
starting with ‘S’ are very common in the German
phone book, while last names starting with ‘Y’
are very uncommon. Therefore, the peer being
responsible for a common entry becomes a hot
spot in terms of network traffic and data load.

Squid

Squid (Schmidt et al, 2004) is an approach for
combining several keywords when determining
the position of an entry in the Distributed Hash
Table. Squid is based on Locality-Preserving Hash-
ing (Indyk et al, 1997), in which adjacent points
in a multi-dimensional domain are mapped to
nearly-adjacent points in a one-dimensional range.

For example, in a distributed phone book appli-
cation, one could use a two-dimensional keyword
domain, where one dimension is the entries’ last
name, and the other dimension is the entries’ first
name. Figure 3 shows how two dimensions can
be mapped on a one-dimensional range using a
Space Filling Curve (SFC). The SFC passes each
combination of the two identifiers exactly once. If
the user wants to search for all entries with a last
name starting with ‘ST’ and a first name starting
with ‘F’, then the user simply needs to query the
parts of the SFC that lie on the intersection of
these two prefixes in the two-dimensional space.

However, as with Skip Graphs, it turns out that
the distribution of names in a phone book results
in combinations that are very common, while
other combinations are very rare. Again, the peers
being responsible for common combinations
become hot spots in terms of data storage and

Figure 2. Skip graph Figure 3. Squid

333

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

traffic load. This could be avoided with Squid by
introducing many dimensions in order to distrib-
ute the entries among many different peers. But
introducing many dimensions results in a tangled-
up SFC. As a result, many short fragments of the
curve need to be processed for each keyword that
is not specified in a query. We evaluated Squid
and found that this results in a very high number
of peers to be queried in order to find an entry.

Mercury

Like Squid, the Mercury approach (Bharambe et
al, 2004) supports multi-dimensional keywords.
Each dimension is handled within a separate hub,
which is a ring-shaped formation of peers. An ex-
ample of a Mercury hub is illustrated in Figure 4.

The ID range within a hub is ordered linearly,
which results in the same load balancing problems
as with the other approaches. However, Mercury
suggests that peers are moved around dynami-
cally to balance the load. Although this might be
a reasonable approach in other scenarios, this
raises difficulties in the distributed phone book
scenario. First, there are a few very popular last
names. A peer being responsible for one of these
popular last names cannot be relieved by moving
around other peers, and it will stay a hot spot in
terms of data load. Second, if peers may choose
their position in the overlay deliberately, this
raises certain security issues, because an attacker
who wants to make a person unreachable can
position its peer in a way that it becomes respon-
sible for routing queries to the victim’s entry.

Fusion Dictionary

Fusion Dictionaries (Liu et al, 2004) are not a
distributed search index, but a load balancing tech-
nique that can be combined with search indexes.
The idea is to maintain a blacklist of names that
are very common, and to cache blacklist entries
in large parts of the DHT. If a user queries a last
name that is in the blacklist, the query is inter-

rupted and the user is asked to specify the query
more precisely, e.g. by including the first name
in the query.

That way, peers being responsible for fre-
quent names are relieved. As the last names are
Zipf-distributed, there are only a few names to
be included in the blacklist in order to achieve
significant load balancing.

However, in spite of the load balancing
achieved with fusion dictionaries, the approaches
introduced above still do not fulfill the scalability
and performance requirements of large scale com-
munication platforms. In this article, we present the
EPHT, which is a search index that does not result
in overloaded peers. That way it is unnecessary to
introduce additional load balancing techniques.

Summary

The brief survey of related work showed that
there are several difficulties with previous range
query solutions when applied in the distributed
phone book scenario. A more detailed overview
of search methods in peer-to-peer systems can
be found in (Risson et al, 2006). An analysis of
arbitrary search in structured peer-to-peer systems
was published in (Hautakorpi et al, 2010).

Approaches supporting real multi-dimensional
keywords like Mercury and Squid have the prob-
lem of hot spots with very popular last names. Ad-
ditionally, approaches relying on linear keywords
instead of real hashing suffer from overloaded
peers being responsible for popular prefixes. In

Figure 4. Mercury hub

334

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Squid, the hot spots in terms of data load could be
avoided, but as a trade-off this results in a large
number of peers to be queried to find an entry.

In the following section, we introduce the
Extended Prefix Hash Tree as a way of enabling
efficient range queries, while preserving the ad-
vantages of the Random Oracle Model for hashing,
which results in a balanced distribution of the
entries among the peers in the DHT.

EXTENDED PREFIX HASH
TREE ALGORITHM

Each entry in the distributed phone book is
associated with an identifier. The identifier is
a fixed-length string, consisting of the capital
characters [A-Z]. Identifiers are built by concat-
enating keywords from the entry. In the example
in Figure 5, we used the keywords last name, first
name, and city.

The order of the keywords determines the
relevance of these keywords for range queries. If
identifiers are built as in Figure 5, it is possible
to search for the last name without knowing the
city, but it is not possible to search for the city
without knowing the last name. This corresponds
to the hierarchical structure of printed phone
books, where entries are ordered by city, last name,
first name, etc. In order to allow alternative key-
word orders, the application must maintain sev-
eral trees in parallel.

Special characters like whitespaces or the Ger-
man ä, ö, ü, ß are omitted. That way, both German
names “Müller” and “Möller” map into the same
string “MLLER”. It is up to the application layer

to filter out the right results when a user searched
for “Müller”.

The identifier length must be sufficient to en-
sure that a unique identifier can be built for each
entry with high probability. In our evaluation, the
identifiers were 32 characters long. Identifiers that
are longer than that are truncated; identifiers that
are shorter are padded with random characters.

Growing the Tree

The structure of an EPHT is shown in Figure
6. There are two parameters that determine the
shape of the tree:

1. n is the number of children per node. Each
edge is labeled with a character set, like
[S-Z]. The partitioning of the alphabet into
character sets is fixed and globally known,
and cannot be changed dynamically during
runtime. n is the number of character sets,
which can be any number between 2 and 26.
In the section on evaluation, we show that
the best performance is achieved with n=26.

2. m is the maximum load of the root node,
i.e. the maximum number of entries that
can be stored on the root node. If the root
node exceeds its maximum load, it splits up
into n child nodes and distributes all entries
among the children. The maximum load of
each child equals the maximum load of the
parent node plus one. The reason for incre-
menting the maximum load is to prevent
recursive splits, if all entries happen to be
stored on the same child. If a child node’s
prefix length (see below for the definition

Figure 5. Generating a 32 char identifier for an entry

335

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

of prefix) equals the identifier length for
the entries, then that node cannot split any
further, and its maximum load becomes in-
finite. In the section on evaluation we show
that m=100 is a good value.

Each node of the tree is stored as a resource
in a DHT, using a hash function operating in the
Random Oracle Model. The keyword to be hashed
is the prefix of that node in the EPHT, i.e. the
sequence of character sets on the path from the
root node to the node to be stored. For example,
the keyword of the leaf node holding the entry
‘Gerd Völksen’ in Figure 6 would be ‘[S-Z][I-
R]’. New entries are stored on the leaf node that
has the closest matching prefix for the identifier
of that entry.

Once a node is split, it becomes an inner node.
Inner nodes are kept in the system to indicate the
existence of child nodes, but they do not store
any data. In particular, inner nodes do not need
to store links to their children.

Maintaining the Linked Lists

In addition to the tree structure itself, two doubly
linked lists are maintained: one for traversing the
non-empty leaf nodes, and the other connecting

all leaf nodes, including the empty ones. Each
element in a list stores the prefix of its predeces-
sor and successor. The linked list is updated upon
the following events:

1. A leaf node splits up into child nodes. In that
case, the old leaf node must leave the linked
lists, the non-empty new child nodes must
join the linked list for non-empty nodes, and
all new leaf nodes must join the linked list
connecting all leaf nodes. The new nodes
learn about their initial successors and pre-
decessors from their parent node.

2. An entry is added to a previously empty
leaf node. In that case, that node must join
the list for non-empty leaf nodes. The node
finds its predecessor and successor using
the list connecting all leaf nodes.

Performing Range Queries

Usually, tree algorithms imply that nodes are
searched starting at the root node and traversing
down the tree to a leaf node. This would mean that
the peer holding the root node becomes a bottle-
neck and single point of failure in a distributed
tree structure. EPHTs allow lookups to address

Figure 6. Example of an extended prefix hash tree with n=3 and m=2

336

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

arbitrary nodes directly, using the prefix of the
node as the keyword in the DHT.

Range queries are implemented as follows:
First, the issuer of a query finds a random, non-
empty leaf node lying somewhere in the queried
range. Second, the issuer traverses the linked list
of non-empty leaf nodes to the left and to the right,
subsequently querying the predecessors and suc-
cessors, until all matching entries are retrieved.

Figure 7 shows how an initial non-empty leaf
node is found that can be used as a starting point
for traversing the linked list. We exemplify this
using a search for all people with the last name
‘Olpp’.

Make Prefix Length 5. The first step is to pad
the search string with random characters, and to
take the first five characters as an initial prefix to
start with. In the example, the initial prefix would
be OLPPD. In the section on evaluation we will
show why 5 is a good initial prefix length.

Lookup. When this prefix is looked up in the
DHT, there are four possible results:

1. A node with that prefix exists and is a non-
empty leaf node. In that case, the initial node
for traversing the linked list is found.

2. A node with that prefix exists and is an
empty leaf node. In that case, the issuer of
the query starts traversing the linked list
until a non-empty member is found. If all
prefixes in the range queried are empty, then
the search was unsuccessful.

3. A node with that prefix exists but is an inner
node. In that case, the prefix was underspeci-
fied, and it must be enlarged by one character.
In the example, the next search string might
be OLPPDH.

4. There is no node with that prefix. This means
the prefix was over-specified, and it must be
shortened by one character. In the example,
the shortened prefix would be OLPP.

In order to decrease latency, the search can
be initialized with several different random pad-
dings in parallel. That way, the linked list can be
traversed starting from different positions at the
same time.

Removing Entries

Entries do not need to be deleted explicitly. Each
entry is associated with a lease time. If it is not
renewed within that time, it is deleted. That way,
users who are no longer part of the system will
be removed after some time.

In EPHTs, once a node has split and become
an inner node, this node stays an inner node for
ever, even if all entries in its sub-tree have timed-
out. That means that the EPHT can only grow, but
never shrink. This property is in accordance with
our use case, as shrinking the tree would only
make sense if the service provider operating the
distributed phone book application would perma-
nently loose a significant number of customers, or
if the distribution of the name’s prefixes changes
significantly. Both scenarios happen very slowly,
and it is feasible to roll out a software update in
that case that will built a new tree from scratch.
The persistence of inner nodes enables us to
implement extensive caching.

Figure 7. Addressing nodes

337

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Caching

As the EPHT never shrinks, inner nodes are im-
mutable. They will never be deleted or altered.
That means that inner nodes can be cached infi-
nitely in the DHT. Whenever a peer learns about
the existence of an inner node, it can cache that
information and respond when that prefix is que-
ried the next time. Without caching, prefixes that
are accessed very frequently would cause a lot of
network traffic for the peer being responsible for
that prefix. Using caching, this network traffic can
be balanced in the DHT.

COMPARISON WITH THE
ORIGINAL PREFIX HASH TREES

The Extended Prefix Hash Tree algorithm pre-
sented here derives from the Prefix Hash Tree
(PHT) algorithm proposed in (Rambhadran et al,
2004). However, the original PHT could not have
been used to implement a distributed phone book
without the changes presented in this article. The
novelty of our work is twofold:

1. The original PHT is a binary tree enabling
Bit-wise processing of keywords. Its design
does not support caching, and it handles
multiple keywords using a Squid-like ap-
proach. This does not match the requirements
found in the distributed phone book scenario.
Therefore, we extended the PHT in several
respects, as described below.

2. The EPHT algorithm has several configu-
ration parameters, like the number of child
nodes, and the maximum load of a node. We
evaluated the Extended PHT with real-world
phone book data, and showed how to gain
the best performance.

In the rest of this section, we will show the
major differences between the EPHT and the
PHT algorithm.

• The original PHT is a binary tree. As shown
in the evaluation, binary trees do not scale
well in a distributed phone book scenario.
Therefore, the EPHT is an n-ary tree, and
we recommend to use n=26, i.e. the size of
the applied alphabet.

• In the original PHT, if the number of entries
in a subtree falls below a certain threshold,
that subtree collapses into a single leaf
node. The EPHT can only grow, but never
shrink, which enables us to introduce ex-
tensive caching of inner nodes.

• Empty nodes are not handled specially in
the PHT algorithm. In the Extended PHT,
we introduced an additional linked list
skipping the empty nodes to improve per-
formance. This is because we observed that
a significant number of prefixes do never
appear in user’s names, which results in
empty leaf nodes for these prefixes.

• The original PHT proposes to handle mul-
tiple keywords using Locality-Preserving
Hashing, as in Squid. In our application,
we simply concatenate the keywords ac-
cording to their priority, and pad the result
with random data.

EVALUATION

In this section, we present the simulation results.
The evaluation data is taken from a German
phone book CDROM from 1997, because newer
electronic phone books restrict data export due to
privacy regulations. We used the entries for the
city of Munich, which has 620,853 entries. As each
peer is supposed to provide only its own entry, the
number of peers is equal to the number of entries.

Data Load

The number of entries per peer is one of our key
performance indicators, as well-balanced data are
the prerequisite for good balancing of the network

338

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

load. Figure 8 shows the number of entries per peer
for m in 25, 50, 75, and 100, without replication.

Note that the y-scale showing the number of
peers is logarithmic. Nearly all of the 620,853
peers store less than 3 entries. No peer stores more
than 150 entries. Assuming an average size of an
entry of 128 Bytes, a peer holding 150 entries
would store less then 19 kBytes. This is feasible
even on embedded devices with a built-in peer-
to-peer stack, and it is easily possible to replicate
19 kBytes through current Internet connections.

Prefix Length

In the description of the algorithm above, we
said that the initial prefix length to start with

when searching in an EPHT is 5 in our dataset.
As shown in Figure 9, this is the average prefix
length for n in 5, 13, and 26. Only binary EPHTs
with n=2 result in a significantly larger aver-
age prefix length. If the average prefix length
changes over time, e.g. if the number of users or
the distribution of names is other than expected,
then the initial prefix length needs to be adapted
in the search operation.

Network Traffic

The network traffic is evaluated in terms of the
number of lookup operations in the DHT that is
needed to process a range query2. As an example,
we queried the prefixes SCHN* which results in

Figure 8. Entries per Peer, using n=26 (left), and n=5 (right)

Figure 9. Prefix Length for m=25 (left), and m=100 (right)

339

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

4683 entries, and OLPP* yielding only a single
entry. Of course querying SCHN* is an artificial
example, as real-world applications would prob-
ably abort that query after a certain number of
results is retrieved, and ask the user to formulate
the query more specifically. Table 1 shows the
number of lookup operations. We did not use
any caching.

An increasing maximum load of the root node
m results in less nodes to be looked up. With
regards to the number of children n we found that
more children per node result in a lower number
of lookup operations. For example, if the user
searches for OLPP* in a tree with n=5, the ap-
plication searches all entries matching the prefix
[K-O][K-O] [P-T] [P-T]. People with a last name
starting with Lost would match the same prefix
as Olpp. Altogether, the number of matching
entries in our phone book is 1801, which explains
the overhead of 99 lookups.

These results suggest that the number of chil-
dren per node n should be as large as possible to
reduce the number of lookup operations.

Empty Nodes

The percentage of empty nodes is shown in Table 2.
As expected, the number of empty nodes

raises with the number of children per node.

However, even with n=26 we got only 60%
empty nodes, which is still justifiable in the face
of the great reduction of traffic overhead for n=26.

Churn

In peer-to-peer terminology, the continuous ar-
rival and disappearance of peers is called churn.
The stability of DHTs in the face of churn and the
probability of data loss was addressed many times
before (Stutzbach 2006, Kunzmann 2009), and we
refer the reader to these works for experimental
and analytical results on the topic.

The tree nodes of the EPHT are stored as re-
sources on a DHT. DHTs use replication techniques
and stabilization protocols to keep the probability
of data loss very low, even in typical file-sharing
scenarios where the participating peers arrive and
disappear very frequently.

The reliability of the EPHT depends on the
reliability of the underlying DHT. If the node
resources are available on the DHT layer, then
the EPHT remains stable. Assuming that VoIP
telephones have much longer average online times
than file sharing peers, we expect the DHT to be
very stable in the distributed phone book scenario.

However, in order to handle the unlikely event
of data loss, we propose that the peers look up their
own entry on a periodical basis, and re-publish
the entry in case it disappeared.

CONCLUSION

In this article, we presented the Extended Prefix
Hash Tree as an infrastructure supporting range

Table 1. Lookup operations

SCHN* OLPP*

N=5 n=13 n=26 n=5 n=13 n=26

M=50 1068 958 495 99 3 4

M=100 590 670 279 39 3 4

Table 2. Empty nodes

n=5 n=13 n=26

m=50 6% of 34,821 37% of
94,297

60% of
193,801

m=100 2% of 18,353 29% of
48,757

53% of
98,501

340

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

queries on top of Distributed Hash Tables. The
design of the algorithm is driven by the require-
ments found in a distributed user directory for a
commercial VoIP communication platform devel-
oped by Siemens. We evaluated the algorithm and
showed how to choose the parameters in order to
achieve the best performance.

While this article is focused on a specific use
case, the methodology and results can be trans-
ferred to other scenarios. The algorithm presented
here fits specifically in situations where keywords
are Zipf-distributed. In the phone book scenario,
some last names are very common while other last
names are very rare. The EPHT adapts perfectly
to this kind of distribution.

The concatenation of keywords provides a
simple but powerful approach to handle multiple
keywords that are ordered in a hierarchical way.

FUTURE RESEARCH DIRECTIONS

The Extended Prefix Hash Tree algorithm pre-
sented in this paper enables the implementation
of a distributed user directory for a peer-to-peer-
based telephony application. However, apart from
user directories, there are more applications that
might benefit from a distributed search index.

The evaluation in this article is based on
the specific requirements that we derived from
a commercial communication platform. When
EPHTs are to be applied in other applications, it
is a non-trivial task to tell the implications of the
algorithm on the specific architecture.

Future research should address this issue and
allow for the definition of generic, re-usable com-
ponents that can be applied on top of peer-to-peer
networks. These components are the building
blocks fulfilling the application-specific require-
ments on the distributed infrastructures. A first
proposal for the definitions of these components
can be found in (Stäber, 2009).

Also, while DHT-based structured overlay
networks have many advantages, their string-

based approach for registration and lookup carries
intrinsic limitations as regards the expressiveness
of search. While the extension with range queries
and wildcard search seems appropriate for a pure
phone book lokup, even a straightforward business
directory will require more semantically elabo-
rate queries (e.g., SQL-based or ontology-based
queries). One option to achieve this is to combine
structured distributed hash tables with super-peer
architectures, preserving the robustness and scal-
ability of the overlay while enhancing it with
declarative semantic search capability. In (Gerdes
et al., 2009), we propose a declarative decentral-
ized query processor and evaluate it in the energy
domain. (Stiefel and Müller, 2010) propose the use
of an ontology-based query language on top of a
DHT architecture for semantic search of digital
product models. These approaches will need to be
validated and further developed in future work.

REFERENCES

Aspnes, J., & Shah, G. (2003). Skip graphs. In
SODA ‘03: Proceedings of the Fourteenth Annual
ACM SIAM Symposium on Discrete Algorithms,
(pp. 384–393). Philadelphia, PA, USA.

Barsanti, L., & Sodan, A. (2007). Adaptive job
scheduling via predictive job resource allocation.
In Proceedings of Job Scheduling Strategies for
Parallel Processing (pp. 115-140).

Bellare, M., & Rogaway, P. (1993). Random
oracles are practical: A paradigm for designing
efficient protocols. In CCS ‘93 1st ACM Confer-
ence on Computer and Communications Security,
(pp. 62–73). New York, NY: ACM Press.

Bharambe, A. R., Agrawal, S., & Seshan, S. (2004).
Mercury: Supporting scalable multi-attribute
range queries. In SIGCOMM Symposium on
Communications Architectures and Protocols,
(pp 353–366). Portland, OR, USA.

341

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Buyya, R., Giddy, J., & Abramson, D. (2000). An
evaluation of economy-based resource trading
and scheduling on computational power Grids for
parameter sweep applications. Paper presented
at the Second Workshop on Active Middleware
Services (AMS2000), Pittsburgh, USA.

Gerdes, C., Eger, K., & Müller, J. P. (2009). Data-
centric peer-to-peer communication in power
grids. Electronic Communications of the EASST
17: Kommunikation in Verteilten Systemen 2009,
2009. Proceedings of KiVS Global Sensor Net-
works Workshop (GSN09).

Hautakorpi, J., & Schultz, G. (2010). A feasibility
study of an arbitrary search in structured peer-
to-peer networks. In ICCCN’10: Proceedings of
the 19th International Conference on Computer
Communications and Networks. Zurich.

Indyk, P., Motwani, R., Raghavan, P., & Vem-
pala, S. (1997). Locality-preserving hashing in
multidimensional spaces. In STOC ‘97: Proc. of
the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, (pp. 618–625). New York,
NY: ACM Press.

Liu, L., & Lee, K.-W. (2004). Supporting efficient
keyword-based file search in peer-to-peer file
sharing systems. In GLOBECOM’04: Proc. of
the IEEE Global Telecommunications Conference.

Ramabhadran, S., Ratnasamy, S., Hellerstein, J.
M., & Shenker, S. (2004). Prefix hash tree – an
indexing data structure over distributed hash
tables. In PODC’04: 23rd Annual ACM Sym-
posium on Principles of Distributed Computing.

Risson, J., & Moors, T. (2006). Survey and
research towards robust peer-to-peer networks:
Search methods. Computer Networks, 50(17),
3485–3521. doi:10.1016/j.comnet.2006.02.001

Schmidt, C., & Parashar, M. (2004). Enabling flex-
ible queries with guarantees in P2P systems. IEEE
Internet Computing, 8(3), 19–26. doi:10.1109/
MIC.2004.1297269

Stäber, F. (2009). Service layer components for
decentralized applications. Doctoral Dissertation
at the Clausthal University of Technology

Stiefel, P. D., & Müller, J. P. (2010). A model-
based software architecture to support decentral
product development processes. In: Exploring the
grand challenges for next generation e-business.
Proceedings of the 8th Workshop on eBusiness
(Web 2009). Volume 52 of Lecture Notes in Busi-
ness Information Processing. Springer-Verlag,
2010. To appear.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F.,
& Balakrishnan, H. (2001). Chord: A scalable peer-
to-peer lookup service for internet applications.
In SIGCOMM’01: Proc. of the 2001 Conference
on Applications, Technologies, Architectures, and
Protocols for Computer Communications, (pp.
149–160). San Diego, CA: ACM Press.

Stutzbach, D., & Rejaie, R. (2006). Understanding
churn in peer-to-peer networks. In IMC’06: Proc.
of the 6th ACM SIGCOMM on Internet Measure-
ment, (pp. 189–202). New York, NY: ACM Press.

ADDITIONAL READING

Aberer, K., & Hauswirth, M. (2004). Peer-to-Peer
Systems, Practical Handbook of Internet Comput-
ing. Baton Rouge: Chapman Hall & CRC Press.

Baset, S. A., & Schulzrinne, H. (2004). An analy-
sis of the Skype Peer-to-Peer Internet telephony
protocol. Tech. report. New York, USA: Columbia
University.

Binzenhöfer, A., Staehle, D., & Henjes, R. (2005):
On the stability of Chord-based P2P systems.
In GLOBECOM ‘05: Proc. of the IEEE Global
Telecommunications Conference.

342

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Binzenhöfer, A., & Tran-Gia, P. (2004): Delay
analysis of a Chord-based peer-to-peer file-sharing
system. In ATNAC ‘04: Proc. of the Australian
Telecommunication Networks and Applications
Conference.

Biondi, P. and Desclaux F. (2006): Silver needle in
the Skype. Black Hat Europe 2006.

Dabek, F., Zhao, B., Druschel, P., & Kuiatowicz,
J. (2003): Towards a common API for structured
peer-to-peer overlays. In IPTPS’03: Peer-t-Peer
Systems II, Second International Workshop, volume
2734 of Lecture Notes in Computer Science, pages
33—34, Berlin, Heidelberg: Germany, Springer

Eberspaecher, J., & Schollmeier, R. (2005): Peer-
to-Peer systems and applications. chapter First and
Second Generation of Peer-to-Peer Systems, pages
35—56, Springer.

Eyers, T., & Schulzrinne, H. (2000): Predicting
Internet telephony call setup delay. In IPTel 2000:
Proc. of the 1st IP-Telephony Workshop.

Friese, T., Freisleben, B., Rusitschka, S., & Southall,
A. (2002): A framework for resource management
in peer-to-peer networks. Revised Papers from
the International Conference NetObjectDays on
Objects, Components, Architectures, Services,
and Applications for a Networked World, Lecture
Notes In Computer Science, volume 2591, Springer,
2002, pages 4—21.

Friese, T., Müller, J. P., & Freisleben, B. (2005). Self-
Healing Execution of Business Processes Based
on a Peer-to-Peer Service Architecture. In: Proc.
18th Int. Conference on Architecture of Computing
Systems [Springer.]. Lecture Notes in Computer
Science, 3432, 108–123. doi:10.1007/978-3-540-
31967-2_8

Ganesan, P., Yang, B., & Garcia-Molina, H. (2004):
One torus to rule them all: multi-dimensional que-
ries in P2P systems. In WebDB ‘04: Proc. of the 7th
International Workshop on the Web and Databases,
ACM Press, pages 19—24.

Garcés-Erice, L., Felber, P. A., Biersack, E. W.,
Urvoy-Keller, G., & Ross, K. W. (2004): Data
indexing in peer-to-peer DHT networks. In ICDCS
‘04: Proc. of the 24th International Conference on
Distributed Computing Systems, IEEE Computer
Society, pages 200—208.

Guha, S., Daswani, N., & Jain, R. (2006): An ex-
perimental study of the Skype peer-to-peer VoIP
system. In IPTPS ‘06: Proc. of the 5th International
Workshop on Peer-to-Peer Systems.

Gummadi, K., Gummadi, R., Gribble, S., Ratna-
samy, S., Shenker, S., & Stoica, I. (2003). The impact
of DHT routing geometry on resilience and proxim-
ity. In SIGCOMM ‘03: Proc. of the conference on
Applications, technologies, architectures, and pro-
tocols for computer communications (pp. 381–394).
ACM Press. doi:10.1145/863955.863998

Kellerer, W., Kunzmann, G., Schollmeier, R., &
Zoels, S. (2006). Structured peer-to-peer systems
for telecommunications and mobile environments.
AEÜ. International Journal of Electronics and
Communications, 60(1), 25–29. doi:10.1016/j.
aeue.2005.10.005

Kunzmann, G. (2009): Performance Analysis and
Optimized Operation of Structured Overlay Net-
works. Doctoral thesis, Technische Universitaet
Muenchen.

Kunzmann, G. and Binzenhoefer A. and Stäber, F.
(2008): Structured overlaynetworks as an enabler
for future internet services. it - Information Technol-
ogy volume 50, no. 6, pages 376—382.

Lennox, J., & Schulzrinne, H. (2000). Feature
interaction in Internet telephony. Feature Interac-
tions in Telecommunications and Software Systems
VI (pp. 38–50). IOS Press.

Leslie M. and Davies J. and Huffman. (2006):
Replication strategies for reliable decentralized
storage. In ARES’06: Proc. of the First Interna-
tional Conference on Availability, Reliability and
Security. pages 740—747.

343

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Li, J., Stribling, J., Morris, R., Kaashoek, M.
F., & Gil, T. M. (2005): A performance vs. cost
framework for evaluating DHT design tradeoffs
under churn, In INFOCOM ‘05: Proc. of the 24th
Joint Conference of the IEEE Computer and Com-
munications Societies, pages 225—236.

Liu, L., & Lee, K.-W. (2004): Keyword fusion to
support efficient keyword-based search in peer-
to-peer file sharing. In CCGRID’04: Proc. of the
2004 IEEE International Symposium on Cluster
Computing and the Grid, IEEE Computer Society,
pages 269—276.

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R.,
& Lim, S. (2005). A survey and comparison of
peer-to-peer overlay network schemes. IEEE Com-
munications Surveys and Tutorials, 7(2), 72–93.
doi:10.1109/COMST.2005.1610546

Maymounkov, P., & Mazières, D. (2006): Kadem-
lia: A peer-to-peer information system based
on the xor metric. In IPTPS’02: Proc of the 1st
International Workshop on Peer-to-Peer Systems,
pages 53—65, London: UK, Springer

Milojicic, D. S., Kalogeraki, V., Lukose, R., Na-
garaja, K., Pruyne, J., Richard, B., et al. (2002):
Peer-to-peer computing. Technical Report HPL-
2002-57, HP Labs, Palo Alto, CA, USA.

Oram, A. (Ed.). (2001). Peer-to-Peer, Harnessing
the Power of Disruptive Technologies. Sebastopol,
CA, USA: O’Reilly.

Ratnasamz, S., Francis, P., Handley, M., Karp,
R., & Schenker, S. (2001): A scalable content-
addressable network. In SIGCOMM’01: Proc. of
the 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer
Communications, pages 161—172, New York,
NY: USA, ACM Press.

Reynolds, P., & Vahdat, A. (2003): Efficient
peer-to-peer keyword searching, Proceedings of
International Middleware Conference, Lecture
Notes in Computer Science, vol. 2672, Springer,
pages 21—40.

Rhea, S., Geels, D., Roscoe, T., & Kubiatowicz, J.
(2003): Handling churn in a DHT. Tech. Report
UCB/CSD-03-1299, EECS Department, Univer-
sity of California, Berkeley.

Rowstron, A., & Druschel, P. (2001): Pastry: Scal-
able, decentralized object location and routing
for large-scale peer-to-peer systems. In Middle-
ware’01: Proc. of the IFIP/ACM International
Conference on Distributed Systems, volume 2218
of Lecture Notes in Computer Science, pages
329—350.

Rusitschka, S., & Southall, A. (2003). The resource
management framework: A system for managing
metadata in decentralized networks using peer-
to-peer technology. In Agents and Peer-to-Peer
Computing. In Lecture Notes in Computer Science
(Vol. 2530, pp. 144–149). Springer.

Sarma, A., Bettstetter, C., Dixit, S., Kunzmann,
G., Schollmeier, R., & Nielsen, J. (2006). Self-
organization in communication networks (pp.
423–451). Wiley.

Seedorf, J. (2006). Security challenges for Peer-to-
Peer SIP. IEEE Network, 20, 38–45. doi:10.1109/
MNET.2006.1705882

Shu, Y., Ooi, B. C., Tan, K.-L., & Zhou, A. (2005):
Supporting multi-dimensional range queries in
peer-to-peer systems, In P2P ‘05: Proc. of the
5th IEEE International Conference on Peer-to-
Peer Computing, IEEE Computer Society, pages
173—180.

344

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Sit, E., & Morris, R. (2002): Security consider-
ations for peer-to-peer distributed hash tables. In
IPTPS ‘02: Proc. of the 1st International Workshop
on Peer-to-Peer Systems.

Spleiss, C., & Kunzmann, G. (2007). Decentral-
ized supplementary services for Voice-over-IP
telephony. Proceedings of EUNICE 2007. Lecture
Notes in Computer Science, 4606(Jul), 62–69.
doi:10.1007/978-3-540-73530-4_8

Steinmetz, R., & Wehrle, K. (2005): What is
peer-to-peer about? In volume 3485 of Lecture
Notes in Computer Science, pages 9—16. Berlin,
Heidelberg: Germany, Springer.

Stutzbach, D., & Rejaie, R. (2006): Understand-
ing churn in peer-to-peer networks. In IMC’06:
Proc. of the 6th ACM SIGCOMM on Internet
Measurement, pages 189—202, New York, NY,
USA: ACM Press.

Tanenbaum, A. (2003). Computer Networks.
Upper Saddle River, NJ, USA: Prentice Hall
International.

Tutschku, K., & Tran-Gia, P. (2005). Peer-to-
peer-systems and applications. chapter Traffic
Characteristics and Performance Evaluation of
Peer-to-Peer Systems (pp. 383–397). Springer.

Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph,
A., & Kubiatovicz, J. (2004). Tapestry: A resilient
global-scale overlay for service deployment. IEEE
Journal on Selected Areas in Communications,
22(1), 41–53. doi:10.1109/JSAC.2003.818784

Zoels, S., Schubert, S., & Kellerer, W. (2006):
Hybrid dht design for mobile environments. In
AP2PC’06: Proc of 5th International Workshop
on Agents and Peer-to-Peer Computing, LNCS,
Springer.

Zuo, C., Li, R., Shen, H., & Lu, Z. (2009): High
Coverage Search in Multi-Tree Based P2P Overlay
Network. In ICCCN’09: Proc of the 18th Interna-
tional Conference on Computer Communications
and Networks. San Francisco, CA: USA.

KEY TERMS AND DEFINITIONS

Decentralization: Attempt to avoid central
services, thus preventing single points of failure.

Directory: A service organizing users
Distributed Hash Table (DHT): Type of de-

centralized infrastructure providing a hash-table
like addressing scheme

Extended Prefix Hash Tree (EPHT): Modi-
fied PHT to be used when implementing distrib-
uted user directories.

Infrastructure: Underlying algorithm in a
distributed application, allowing the nodes to
address each other.

IP-Telephony: Telephony over IP networks,
mostly using the Voice over IP protocol

Peer-to-Peer: A paradigm in distributed
systems, where all nodes may act as both, client
and server.

Prefix Hash Tree (PHT): Search algorithm
based on DHTs, as proposed by Ramabhadran
et al (2004)

ENDNOTES

1 Dr. G. Kunzmann is now working for
DOCOMO Communications Laboratories
Europe GmbH, Munich, Germany

2 Each lookup operation requires logbn mes-
sages in the DHT protocol, where n is the
number of peers, and b is a parameter de-
pending on the design of the DHT’s routing
table.

345

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Compilation of References

Aarts, R. (Ed.). (2004). Liberty ID-WSF interaction ser-
vice specification. Liberty Alliance document. Retrieved
from http://www.project-liberty.org/

Aberer, K., Mauroux, P. C., Datta, A., Despotovic, Z.,
Hauswirth, M., Punceva, M., & Schmidt, R. (2003). P-
Grid: A self-organizing structured P2P system. SIGMOD,
32. ACM.

Abramson, D., & Kommineni, J. (2004). A Flexible IO
Scheme for Grid Workflows. In Proc. of the 18th Inter-
national Parallel and Distributed Processing Symposium.
Krakow, Poland.

Abramson, D., Foster, I., Giddy, J., Lewis, A., Sosic, R.,
Sutherst, R., & White, N. (1997). Nimrod Computational
Workbench: A Case Study in Desktop Metacomputing.
In Australian Computer Science Conference (ACSC 97).
Macquarie University, Sydney.

Abramson, D., Sosic, R., Giddy, J., & Hall, B. (1995).
Nimrod: A Tool for Performing Parameterised Simulations
using Distributed Workstations. In Proc. of the 4th IEEE
Symposium on High Performance Distributed Computing.
Virginia. IEEE Press.

Acunetix. Google Hacking. from http://www.acunetix.
com/websitesecurity/google-hacking.htm.

Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., &
Lilley, J. (1999). The Design and Implementation of
an Intentional Naming System. Proc. 17th ACM SOSP,
Kiawah Island, SC, Dec.

Agrawal, R., & Srikant, R. (1995). Mining sequential
patterns. Paper presented at the 17th International Con-
ference on Data Engineering.

Agrawal, R., & Srikant, R. (1996). Mining sequential pat-
terns: Generalizations and performance improvements.
Paper presented at the 5th International Conference on
Extending Database Technology: Advances in Database
Technology.

Ahronovitz, M., et al. (2010). Cloud computing use cases.
A white paper produced by the Cloud Computing Use
Case Discussion Group. Retrieved from http://groups.
google.com/ group/cloud-computing-use-cases

Akyildiz, I. F., Xudong Wang, B., & Weilin Wang, B.
(2005). Wireless mesh networks: a survey. Computer
Networks and ISDN Systems, 47(4), 445–487.

Aldrich, J. (1997). R. A. Fisher and the making of maxi-
mum likelihood 1912-1922. Statistical Science, 12(3),
162–176. doi:10.1214/ss/1030037906

Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L.,
Frohner, A., Gianoli, A., et al. Spataro, F. (2004). Voms,
an authorization system for virtual organizations. Euro-
pean Across Grids Conference, LNCS 2970, (pp. 33-40).
Springer, 2004.

Ali, S., Siegel, H. J., Hensgen, D., & Freund, R. F. (1999).
Dynamic mapping of a class of independent tasks onto
heterogeneous computing systems. Journal of Parallel
and Distributed Computing, 59(2), 107–131. doi:10.1006/
jpdc.1999.1581

Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H.,
& Kielmann, T. (2005). The Grid Application Toolkit:
Towards generic and easy application programming
interfaces for the Grid. Proceedings of the IEEE, 93(3),
534–550. doi:10.1109/JPROC.2004.842755

Compilation of References

346

Alonso, J., Hernández, V., & Moltó, G. (2006). GMarte:
Grid middleware to abstract remote task execution.
Concurrency and Computation, 18(15), 2021–2036.
doi:10.1002/cpe.1052

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher,
B., & Mock, S. (2004). Kepler: An extensible system for
design and execution of scientific workflows. Proceedings
of the 16th International Conference on Scientific and
Statistical Database Management (SSDBM), Santorini
Island, Greece. Retrieved from http://kepler-project.org

Altschul, S. F., Madden, T. L., & Schaffer, A. A. (1997).
Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Research,
25(17), 3389–3402. doi:10.1093/nar/25.17.3389

Amazon Elastic Compute Cloud EC2. (2007). Retrieved
from www.amazon.com/ec2

Amoretti, M., Zanichelli, F., & Conte, G. (2005). SP2A:
A service-oriented framework for P2P-based Grids. 3rd
International Workshop on Middleware for Grid Com-
puting, (pp. 1-6).

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M.,
& Werthimer, D. (2002). Seti@home: an experiment in
public-resource computing. Communications of the ACM,
45(11), 56–61. doi:10.1145/581571.581573

Anderson, D. P. (2004). BOINC: A system for public-
resource computing and storage. In Proceedings of Fifth
IEEE/ACM International Workshop on Grid Computing,
(pp. 4-10).

Androutsellis-Theotokis, S., & Spinellis, D. (2004).
A survey of peer-to-peer content distribution tech-
nologies. ACM Computing Surveys, 36(4), 335–371.
doi:10.1145/1041680.1041681

Apostolopoulos, G., Peris, V., & Debanjan Saha, D. (1999).
Transport Layer Security: How Much Does it Really Cost.
Proceedings of the IEEE INFOCOM. New York.

Arends, R., Austein, R., Larson, M., Massey, D., & Rose,
S. (2005). DNS security introduction and requirements.
RFC 4033. Internet Engineering Task Force. IETF.

Arnold, K. (2000). The Jini specification (2nd ed.).
Addison-Wesley.

Asokan, N., & Ginzboorg, P. (2000, November). Key
Agreement in Ad Hoc Networks. Computer Com-
munications, 23(17), 1627–1637. doi:10.1016/S0140-
3664(00)00249-8

Aspnes, J., & Shah, G. (2003). Skip graphs. In SODA
‘03: Proceedings of the Fourteenth Annual ACM SIAM
Symposium on Discrete Algorithms, (pp. 384–393).
Philadelphia, PA, USA.

Atkinson, M., DeRoure, D., Dunlop, A., Fox, G., Hen-
derson, P., & Hey, T. (2005). Web Service Grids: An
evolutionary approach. Concurrency and Computation,
17(2-4), 377–389. doi:10.1002/cpe.936

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Se-
quential pattern mining using a bitmap representation.
Paper presented at the 8th International Conference on
Knowledge Discovery and Data Mining Edmonton,
Alberta, Canada.

Badia, R. M., Labarta, J. S., Sirvent, R. L., Perez, J. M., Cela,
J. M., & Grima, R. (2003). Programming Grid applications
with GRID Superscalar. Journal of Grid Computing, 1,
151–170. doi:10.1023/B:GRID.0000024072.93701.f3

Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F.,
Morel, M., & Quilici, R. (2006). Grid computing: Software
environments and tools. In Programming, Composing,
Deploying on the Grid, (pp. 205-229)., Berlin, Heidelberg,
and New York: Springer

Baker, M., Buyya, R., & Laforenza, D. (2002). Grids and
Grid technologies for wide area distributed computing.
SP&E. John Wiley and Sons, Ltd.

Baker, S. (2007, December 13). Google and the wisdom
of clouds. Business Week. Retrieved from www.business-
week.com/magazine/ content/07_52/ b4064048925836.
htm

Bao, L., & Garcia-Luna-Aceves, J. J. (2003). Distributed
Dynamic Channel Access Scheduling for Ad Hoc Net-
works. Journal of Parallel and Distributed Computing,
63(1), 3–14. doi:10.1016/S0743-7315(02)00039-4

Bao, L., & Garcia-Luna-Aceves, J. J. (2001). A New
Approach to Channel Access Scheduling for Ad Hoc
Networks. Proceedings of the 7th annual international
conference on Mobile computing and networking (pp.
210 – 221).

Compilation of References

347

Barabasi, A.-L., Freeh, V. W., Jeong, H., & Brockman, J.
B. (2001). Parasitic Computing. Nature, 412.

Barsanti, L., & Sodan, A. (2007). Adaptive job schedul-
ing via predictive job resource allocation. Proceedings
of the 12th Conference on Job Scheduling Strategies for
Parallel Processing, (pp. 115-140).

Bartosz Baliś, M., & Wegiel, M. (2008). LGF: A flex-
ible framework for exposing legacy codes as services.
Future Generation Computer Systems, 24(7), 711–719.
doi:10.1016/j.future.2007.12.001

Basin, D., & Doser, J. (2002). SecureUML: A UML-based
modeling language for model-driven security. Paper
presented at the 5th International Conference on the
Unified Modeling Language. Lecture Notes in Computer
Science 2460.

Basin, D., Doser, J., & Lodderstedt, T. (2003). Model driven
security for process-oriented systems. Paper presented
at the ACM Symposium on Access Control Models and
Technologies, Como, Italy.

Batchu, R., Dandass, Y. S., Skjellum, A., & Beddhu,
M. (2004). MPI/FT: A Model-Based Approach to Low-
Overhead Fault Tolerant Message-Passing Middleware.
Cluster Computing, 7(4), 303–315. doi:10.1023/
B:CLUS.0000039491.64560.8a

Baur, T., Breu, R., Kalman, T., Lindinger, T., Milbert, A.,
Poghosyan, G., … Rombert, M. (2009). An interoperable
Grid Information System for integrated resource moni-
toring based on virtual organizations. Journal of Grid
Computing, 7(3). Springer.

Bazinet, A., Myers, D., Fuetsch, J., & Cummings,
M. (2007). Grid Services Base Library: A high-level,
procedural application programming interface for writ-
ing Globus-based Grid services. Future Generation
Computer Systems, 23(3), 517–522. doi:10.1016/j.
future.2006.07.009

BEinGRID. (2008). Business experiments in grids. Re-
trieved from www.beingrid.com

Bell, W. H., Cameron, D. G., Carvajal-Schiaffino, R.,
Millar, A. P., Stockinger, K., & Zini, F. (2003). Evaluation
of an economy-based file replication strategy for a data
Grid. In International Workshop on Agent based Cluster
and Grid Computing at CCGrid 2003. Tokyo, Japan: IEEE
Computer Society Press.

Bellare, M., & Rogaway, P. (1993). Random oracles are
practical: A paradigm for designing efficient protocols.
In CCS ‘93 1st ACM Conference on Computer and
Communications Security, (pp. 62–73). New York, NY:
ACM Press.

Bellavista, P., & Corradi, A. (2006). The hand-
book of mobile middleware. Auerbach Publications.
doi:10.1201/9781420013153

Beltrame, F., Maggi, P., Melato, M., Molinari, E., Sisto, R.,
& Torterolo, L. (2006). SRB data Grid and compute Grid
integration via the EnginFrame Grid portal. Proceedings
of the 1st SRB Workshop, 2-3 February 2006, San Diego,
USA. Retrieved from www.sdsc.edu/srb/Workshop /
SRB-handout-v2.pdf

Berendt, B., Günther, O., & Spiekermann, S. (2005).
Privacy in e-commerce. Communications of the ACM,
48(4). ACM Press.

Bhanwar, S., & Bawa, S. (2008). Securing a Grid. Paper
presented at the World Academy of Science, Engineering
and Technology.

Bharambe, A. R., Agrawal, S., & Seshan, S. (2004). Mer-
cury: Supporting scalable multi-attribute range queries.
In SIGCOMM Symposium on Communications Architec-
tures and Protocols, (pp 353–366). Portland, OR, USA.

BIRN. (2008). Biomedical Informatics Research Network.
Retrieved from www.nbirn.net/index.shtm

Blancquer, I., Hernández, V., Segrelles, D., & Torres,
E. (2009). Enhancing privacy and authorization control
scalability in the Grid through ontologies. IEEE Transac-
tions on Information Technology in Biomedicine, 13(1),
16–24. doi:10.1109/TITB.2008.2003369

BOINC - Berkeley Open Infrastructure for Network
Computing. (2008). http://boinc.berkeley.edu/ (1.5.2008)

Compilation of References

348

Bolosky, W. J., Douceur, J. R., Ely, D., & Theimer, M.
(2000). Feasibility of a serverless distributed file system
deployed on an existing set of desktop PCs. ACM SIG-
METRICS Performance Evaluation Review, 28(1), 34–43.
doi:10.1145/345063.339345

Bolze, R., Cappello, F., Caron, E., Dayd’e, M., Desprez, F.,
& Jeannot, E. (2006). Grid’5000: A large scale and highly
reconfigurable experimental grid testbed. International
Journal of High Performance Computing Applications,
20(4), 481–494. doi:10.1177/1094342006070078

Boursas, L., & Hommel, W. (2006). Policy-based service
provisioning and dynamic trust management in identity
federations. In [). IEEE Computer Society.]. Proceedings
of the IEEE International Conference on Communica-
tions, ICC, 2006.

Bouteiller, A., Hérault, T., Krawezik, G., Lemarinier, P., &
Cappello, F. (2006). MPICH-V Project: A Multiprotocol
Automatic Fault-Tolerant MPI. International Journal
of High Performance Computing Applications, 20(3),
319–333. doi:10.1177/1094342006067469

Bradford, P. G., Grizzell, B. M., Jay, G. T., & Jenkins, J. T.
(2007). Cap. 4. Pragmatic security for constrained wireless
networks. In Xaio, Y. (Ed.), Security in distributed, Grid,
mobile, and pervasive computing (p. 440). Tuscaloosa,
USA: The University of Alabama.

Bramhall, P., & Mont, M. (2005). Privacy management
technology improves governance. In Proceedings of the
12th Annual Workshop of the HP OpenView University
Association.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos,
J., & Perin, A. (2004). TROPOS: An agent-oriented
software development methodology. Journal of Autono-
mous Agents and Multi-Agent Systems, 8(3), 203–236.
doi:10.1023/B:AGNT.0000018806.20944.ef

Brevik, J., Nurmi, D., & Wolski, R. (2004). Automatic
methods for predicting machine availability in desktop
grid and peer-to-peer systems. In Proceedings of the 2004
IEEE International Symposium on Cluster Computing
and the Grid (CCGRID04), (pp. 190–199).

Bruno, R., Conti, M., & Gregori, E. (2005). Mesh Net-
works: Commodity Multihop Ad Hoc Networks. IEEE
Communications Magazine, 43(3), 123–131. doi:10.1109/
MCOM.2005.1404606

Buyya, R., Abramson, D., Giddy, J., & Stockinger, H.
(2002). Economic models for resource management and
scheduling in Grid computing. Concurrency and Com-
putation, 14(13-15), 1507–1542. doi:10.1002/cpe.690

Buyya, R., Abramson, D., & Giddy, J. (2000). Nimrod/G:
An architecture for a resource management and schedul-
ing system in a global computational grid. Proceedings of
the 4th International Conference on High Performance
Computing in the Asia-Pacific Region. Retrieved from
www.csse.monash.edu.au /~davida/nimrod/ nimrodg.htm

Buyya, R., Giddy, J., & Abramson, D. (2000). An evalua-
tion of economy-based resource trading and scheduling on
computational power grids for parameter sweep applica-
tions. Paper presented at the Second Workshop on Active
Middleware Services (AMS2000), Pittsburgh, USA.

Cai, M., & Frank, M. (2004). RDFPeers: A Scalable
Distributed RDF Repository based on A Structured Peer-
to-Peer Network. Paper presented at the Proceedings
of the 13th International World Wide Web Conference,
New York.

Cai, M., Frank, M., Chen, J., & Szekely, P. (2003). MAAN:
A Multi-attribute Addressable Network for Grid Informa-
tion Services. Paper presented at the Proceedings of the
4th International Workshop on Grid Computing.

Canal, P., Constanta, P., Green, C., & Mack, J. (2007). GRA-
TIA, a resource accounting system for OSG. CHEP’07,
Victoria, British Columbia, Canada. Sep 2007. Enabling
Grids for E-Science. from http://www.eu-egee.org/.

Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette,
F., & N’eri, V. (2005). Computing on large-scale distributed
systems: Xtrem web architecture, programming models,
security, tests and convergence with grid. Future Genera-
tion Computer Systems, 21(3), 417–437. doi:10.1016/j.
future.2004.04.011

Carriero, N., & Gelernter, D. (1989). How to Write Parallel
Programs: A Guide to the Perplexed. ACM Computing
Surveys, 21(3), 323–357. doi:10.1145/72551.72553

Carsten, E., Volker, H., & Ramin, Y. (2002). Economic
scheduling in Grid computing. Paper presented at the 8th
International Workshop on Job Scheduling Strategies for
Parallel Processing.

Compilation of References

349

Carsten, E., Volker, H., Uwe, S., Ramin, Y., & Achim, S.
(2002). On advantages of Grid Computing for parallel job
scheduling. Paper presented at the 2nd IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid.

Casanova, H., Obertelli, G., Berman, F., & Wolski, R.
(2000). The AppLeS parameter sweep template: User-level
middleware for the Grid. Proceedings of Supercomput-
ing, 00, 75–76.

Casanova, H. (2002). Distributed computing research
issues in Grid computing. ACM SIGACT News, 33(3),
50–70. doi:10.1145/582475.582486

Casanova, H., Legrand, A., Zagorodnov, D., & Berman,
F. (2000). Heuristics for scheduling parameter sweep
applications in grid environments. The Ninth IEEE Het-
erogeneous Computing Workshop (HCW),(pp. 349–363).

Castro, J., Kolp, M., & Mylopoulos, J. (2001). A require-
ments-driven development methodology. Paper presented
at the 13th Int. Conf. on Advanced Information Systems
Engineering, CAiSE’01.

Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A.,
Rowstron, A., & Singh, A. (2003). Splitstream: High-band-
width Content Distribution in a Cooperative Environment.
Paper presented at the Proceedings of the International
Workshop on Peer-to-Peer Systems (IPTPS 2003).

CCI. (2010). Amazon cluster compute instances. Retrieved
from http://aws.amazon.com/ hpc-applications/

CDO2. (2008). CDOSheet for pricing and risk analysis.
Retrieved from www.cdo2.com

Chadwick, D. W. (2007). Use of WebDAV for certificate
publishing and revocation. Internet Engineering Task.
IETF.

Chan, P., & Abramson, D. (2001). NetFiles: A Novel
Approach to Parallel Programming of Master/Worker
Applications. In Proc. of the 5th International Confer-
ence and Exhibition on High-Performance Computing in
the Asia-Pacific Region (HPCAsia 2001), Queensland,
Australia.

Chan, P., & Abramson, D. (2007). π-spaces: Support for
Decoupled Communication in Wide-Area Parallel Appli-
cations. In Proc. of the Sixth International Conference on
Grid and Cooperative Computing, (pp. 3–10). Urumchi,
Xinjiang, China: IEEE.

Chan, P., & Abramson, D. (2008). Netfiles: An Enhanced
Stream-based Communication Mechanism. In J. Labarta,
K. Joe, & T. Sato (Eds.), High-Performance Computing,
Revised Selected Papers. Sixth International Sympo-
sium, ISHPC 2005 and First International Workshop
on Advanced Low Power Systems, ALPS 2006, 4759
of Lecture Notes in Computer Science, (pp. 254–261).
Springer-Verlag.

Chanchio, K., & Sun, X.-H. (2004). Communication
State Transfer for Mobility of Concurrent Heterogeneous
Computing. IEEE Transactions on Computers, 53(10),
1260–1273. doi:10.1109/TC.2004.73

Chang, E., & Garcia-Molina, H. (1999). Medic: A memory
and disk cache for multimedia clients. Paper presented
at the IEEE International Conference on Multimedia
Computing and Systems, Florence, Italy.

Charleston, M. A., & Perkins, L. (2006). Traversing the
tangle: Algorithms and applications for cophylogenetic
studies. Journal of Biomedical Informatics, 39, 62–71.
doi:10.1016/j.jbi.2005.08.006

Chaubal, C. (2003). Sun Grid engine enterprise edition—
software configuration guidelines and use cases. Sun
Blueprints. www.sun.com/blueprints /0703/817-3179.pdf

Chen, J., & Lu, B. (2008). Load balancing oriented
economic Grid resource scheduling. IEEE Pacific-Asia
Workshop on Computational Intelligence and Industrial
Application, (pp. 813-817).

Chervenak, A., Deelman, E., Livny, M., Su, M.-H.,
Schuler, R., Bharathi, S., et al. (September 2007). Data
placement for scientific applications in distributed envi-
ronments. Proceedings of the 8th IEEE/ACM International
Conference on Grid Computing (Grid2007).

Chetty, M., & Buyya, R. (2002). Weaving Computational
Grids: How Analogous Are They with Electrical Grids?
[CiSE]. Computing in Science & Engineering, 4(4), 61–71.
doi:10.1109/MCISE.2002.1014981

Chien, A. A., Calder, B., Elbert, S., & Bhatia, K. (2003).
Entropia: Architecture and performance of an enterprise
desktop grid system. Journal of Parallel and Distrib-
uted Computing, 63(5), 597–610. doi:10.1016/S0743-
7315(03)00006-6

Compilation of References

350

Chinnici, R., Gudgin, M., Moreau, J.-J., & Weerawarana,
S. (2005). Web services description language (WSDL)
version 2.0 part 1: Core language. Retrieved from http://
www.w3.org/TR/wsdl20

Chlamtac, I., & Farago, A. (1994). Making Transmission
Schedules Immune to Topology Changes in Multi-hop
Packet Radio Networks. IEEE/ACM Transactions on
Networking, 2(1), 23 – 29.

Chlamtac, I., & Kutten, S. (1985). A Spatial-Reuse TDMA/
FDMA for Mobile Multi-hop Radio Networks. Proceedings
of IEEE INFOCOM (pp. 389-394).

Chlamtac, I., Farago, A., Myers, A., Syrotiuk, V., &
Zaruba, G. (2000). A performance comparison of hybrid
and conventional mac protocols for wireless networks.
Proceedings of VTC 2000 (pp. 201–205).

Choi, J., Noh, S. H., Min, S. L., & Cho, Y. (2000). To-
wards application/file-level characterization of block
references: A case for fine-grained buffer management.
Paper presented at the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems Santa Clara, California, United States.

Chor, B., & Tuller, T. (2005). Maximum likelihood of
evolutionary trees: hardness and approximation. Bioin-
formatics (Oxford, England), 21(1), 97–106. doi:10.1093/
bioinformatics/bti1027

Christensen, E., Curbera, F., Meredith, G., & Weer-
awarana, S. (2001). Web services description language
(WSDL) 1.1. Retrieved from http://www.w3.org/TR/2001/
NOTE-wsdl-20010315

Chu, R., Xiao, N., Zhuang, Y., Liu, Y., & Lu, X. (2006).
A distributed paging RAM Grid system for wide-area
memory sharing. Paper presented at the 20th International
Parallel and Distributed Processing Symposium, Rhodes
Island, Greece.

Ciaschini, V. (2004). A VOMS attribute certificate profile
for authorization. Retrieved from http://grid-auth.infn.it/
docs/AC-RFC.pdf

Clement, L., Hately, A., von Riegen, C., & Rogers, T.
(2004). UDDI version 3.0.2. Retrieved from http://uddi.
org/pubs/uddi v3.htm

Coca, R. (2011). Security enhancements of
GridFTP:Description and Measurements. Technical
Report UVA-SNE-2011-01, University of Amsterdam.

Condor Project. (n.d.). Retrieved from http://www.
cs.wisc.edu /condor/

Conner, W. S., Kruys, J., Kim, K. J., & Zuniga, J. C. (2006).
IEEE 802.11s Tutorial. Overview of the Amendment for
Wireless Local Area Mesh Networking. Intel Corp, Cisco
Systems, TMicroelectronics, InterDigital Comm Corp.

Crespo, A., & Garcia-Molina, H. (2003). Semantic
Overlay Networks for P2P Systems. Technical report,
Stanford University.

Cunsolo, V. D., Distefano, S., Puliafito, A., & Scarpa,
M. L. (2010). GS3: A Grid storage system with security
features. Journal of Grid Computing, 8(3). Springer.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi,
N., & Weerawarana, S. (2002). Unraveling the Web
Services Web: An introduction to SOAP, WSDL,
and UDDI. IEEE Internet Computing, 6(2), 86–93.
doi:10.1109/4236.991449

Dahlin, M. D., Wang, R. Y., Anderson, T. E., & Patter-
son, D. A. (1994). Cooperative caching: Using remote
client memory to improve file system performance. Paper
presented at the 1st Symposium on Operating Systems
Design and Implementation, Monterey, California.

Dai, Y. S., Xie, M., & Poh, K. L. (2002). Reliability
analysis of Grid computing systems. Proceedings of the
2002 Pacific Rim International Symposium on Dependable
Computing (PRDC’02), IEEE (pp. 97-104).

Dail, H., Sievert, O., Berman, F., & Casanova, H. YarKhan,
A., Vadhiyar, S., et al. (2004). Scheduling in the Grid ap-
plication development software project. In Grid resource
management: State of the art and future trends (pp. 73-98).

Dandamudi, S. (1995). Performance impact of schedul-
ing discipline on adaptive load sharing in homogeneous
distributed system. 15th IEEE International Conference on
Distributed Computing Systems, (pp. 484-492).

Dasarathy, B. (1991). Nearest neighbor (NN) norms: Nn
pattern classification techniques. IEEE Computer Society
Press Tutorial.

Compilation of References

351

Dcache. (n.d.). Dcache storage system. Retrieved from
http://www.dcache.org/

de Vienne, D. M., Giraud, T., & Martin, O. C. (2007).
A congruence index for testing topological similarity
between trees. Bioinformatics (Oxford, England), 23(23),
3119–3124. doi:10.1093/bioinformatics/btm500

DECI. (2010). DEISA extreme computing initiative.
Retrieved from www.deisa.eu/science/deci

Deering, S., & Hinden, R. (1998). Internet protocol,
version 6 (IPv6) specification. Internet Engineering Task
Force. IETF.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W., & Harshman, R. A. (1990). Indexing by Latent
Semantic Analysis. Journal of the American Society for
Information Science American Society for Information
Science, 41(6), 391–407. doi:10.1002/(SICI)1097-
4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

DeFanti, T., Foster, I., Papka, M. E., Stevens, R., &
Kuhfuss, T. (1996). Overview of the I-WAY: Wide
Area Visual Supercomputing. International Jour-
nal of Super-computing Applications, 10, 123–131.
doi:10.1177/109434209601000201

DEISA project. (2008). http://www.deisa.org/ (1.5.2008)

DEISA. (2010). Distributed European infrastructure
for supercomputing applications. Retrieved from www.
deisa.eu

Delaittre, T., Kiss, T., Goyeneche, A., Terstyanszky, G.,
Winter, S., & Kacsuk, P. (2005). GEMLCA: Running
legacy code applications as Grid services. Journal of
Grid Computing, 3(1-2), 75–90. doi:10.1007/s10723-
005-9002-8

Demchenko, Y., de Laat, C., Koeroo, O., & Groep, D.
(2008). Re-thinking Grid security architecture. In Pro-
ceedings of Fourth International Conference on eScience.
IEEE Computer Society.

DESHL. (2008). DEISA services for heterogeneous man-
agement layer. Retrieved from http://forge.nesc.ac.uk/
projects /deisa-jra7/

Deshpande, U., Wang, B., Haque, S., Hines, M., & Go-
palan, K. (2010). MemX: Virtualization of cluster-wide
memory. Paper presented at the International Conference
on Parallel Processing.

Desprez, F., & Vernois, A. (2007). Simultaneous sched-
uling of replication and computation for data-intensive
applications on the Grid. Kluwer Academic Publishers.

Dey, A., & Abowd, G. (2000). Towards a Better Under-
standing of Context and Context-Awareness. Paper pre-
sented at the Proceedings of the Workshop on the What,
Who, Where, When and How of Context-awareness at
CHI 2000. Freenet. http://freenet.sourceforge.net.

D-Grid. (2008). Retrieved from www.d-grid.de/ index.
php?id=1&L=1

Dierks, T. (2007). The Transport Layer Security (TLS)
Protocol Version 1.2 Network Resonance, Inc. Avail-
able at http://www.ietf.org /internet-drafts/draft-ietf-tls-
rfc4346-bis-07.txt.

Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K.,
Torczon, L., & White, A. (2003). Sourcebook of parallel
computing. Morgan Kaufmann Publishers.

Droms, R. (1997). Dynamic Host Configuration Protocol.
IETF RFC 2131.

Dror, G. F., Larry, R., Uwe, S., Kenneth, C. S., & Parkson,
W. (1997). Theory and practice in parallel job schedul-
ing. Paper presented at the Job Scheduling Strategies for
Parallel Processing Conference.

Duan, Z., & Gu, Z. (2008). Dynamic load balancing in
Web cache cluster. 7th International Conference on Grid
and Cooperative Computing, (pp. 147-150).

E.C. (1995). Directive 95/46/EC. European commission
data protection regulations overview page. Retrieved from
http://ec.europa.eu/justice_home/fsj/privacy/

Eager, D. L., Lazowska, E. D., & Zahorjan, J. (1986).
A comparison of receiver initiated and sender initiated
adaptive load sharing. Performance Evaluation, 6(1),
53–68. doi:10.1016/0166-5316(86)90008-8

Compilation of References

352

Eager, D. L., Lazowska, E. D., & Zahorjan, J. (1988).
The limited performance benefits of migrating active
processes for load sharing. 1988 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, (pp. 63-72).

Edwards, W. (2000). Core Jini (2nd ed.). Prentice-Hall.

EnginFrame. (2008). EnginFrame Grid and cloud portal.
Retrieved from www.nice-italy.com

England, D., & Weissman, J. B. (2005). Costs and benefits
of load sharing in the computational Grid. In Proceed-
ings of the Conference on Job Scheduling Strategies for
Parallel Processing (pp. 160-175).

Enterprise Grid Alliance Security Working Group. (2005).
Enterprise Grid security requirements, version 1.0.

Ephremides, A., & Mowafi, O. A. (1982). Analysis of
hybrid access schemes for buffered users probabilistic time
division. IEEE Transactions on Software Engineering,
SE-8, 52–61. doi:10.1109/TSE.1982.234774

Erberich, S., Silverstein, J. C., Chervenak, A., Schuler,
R., Nelson, M. D., & Kesselman, C. (2007). Globus
medicus - federation of dicom medical imaging devices
into healthcare grids. Studies in Health Technology and
Informatics, 126, 269–278.

Ernemann, C., Hamscher, V., Streit, A., & Yahyapour, R.
(2002a). Enhanced algorithms for multi-site scheduling.
In Grid Computing (pp. 219–231). GRID.

Ernemann, C., Hamscher, V., Streit, A., & Yahyapour, R.
(2002b). On effects of machine configurations on parallel
job scheduling in computational Grids. Proceedings of
International Conference on Architecture of Computing
Systems, ARCS, (pp. 169-179).

Ernemann, C., Hamscher, V., & Yahyapour, R. (2002).
Benefits of global Grid computing for job scheduling. Pro-
ceedings of the Fifth IEEE/ACM International Workshop
on Grid Computing (GRID’04) (pp. 374-379).

Exa. (2008). PowerFLOW on demand. Retrieved from
http://www.exa.com/ pdf/IBM_Exa_OnDemand _Screen.
pdf

Fagg, G. E., & Dongarra, J. (2004). Building and Using
a Fault-Tolerant MPI Implementation. International
Journal of High Performance Computing Applications,
18(3), 353–361. doi:10.1177/1094342004046052

Fahringer, T., & Jugravu, A. (2005). JavaSymphony: A
new programming paradigm to control and synchronize
locality, parallelism and load balancing for parallel and
distributed computing. Concurrency and Computation,
17(7-8), 1005–1025. doi:10.1002/cpe.840

Fall, K., & Vradhan, K. (1998). NS Notes and Documenta-
tion”. http://www-mash.cs.berkeley.edu/ns/nsDoc.ps.gz.

Feeley, M. J., Morgan, W. E., Pighin, F. H., Karlin, A. R.,
Levy, H. M., & Thekkath, C. A. (1995). Implementing
global memory management in a workstation cluster.
Paper presented at the Symposium on Operating Systems
Principles, Copper Mountain Resort, Colorado.

Feitelson, D., & Rudolph, L. (1995). Parallel job schedul-
ing: Issues and approaches. In Proceedings of International
Conference on Job Scheduling Strategies for Parallel
Processing (pp. 1-18).

Fernández-Medina, E., Jurjens, J., Trujillo, J., & Jajo-
dia, S. (2009). Special issue: Model-driven develop-
ment for secure Information Systems. Information and
Software Technology, 51(5), 809–814. doi:10.1016/j.
infsof.2008.05.010

Fernández-Medina, E., & Piattini, M. (2005). Designing
secure databases. Information and Software Technology,
47(7), 463–477. doi:10.1016/j.infsof.2004.09.013

Field, L. (2008). Generic Information Provider. EGEE
Middleware Support Group. from http://twiki.cern.ch/
twiki/bin/view/EGEE/GIP.

Firesmith, D. G. (2003). Security use cases. Journal of
Object Technology, 53-64.

Fischer-Huebner, S. (2001). IT-security and privacy: De-
sign and use of privacy-enhancing security mechanisms.
New York, NY: Springer-Verlag.

Fitzek, F., Angelini, D., Mazzini, G., & Zorzi, M. (2003).
Design and Performance of an Enhanced IEEE 802.11
MAC Protocol for Multihop Coverage Extension. IEEE
Wireless Communications, 10(6), 30–39. doi:10.1109/
MWC.2003.1265850

Compilation of References

353

Flechais, I., Sasse, M. A., & Hailes, S. M. V. (2003).
Bringing security home: A process for developing secure
and usable systems. Paper presented at the New Security
Paradigms Workshop (NSPW’03), Ascona, Switzerland.

Flouris, M. D., & Markatos, E. P. (1999). The net-
work RamDisk: Using remote memory on hetero-
geneous NOWs. Cluster Computing, 2(4), 281–293.
doi:10.1023/A:1019051330479

Foster, I., & Kesselman, C. (1998). The Grid – Blueprint
for a New Computing Infrastructure. Morgan Kaufmann.

Foster, I., Kesselman, C., & Tuecke, S. (2001). The Anat-
omy of the Grid: Enabling Scalable Virtual Organizations.
The International Journal of Supercomputer Applications,
15(3), 200–222. doi:10.1177/109434200101500302

Foster, I., & Kesselman, C. (Eds.). (1999). The Grid:
Blueprint for a new computing infrastructure. Morgan
Kaufmann Publishers.

Foster, I., & Kesselman, C. (Eds.). (2004). The Grid 2:
Blueprint for a new computing infrastructure. Morgan
Kaufmann Publishers.

Foster, I. (2000). Internet computing and the emerging
grid. Nature. Retrieved from www.nature.com/nature/
webmatters/grid /grid.html

Foster, I. (2002). What is the Grid? A Three Point Check-
list. Argonne National Laboratory, http://www- fp.mcs.
anl.gov/~foster/Articles/WhatIsTheGrid.pdf.

Foster, I. (2005). Globus Toolkit version 4: Software
for service-oriented systems. In Network and Parallel
Computing - IFIP International Conference, Beijing,
China, 3779, 2-13. Springer.

Foster, I., & Kesselman, C. (1999). Computational Grids.
In The Grid: Blueprint for a New Computing Infrastruc-
ture, (pp. 15–51).

Foster, I., Kesselman, C., Tsudik, G., & Tuecke, S. (1998).
Security Architecture for Computational Grids. ACM
Conference on Computers and Security, (pp. 83-91).

Foster, I., Kesselman, C., Tsudik, G., & Tuecke, S. (1998).
A security architecture for computational grids. Proc. 5th
ACM Conf. on Computer and Communication Security,
(pp. 83-92).

Foster, I., Kesselman, C., & Tuecke, S. (2001) The
Anatomy of the Grid: Enabling Scalable Virtual Organiza-
tions. International J. Supercomputer Applications, 15(3).

Foster. (2002). What is the Grid? A three point checklist.
GRIDtoday, 1(6).

Fox, G., Williams, R., & Messina, P. (1994). Parallel
computing works!Morgan Kaufmann Publishers.

Freeman, E., Hupfer, S., & Arnold, K. (1999). JavaSpaces
Principles, Patterns, and Practice. Addison-Wesley.

Freier, A. O., Karlton, P., & Kocher, P. C. (1996). Inter-
net Draft: The SSL Protocol Version 3.0. The Internet
Engineering Task Force (IETF), Available at http://
wp.netscape.com/eng/ssl3/draft302.txt,last accessed in
November 2007.

Freund, R. F., Gherrity, R. M., Ambrosius, S., Campbell,
M., Halderman, D., Hensgen, E., & Keith, T. Kidd, M.
Kussow, Lima, J. D., Mirabile, F. L., Moore, L., Rust, B.,
& Siegel, H. J. (1998). Scheduling resources in multi-user,
heterogeneous, computing environments with SMART-
NET. 7th IEEE Heterogeneous Computing Workshop,
(pp. 184–199).

Frey, J., Mori, T., Nick, J., Smith, C., Snelling, D., Srini-
vasan, L., & Unger, J. (2005). The open Grid services
architecture, version 1.0. www.ggf.org/ggf_areas _ar-
chitecture.htm

Fujimoto, N., & Hagihara, K. (2003). Near-optimal
dynamic task scheduling of independent coarse-grained
tasks onto a computational grid. 32nd Annual Interna-
tional Conference on Parallel Processing (ICPP-03),
(pp. 391–398).

GAIA. (2010). European space agency mission. Gaia
overview. Retrieved from http://www.esa.int/esaSC/
120377_index_0_m.html

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).
Design Patterns. Reading, MA: Addison-Wesley.

Ganeriwal, S., Kumar, R., & Srivastava, M. (2003).
Timing-sync protocol for sensor networks. Proceedings
of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys).

Compilation of References

354

Gannon, D., Krishnan, S., Fang, L., Kandaswamy, G.,
Simmhan, Y., & Slominski, A. (2005). On building par-
allel and Grid applications: Component technology and
distributed services. Cluster Computing, 8(4), 271–277.
doi:10.1007/s10586-005-4094-2

Gao, Y., Rong, H., & Huang, J. Z. (2005). Adaptive grid
job scheduling with genetic algorithms. Future Gen-
eration Computer Systems, 21, 151–161. doi:10.1016/j.
future.2004.09.033

Gartner. (2007). Gartner says worldwide PDA shipments
top 17.7 Million in 2006. Gartner Press Release. Retrieved
from http://www.gartner.com/it/page.jsp?id=500898

Gartner. (2009). Gartner says worldwide mobile phone
sales declined 8.6 per cent and smartphones grew 12.7
per cent in first quarter of 2009. Gartner Press Re-
lease. Retrieved from http://www.gartner.com/it/page.
jsp?id=985912

GAT. (2005). Grid application toolkit. Retrieved from
www.gridlab.org/ WorkPackages/wp-1/

Gentzsch, W. (2009). Porting applications to grids
and clouds. International Journal of Grid and High
Performance Computing, 1(1), 55–77. doi:10.4018/
jghpc.2009010105

Gentzsch, W. (2004). Grid computing adoption in research
and industry. In Abbas, A. (Ed.), Grid computing: A practi-
cal guide to technology and applications (pp. 309–340).
Charles River Media Publishers.

Gentzsch, W. (2004). Enterprise resource management:
Applications in research and industry. In Foster, I.,
& Kesselman, C. (Eds.), The Grid 2: Blueprint for a
new computing infrastructure (pp. 157–166). Morgan
Kaufmann Publishers.

Gentzsch, W. (2001). Grid Computing: A New Technology
for the Advanced Web. White Paper, Sun Microsystems,
Inc., Palo Alto, CA.

Gentzsch, W. (2007a). Grid initiatives: Lessons learned
and recommendations. RENCI Report. Retrieved from
www.renci.org/publications /reports.php

Gentzsch, W. (2008). Top 10 rules for building a sustain-
able Grid. Grid Thought Leadership Series. Retrieved
from www.ogf.org/TLS/?id=1

Gentzsch, W. (2009). HPC in the cloud: Grids or clouds
for HPC? Retrieved from http://www.hpcinthecloud.
com /features/ Grids-or-Clouds-for-HPC-67796917.html

Gentzsch, W. (Ed.). (2007b). A sustainable Grid infra-
structure for Europe. Executive Summary of the e-IRG
Open Workshop on e-Infrastructures, Heidelberg, Ger-
many. Retrieved from www.e-irg.org/meetings /2007-DE/
workshop.html

Gentzsch, W., Girou, D., Kennedy, A., Lederer, H., Reetz,
J., Riedel, M., … Wolfrat, J. (2011). DEISA – Distributed
European infrastructure for supercomputing applications.
Journal on Grid Computing. Springer.

Gentzsch, W., Kennedy, A., Lederer, H., Pringle, G., Reetz,
J., Riedel, M., et al. Wolfrat, J. (2010). DEISA: E-science
in a collaborative, secure, interoperable and user-friendly
environment. Proceedings of the e-Challenges Conference
e-2010, Warsaw.

GEONGrid. (2008). Retrieved from www.geongrid.org

Georg, G., Ray, I., Anastasakis, K., Bordbar, B., To-
ahchoodee, M., & Houmb, S. H. (2009). An aspect-
oriented methodology for designing secure applications.
Information and Software Technology, 51(5), 846–864.
doi:10.1016/j.infsof.2008.05.004

Gerdes, C., Eger, K., & Müller, J. P. (2009). Data-centric
peer-to-peer communication in power grids. Electronic
Communications of the EASST 17: Kommunikation in
Verteilten Systemen 2009, 2009. Proceedings of KiVS
Global Sensor Networks Workshop (GSN09).

Giorgini, P., Mouratidis, H., & Zannone, N. (2007). Model-
ling security and trust with secure tropos. In Giorgini, H.
M. P. (Ed.), Integrating security and software engineering:
Advances and future visions (pp. 160–189). Hershey, PA:
Idea Group Publishing.

Glite. (n.d.). Glite middleware. Retrieved from http://
glite.web.cern.ch/glite

Global Grid Forum. (2003). Usage Record – XML Format.
Globus Toolkit. from http://globus.org.

Globus Toolkit. (n.d.). Retrieved from http://www.globus.
org/toolkit

Compilation of References

355

GLOBUS. (2008). Overview of the Grid security infra-
structure. Retrieved from http://www.globus.org/security/
overview.html

Globus. (n.d.). Globus alliance toolkit homepage. Re-
trieved from http://www.globus.org/toolkit/

Glue Working Group. (2007). GLUE Schema Specifi-
cation version 1.3 Draft 3. Gridsite. from http://www.
gridsite.org/.

Gniady, C., Butt, A. R., & Hu, Y. C. (2004). Program-
counter-based pattern classification in buffer caching.
Paper presented at the 6th Symposium on Operating
Systems Design and Implementation, San Francisco, CA.

Gnutella. http://gnutella.wego.com.

Goel, A. (1985). Software reliability models: Assump-
tions, limitations, and applicability. IEEE Transactions on
Software Engineering, 11(12), 1411–1423. doi:10.1109/
TSE.1985.232177

Goldman, K. J., Swaminathan, B., McCartney, T. P.,
Anderson, M. D., & Sethuraman, R. (1995). The Program-
mers’ Playground: I/O Abstraction for User-Configurable
Distributed Applications. IEEE Transactions on Software
Engineering, 21(9), 735–746. doi:10.1109/32.464547

Goloboff, P. (1999). Analyzing Large Data Sets in Reason-
able Times: Solutions for Composite Optima. Cladistics,
15(4), 415–428. doi:10.1111/j.1096-0031.1999.tb00278.x

Gong, L., Oaks, S., & Traversat, B. (2002). JXTA in
a nutshell a desktop quick reference. Sebastopol, CA:
O’Reilly & Associates.

Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer,
P., & Merzky, A. … Smith, Ch. (2008). A simple API
for Grid applications (SAGA). Grid Forum Document
GFD.90. Open Grid Forum. Retrieved from www.ogf.
org/documents /GFD.90.pdf

Google Groups. (2010). Cloud computing. Retrieved from
http://groups.google.ca/ group/cloud-computing

Google. (2008). Google app engine. Retrieved from http://
code.google.com/appengine/

Gotthelf, P., Zunino, A., Mateos, C., & Campo, M. (2008).
GMAC: An overlay multicast network for mobile agent
platforms. Journal of Parallel and Distributed Comput-
ing, 68(8), 1081–1096. doi:10.1016/j.jpdc.2008.04.002

Gottschling, M., Stamatakis, A., & Nindl, I. (2007).
Multiple Evolutionary Mechanisms Drive Papillomavirus
Diversification. Molecular Biology and Evolution, 24(5),
1242–1258. doi:10.1093/molbev/msm039

Graham, D. (2006). Introduction to the CLASP process.
Retrieved from https://buildsecurityin.us-cert.gov/daisy/
bsi/articles/best-practices/requirements/548.html

Gray, J. (1990). A census of tandem system availability
between 1985 and 1990. IEEE Transactions on Reliability,
39(4), 409–418. doi:10.1109/24.58719

Grid Computing. (2008). Info centre. Retrieved from
www.gridcomputing.com

Grid Engine. (2001). Open source project. Retrieved from
http://sourceforge.net/ projects/gridscheduler/

GridGain Systems. (2008). GridGain. Retrieved October
16, 2008, from http://www.gridgain.com.

GridSphere. (2008). Retrieved from www.gridsphere.org/
gridsphere/gridsphere

GridWay. (2008). Metascheduling technologies for the
Grid. Retrieved from www.gridway.org/

Griffioen, J., & Appleton, R. (1994). Reducing file system
latency using a predictive approach. Paper presented at
the USENIX Summer Conference.

Gronkvist, J. (2004). A distributed scheduling for mobile
ad hoc networks a novel approach. Proceedings of the 15th
IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications (pp. 964–968).

Gropp, W., & Lusk, E. (2004). Fault Tolerance in Mes-
sage Passing Interface Programs. International Journal
of High Performance Computing Applications, 18(3),
363–372. doi:10.1177/1094342004046045

Gu, T., Tan, E., Pung, H. K., & Zhang, D. (2005). A Peer-
to-Peer Architecture for Context Lookup. Paper presented
at the Proceedings of the International Conference on
Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous 2005), San Diego, California.

Compilation of References

356

Guan, T., Zaluska, E., & Roure, D. D. (2005). A Grid
service infrastructure for mobile devices. Paper presented
at the First International Conference on Semantics, Knowl-
edge, and Grid (SKG 2005), Beijing, China.

Guha, S., Daswani, N., & Jain, R. (2006). An experimental
study of the Skype peer-to-peer VoIP system. In The 5th
International Workshop on Peer-to-Peer Systems. Re-
trieved from http://saikat.guha.cc/pub /iptps06-skype.pdf

Guillen-Scholten, J., & Arbab, F. (2005). Coordinated
Anonymous Peer-to-Peer Connections with MoCha. In N.
Guelfi, G. Reggio, & A. Romanovsky, (Eds.), Scientific
Engineering of Distributed Java Applications, Revised
Selected Papers. 4th International Workshop, FIDJI
2004, 3409 of Lecture Notes in Computer Science, (pp.
68–77). Springer-Verlag.

Gulbrandsen, A., Vixie, P., & Esibov, L. (2000). A DNS RR
for specifying the location of services (DNS SRV). RFC
2782. Internet Engineering Task Force. IETF.

Gustafson, J. (1987). Reevaluating Amdahl’s
law. Communications of the ACM, 31, 532–533.
doi:10.1145/42411.42415

Guttman, E. (1999). Service location protocol: Automatic
discovery of IP network services. IEEE Internet Comput-
ing, 3(4), 71–80. doi:10.1109/4236.780963

Guttman, E., Perkins, C., & Kempf, J. (1999). Service
templates and schemes. Internet Engineering Task Force.
IETF.

Guttman, E., Perkins, C., Veizades, J., & Day, M. (1999).
Service location protocol, version 2. Internet Engineering
Task Force. IETF.

Hamscher, V., Schwiegelshohn, U., Streit, A., & Yahy-
apour, R. (2000). Evaluation of job-scheduling strategies
for Grid computing. In Grid Computing (pp. 191–202).
GRID.

Han, J., & Liu, Y. (2006). Rumor Riding: Anonymizing
Unstructured Peer-to-Peer Systems. Paper presented at
the Proceedings of IEEE ICNP, Santa Barbara, CA. Jena
2 - A Semantic Web Framework. http://www.hpl.hp.com/
semweb/jena2.htm.

Hansen, H., Bachmann, L., & Bakke, T. A. (2003). Mi-
tochondrial DNA variation of Gyrodactylus spp. Mono-
genea, Gyrodactylidae populations infecting Atlantic
salmon, grayling, and rainbow trout in Norway and
Sweden. International Journal for Parasitology, 33(13),
1471–1478. doi:10.1016/S0020-7519(03)00200-5

Harchol-Balter, M., & Downey, A. B. (1997). Exploiting
process lifetime distributions for dynamic load balancing.
ACM Transactions on Computer Systems, 15(3), 253–285.
doi:10.1145/263326.263344

Hautakorpi, J., & Schultz, G. (2010). A feasibility study of
an arbitrary search in structured peer-to-peer networks. In
ICCCN’10: Proceedings of the 19th International Confer-
ence on Computer Communications and Networks. Zurich.

Heinicke, M. P., Duellman, W. E., & Hedges, S. B. (2007).
From the Cover: Major Caribbean and Central American
frog faunas originated by ancient oceanic dispersal. Pro-
ceedings of the National Academy of Sci

Henderson, T., Kotz, D., & Abyzov, I. (2004). The chang-
ing usage of a mature campus-wide wireless network.
Proceedings of the Tenth Annual International Confer-
ence on Mobile Computing and Networking (MobiCom)
(pp. 187–201).

Herveg, J. (2006). The ban on processing medical data
in European law: Consent and alternative solutions to
legitimate processing of medical data in healthgrid. Proc.
Healthgrid (Vol. 120, pp. 107–116). Amsterdam, The
Netherlands: IOS Press.

Herveg, J., Crazzolara, F., Middleton, S. E., Marvin, D.
J., & Poullet, Y. (2004). GEMSS: Privacy and security
for a medical Grid. Paper presented at the HealthGRID
2004, Clermont-Ferrand, France.

Hines, M., Lewandowski, M., Wang, J., & Gopalan, K.
(2006). Anemone: Transparently harnessing cluster-wide
memory. Paper presented at the International Symposium
on Performance Evaluation of Computer and Telecom-
munication Systems, Calgary, Alberta, Canada.

Hines, M., Wang, J., & Gopalan, K. (2006). Distributed
Anemone: Transparent low-latency access to remote
memory in commodity clusters. Paper presented at the
International Conference on High-Performance Comput-
ing, Bangalore, India.

Compilation of References

357

Hoare, C. (1985). Communicating Sequential Processes.
Prentice Hall.

Hommel, W. (2005a). Using XACML for privacy control
in SAML-based identity federations. In Proceedings of
the 9th Conference on Communications and Multimedia
Security (CMS 2005). Springer.

Hommel, W. (2005b). An architecture for privacy-aware
inter-domain identity management. In Proceedings of the
16th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM 2005). Springer.

Housley, R., Polk, W., Ford, W., & Solo, D. (2002). Cer-
tificate and certificate revocation list (CRL) profile. RFC
3280. Internet Engineering Task Force (IETF).Jenronimo,
M., & Weast, J. (2003). UPnP design by example: A
software developer’s guide to universal plug and play.
Intel Press., ISBN-13, 978–0971786110.

Hsu, M., & Silberschatz, A. (1991). Unilateral Commit:
A New Paradigm for Reliable Distributed Transaction
Processing. In Proc. of the 7th International Conference
on Data Engineering, (pp. 286–293). IEEE Computer
Society.

Hu, J., & Klefstad, R. (2006). Decentralized load balanc-
ing on unstructured Peer-2-Peer computing Grids. 5th
IEEE International Symposium on Network Computing
and Applications, (pp. 247-250).

Hua, K. A., Jiang, N., Peng, R., & Tantaoui, M. A. (2004).
PSP: A Persistent Streaming Protocol for Transactional
Communications. In ICCCAS 2004: Proc. of the 2004
International Conference on Communications, Circuits
and Systems, 1, 529–533. IEEE Computer Society.

Huang, K.-C. (2006). Performance evaluation of adap-
tive processor allocation policies for moldable parallel
batch jobs. Paper presented at the Third Workshop on
Grid Technologies and Applications.

Huang, K.-C., & Chang, H.-Y. (2006). An integrated
processor allocation and job scheduling approach to
workload management on computing Grid. Paper pre-
sented at the 2006 International Conference on Parallel
and Distributed Processing Techniques and Applications
(PDPTA’06), Las Vegas, USA.

Huang, P. J., Yu, Y. F., Chen, Q. J., Huang, T. L., Lai, K.
C., & Li, K. C. (2010). A self-adaptive load balancing
strategy for P2P grids. In C. H. Hsu, et al. (Eds.), ICA3PP
2010, part II, LNCS 6082, (pp. 348-357). Heidelberg/
Berlin, Germany: Springer-Verlag.

Huck, P., Butler, M., Gupta, A., & Feng, M. (2002).
A Self-Configuring and Self-Administering Name
System with Dynamic Address Assignment. ACM
Transactions on Internet Technology, 2(1), 14–46.
doi:10.1145/503334.503336

Huda, M. T., Schmidt, W. H., & Peake, I. D. (2005). An
agent oriented proactive fault-tolerant framework for Grid
computing. Proceedings of the First International Confer-
ence on e-Science and Grid Computing (e-Science’05),
IEEE (pp. 304-311).

Hughes, J., & Maler, E. (2005). OASIS security assertion
markup language (SAML), V2.0 technical overview. OA-
SIS Security Services Technical Committee Document.

Humphrey, M., Thompson, M. R., & Jackson, K. R.
(2005). Security for Grids. Lawrence Berkeley National
Laboratory. (Paper LBNL-54853).

IBM Websphere MQ. (2008). The IBM Websphere MQ
Family. [online]. URL: http://www.ibm.com/software/
websphere. (March, 2008).

IEEE 802.11 Working Group (1997). Wireless LAN Me-
dium Access Control (MAC) and Physical Layer (PHY)
Specifications.

IEEE Std 802.11e. (2004). Medium Access Control (MAC)
Enhancements for Quality of Service (QoS). IEEE Draft
for Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, / Draft 11.0.

Imamura, T., Tsujita, Y., Koide, H., & Takemiya, H. (2000).
An Architecture of Stampi: MPI Library on a Cluster of
Parallel Computers. In Dongarra, J., Kacsuk, P., & Pod-
horszki, N. (Eds.), Recent Advances in Parallel Virtual
Machine and Message Passing Interface (pp. 200–207).
Springer. doi:10.1007/3-540-45255-9_29

Inca: User Level Grid Monitoring. from http://inca.sdsc.
edu/drupal/.

Compilation of References

358

Indyk, P., Motwani, R., Raghavan, P., & Vempala, S.
(1997). Locality-preserving hashing in multidimensional
spaces. In STOC ‘97: Proc. of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, (pp. 618–625).
New York, NY: ACM Press.

Iosup, A., Jan, M., Sonmez, O., & Epema, D. (2007). On
the dynamic resource availability in grids. In Proceed-
ings of 8th IEEE/ACM International Conference on Grid
Computing, (pp. 26-33).

Iyengar, M. S., & Singhalc, M. (2006). Effect of network
latency on load sharing in distributed systems. Journal
of Parallel and Distributed Computing, 66(6), 839–853.
doi:10.1016/j.jpdc.2005.09.005

Iyer, R. K., & Rossetti, D. J. (1985). Effect of system
workload on operating system reliability: A study on IBM
3081. IEEE Transactions on Software Engineering, 11(12),
1438–1448. doi:10.1109/TSE.1985.232180

Jacob, B., Ferreira, L., Bieberstein, N., Gilzean, C., Gi-
rard, J.-Y., Strachowski, R., & Yu, S. (2003). Enabling
applications for Grid computing with Globus. IBM Red-
book. Retrieved from www.redbooks.ibm.com /abstracts/
sg246936.html?Open

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The
unified software development process. Addison-Wesley
Professional.

Jain, N., Das, S. R., & Nasipuri, A. (2000). A Multichan-
nel CSMA MAC Protocol with Receiver-Based Channel
Selection for Multihop Wireless Networks. Proceedings
of the 10th IEEE International Conference on Computer
Communications and Networks (pp. 432-439).

Jameel, H., Kalim, U., Sajjad, A., Lee, S., & Jeon, T.
(2005). Mobile-to-Grid middleware: Bridging the gap
between mobile and Grid environments. Paper presented
at the European Grid Conference EGC 2005, Amsterdam,
The Netherlands.

Jana, D., Chaudhuri, A., & Bhaumik, N. B. (2009). Pri-
vacy and anonymity protection in computational Grid
services. International Journal of Computer Science and
Applications, 6(1), 98–107.

Jha, S., Kaiser, H., El Khamra, Y., & Weidner, O. (2007).
Design and implementation of network performance
aware applications using SAGA and Cactus. 3rd IEEE
Conference on eScience and Grid Computing, Bangalore,
India, 10-13 Dec, (pp. 143-150).

Jiang, S., Petrini, F., Ding, X., & Zhang, X. (2006). A
locality-aware cooperative cache management protocol to
improve network file system performance. Paper presented
at the 26th IEEE International Conference on Distributed
Computing Systems, Lisbon, Portugal.

Job Description Language Attributes. (n.d.). Retrieved
from http://auger.jlab.org/jdl /PPDG_JDL.htm

John, T., Uwe, S., Joel, L. W., & Philip, S. Y. (1994).
Scheduling parallel tasks to minimize average response
time. Paper presented at the fifth annual ACM-SIAM
Symposium on Discrete algorithms.

Johnson, R. (2005). J2EE development frameworks.
Computer, 38(1), 107–110. doi:10.1109/MC.2005.22

Johnson, B. K., & Ram, D. J. (2001). DP: A Paradigm
for Anonymous Remote Computation and Communi-
cation for Cluster Computing. IEEE Transactions on
Parallel and Distributed Systems, 12(10), 1052–1065.
doi:10.1109/71.963417

Jones, M. (2003). Grid Security - An overview of methods
used to create a secure grid. Retrieved from http://www.
cse.buffalo.edu/faculty/miller/Courses/Grid-Seminar/
Security.pdf.

JPPF. (2008). Java Parallel Processing Framework.
Retrieved October 16, 2008, from http://www.jppf.org.

JSDL. (n.d.). Job submission description language (jsdl)
specification, v.1.0. Retrieved from http://www.gridforum.
org/documents/GFD.56.pdf

Jürjens, J. (2005). Secure systems development with
UML. Springer.

Jurjens, J. (2001). Towards development of secure sys-
tems using UMLsec. Paper presented at the Fundamental
Approaches to Software Engineering (FASE/ETAPS).

Jurjens, J. (2002). UMLsec: Extending UML for secure
systems development. Paper presented at the 5th Inter-
national Conference on the Unified Modeling Language
(UML), Dresden, Germany.

Compilation of References

359

Jürjens, J., Schreck, J., & Bartmann, P. (2008). Model-
based security analysis for mobile communications. Paper
presented at the International Conference on Software
Engineering, Leipzig, Germany.

Kahn, G. (1974). The Semantics of Simple Language
for Parallel Programming. In Proc. of the 1974 IFIP
Congress, (pp. 471–475).

Kaler, C., & Nadalin, A. (Eds.). (2003). Web services
federation language (WS-Federation). Web Services
Specifications Document.

Kalra, D., Singleton, P., Ingram, D., Milan, J., MacKay, J.,
Detmer, D., & Rector, A. (2005). Security and confidential-
ity approach for the clinical e-science framework (clef).
Methods of Information in Medicine, 44(2), 193–197.

Kalyanakrishnam, M., Kalbarczyk, Z., & Iyer, R. (1999).
Failure data analysis of a LAN of Windows NT based
computers. In Proceedings of the 18th IEEE Symposium
on Reliable Distributed Systems (SRDS99), (pp. 178-187).

Karmarkar, A., Hadley, M., Mendolsohn, N., Lafon, Y.,
Gudgin, M., Moreau, J. J., & Nielsen, H. (2007). SOAP
version 1.2 part 1: Messaging framework (2nd ed.). Re-
trieved from http://www.w3.org/TR/2007/REC-soap12-
part1-20070427/

Karonis, N. T., Toonen, B., & Foster, I. (2002). MPICH-G2:
A Grid-enabled implementation of the Message Passing
Interface. Journal of Parallel and Distributed Comput-
ing, 63, 551–563. doi:10.1016/S0743-7315(03)00002-9

Kirchler, W., Schiffers, M., & Kranzlmüller, D. (2009).
Harmonizing the management of virtual organizations
despite heterogeneous Grid middleware – assessment of
two different approaches. In Proceedings of the Cracow
Grid Workshop.

Kleinberg, J. (2000). The Small-World Phenomenon: an
Algorithm Perspective. Paper presented at the Proceedings
of the 32nd ACM Symposium on Theory of Computing.
LimeWire. http://www.limewire.com/english/content/
home.shtml.

Kolonay, R., & Sobolewski, M. (2004). Grid interac-
tive service-oriented programming environment. Paper
presented at the Concurrent Engineering: The Worldwide
Engineering Grid, Tsinghua, China.

Koubias, S. A., & Haralabidis, H. C. (1996). Mition: A
mac-layer hybrid protocol for multi-channel real-time lans.
Proceedings of the Third IEEE International Conference
on Electronics, Circuits, and Systems (pp. 327 – 330).

Krishna Rana, Y., Hua Liu, B., Nyandoro, A., & Jha,
S. (2006). Bandwidth Aware Slot Allocation in Hybrid
MAC. Proceedings of 31st IEEE Conference on Local
Computer Networks (pp. 89 – 96).

Kruchten, P. (2000). The rational unified process: An
introduction (2nd ed.). Addison-Wesley.

Kuhn, D. R., Coyne, E. J., & Weil, T. R. (2010). Adding
attributes to role-based access control. IEEE Security,
June 2010.

Kumar, A., & Qureshi, S. R. (2008, March 29). Integration
of mobile computing with Grid computing: A middleware
architecture. Paper presented at the 2nd National Con-
ference on Challenges & Opportunities in Information
Technology (COIT-2008), Mandi Gobindgarh, India.

Kwok-Yan, L., Xi-Bin, Z., Siu-Leung, C., Gu, M., & Jia-
Guang, S. (2004). Enhancing Grid security infrastructure
to support mobile computing nodes. Lecture Notes in
Computer Science, 2908, 42–54. doi:10.1007/978-3-
540-24591-9_4

Kyasanur, P., Jungmin, C., Chereddi, S., & Vaidya, N.
H. (2006). Multichannel mesh networks: challenges and
protocols. IEEE Wireless Communication, 13(2), 30–36.
doi:10.1109/MWC.2006.1632478

Laure, E., Stockinger, H., & Stockinger, K. (2005). Per-
formance engineering in data Grids. Concurrency and
Computation, 17(2-4), 171–191. doi:10.1002/cpe.923

Laure, E., Fisher, S., & Frohner, A. (2006). Programming
the Grid with gLite. Computational Methods in Science
and Technology, 12(1), 33–45.

Lederer, H. (2008). DEISA2: Supporting and de-
veloping a European high-performance computing
ecosystem. Journal of Physics, 125. doi:10.1088/ 1742-
6596/125/1/011003.

Lee, I., Tang, D., Iyer, R., & Hsueh, M.-C. (1993).
Measurement-based evaluation of operating system
fault tolerance. IEEE Transactions on Reliability, 42(2),
238–249. doi:10.1109/24.229493

Compilation of References

360

Lee, C. (2003). Grid programming models: Current
tools, issues and directions. In Berman, G. F., & Hey, T.
(Eds.), Grid computing (pp. 555–578). USA: Wiley Press.
doi:10.1002/0470867167.ch21

Legendre, P., Desdevises, Y., & Bazin, E. (2002). A Statis-
tical Test for Host-Parasite Coevolution. Systematic Biol-
ogy, 51(2), 217–234. doi:10.1080/10635150252899734

Legendre, P., & Anderson, M. J. (1998). DistPCOA
program description, source code, executables, and
documentation: http://www.bio.umontreal.ca/Casgrain/
en/labo/distpcoa.html

Legrand, I. (2007). MonALISA: An Agent Based, Dynamic
Service System to Monitor, Control and Optimize Dis-
tributed Systems. CHEP’07, Victoria, British Columbia,
Canada. Sep 2007. MonALISA Repository for Alice.
from http://pcalimonitor.cern.ch/map.jsp.

Lei, S., Yuyan, S., & Lin, W. (2007). Effect of scheduling
discipline on CPU-MEM load sharing system. 6th Interna-
tional Conference on Grid and Cooperative Computing,
(pp. 242-249).

LHC – Large Hadron Collider Project. (2008). http://lhc.
web.cern.ch/lhc/

LHC. (n.d.). LHC computing grid project. Retrieved from
http://lcg.web.cern.ch/LCG

Li, J., & Vuong, S. (2006). Grid resource discovery based
on semantic P2P communities. 2006 ACM Symposium
on Applied Computing, (pp. 754-758).

Li, J., Haas, Z. J., Sheng, M., & Chen, Y. (2003). Per-
formance Evaluation of Modified IEEE 802.11 MAC for
Multi-Channel Multi-Hop Ad Hoc Network. Proceedings
of the 17th International Conference on Advanced Infor-
mation Networking and Applications. (pp. 312–317).

Li, M., Lee, W. C., Sivasubramaniam, A., & Lee, D. L.
(2004). A Small World Overlay Network for Semantic
Based Search in P2P. Paper presented at the Proceedings
of the Second Workshop on Semantics in Peer-to-Peer
and Grid Computing, in conjunction with the World Wide
Web Conference.

Li, M., Lee, W.-C., & Sivasubramaniam, A. (2006).
DPTree: a Balanced Tree Based Indexing Framework for
Peer-to-Peer Systems. Paper presented at the Proceedings
of IEEE ICNP, Santa Barbara, CA.

Li, S., & Tahvildari, L. (2006). JComp: A reuse-driven
componentization framework for Java applications. In 14th
IEEE International Conference on Program Comprehen-
sion (ICPC’06), (pp. 264-267). IEEE Computer Society.

Li, Y., & Mascagni, M. (2003). Improving performance
via computational replication on a large-scale compu-
tational Grid. Third IEEE International Symposium on
Cluster Computing and the Grid (CCGrid’03), Tokyo,
Japan (pp. 442-448).

Li, Y., Yang, Y., & Zhu, R. (2009). A hybrid load balanc-
ing strategy of sequential tasks for computational Grids.
IEEE International Conference on Networking and Digital
Society, (pp. 112-117).

Liang, G. (2008). Adaptive load balancing algorithm over
heterogeneous workstations. 7th International Conference
on Grid and Cooperative Computing, (pp. 169-174).

LinuxForum. (n.d.). Linux filesystem hierarchy, 1.10.
Retrieved from http://www.linuxforum.com /linux-
filesystem/proc.html

Litke, A., Skoutas, D., & Varvarigou, T. (2004). Mobile
Grid computing: Changes and challenges of resource man-
agement in a mobile Grid environment. Paper presented
at the 5th International Conference on Practical Aspects
of Knowledge Management (PAKM 2004).

Litzkow, M., Livny, M., & Mutka, M. (1988). Condor
- a hunter of idle workstations. In Proceedings of the
8th International Conference of Distributed Computing
Systems, (pp. 104–111).

Liu, B., Liu, Z., & Towsley, D. (2003). On the Capacity
of Hybrid Wireless Networks. Proc. of IEEE Infocom.

Liu, L., & Lee, K.-W. (2004). Supporting efficient
keyword-based file search in peer-to-peer file sharing
systems. In GLOBECOM’04: Proc. of the IEEE Global
Telecommunications Conference.

Liu, L., Wu, Z., Ma, Z., & Cai, Y. (2008). A dynamic fault
tolerant algorithm based on active replication. Seventh
International Conference on Grid and Cooperative Com-
puting, China (pp. 557-562).

Liu, Y., Liu, X., Xiao, L., Ni, L. M., & Zhang, X. (2004).
Location-aware Topology Matching in P2P Systems.
Paper presented at the Proceedings of IEEE INFOCOM,
Hong Kong, China.

Compilation of References

361

Long, D., Muir, A., & Golding, R. (1995). A longitu-
dinal survey of internet host reliability. In Proceedings
of the 14th Symposium on Reliable Distributed System
(SRDS95), (pp. 2-9).

Lőrincz, L. C., Kozsik, T., Ulbert, A., & Horváth, Z.
(2005). A method for job scheduling in Grid based on
job execution status. Multiagent and Grid Systems - An
International Journal 4 (MAGS) 1(2), 197-208.

Luther, A., Buyya, R., Ranjan, R., & Venugopal, S.
(2005). Peer-to-peer Grid computing and a. NET-based
Alchemi framework. In M. Guo (Ed.), High performance
computing: Paradigm and infrastructure. Wiley Press,
USA. Retrieved from www.alchemi.net

Luther, A., Buyya, R., Ranjan, R., & Venugopal, S. (2005).
Alchemi: A. netbased enterprise grid computing system.
In International Conference on Internet Computing, (pp.
269-278).

Magee, J., Kramer, J., & Sloman, M. (1989). Constructing
Distributed Systems in Conic. IEEE Transactions on Soft-
ware Engineering, 15(6), 663–675. doi:10.1109/32.24720

Maheshwari, R., Gupta, H., & Samir, R. (2006). Multichan-
nel MAC Protocols for Wireless Networks. Proceedings of
the 3rd IEEE Communication Society on Sensor and Ad
Hoc Communications Networks (pp. 393-401).

Malin, B. (2002). Compromising privacy with trail re-
identification: The Reidit algorithms. (CMU Technical
Report, CMU-CALD-02-108), Pittsburgh.

Manion, F. J., Robbins, R. J., Weems, W. A., & Crow-
ley, R. S. (2009). Security and privacy requirements
for a multi-institutional cancer research data grid: An
interview-based study. BMC Medical Information and
Decision Making, 9(31).

Mao, W., Martin, A., Jin, H., & Zhang, H. (2009). Innova-
tions for Grid security from trusted computing – protocol
solutions to sharing of security resource. LNCS 5087.
Springer. Mont, M., Pearson, S., & Bramhall, P. (2003).
Towards accountable management of identity and privacy:
Sticky policies and enforceable tracing services. (Report
No. HPL-2003-49). Bristol, UK: HP Laboratories.

Markatos, E. P., & Dramitinos, G. (1996). Implementation
of a reliable remote memory pager. Paper presented at the
USENIX Annual Technical Conference, San Diego, CA.

Mateos, C., Zunino, A., & Campo, M. (2005). Integrating
intelligent mobile agents with Web Services. Interna-
tional Journal of Web Services Research, 2(2), 85–103.
doi:10.4018/jwsr.2005040105

Mateos, C., Zunino, A., & Campo, M. (2008a). A survey
on approaches to gridification. Software, Practice & Ex-
perience, 38(5), 523–556. doi:10.1002/spe.847

Mateos, C., Zunino, A., & Campo, M. (2008b). JGRIM:
An approach for easy gridification of applications.
Future Generation Computer Systems, 24(2), 99–118.
doi:10.1016/j.future.2007.04.011

Mateos, C. (2008). An approach to ease the gridifica-
tion of conventional applications. Doctoral dissertation.
Universidad del Centro de la Provincia de Buenos Aires,
Argentina. Retrieved October 16, 2008, from http://www.
exa.unicen.edu.ar/~cmateos/files/phdthesis.pdf.

MATLAB. (2010). Amazon Web Services for high-
performance cloud computing – MATLAB. Solving Ax=b.
Retrieved from http://aws.typepad.com/aws /2010/09/
high-performance-cloud-computing-nasa-matlab.html

Maymounkov, P., & Mazieres, D. (2002). Kademlia: A
peer-to-peer Information System based on the XOR metric.

McClatchey, R., Anjum, A., Stockinger, H., Ali, A., Will-
ers, I., & Thomas, M. (2007, March). Data intensive and
network aware (DIANA) Grid scheduling. Journal of Grid
Computing, 5(1), 43–64. doi:10.1007/s10723-006-9059-z

McGinnis, L., Wallom, D., & Gentzsch, W. (Eds.). (2007).
2nd International Workshop on Campus and Community
Grids. Retrieved from http://forge.gridforum.org/ sf/go/
doc14617?nav=1

McGough, S., Lee, W., & Das, S. (2008). A standards
based approach to enabling legacy applications on the Grid.
Future Generation Computer Systems, 24(7), 731–743.
doi:10.1016/j.future.2008.02.004

Medina, A., Lakhina, A., Matta, I., & Byers, J. (2001).
BRITE: An approach to universal topology generation.
Paper presented at the International Workshop on Model-
ing, Analysis and Simulation of Computer and Telecom-
munications Systems, Cincinnati, Ohio.

Compilation of References

362

Meier-Kolthoff, J. P., Auch, A. F., Huson, D. H., & Göker,
M. (2007). COPYCAT: Co-phylogenetic Analysis tool.
Bioinformatics (Oxford, England), 23(7), 898–900.
doi:10.1093/bioinformatics/btm027

Meinilä, M., Kuusela, J., Zietara, M. S., & Lumme, J.
(2004). Initial steps of speciation by geographic isola-
tion and host switch in salmonid pathogen Gyrodactylus
salaris (Monogenea: Gyrodactylidae). International
Journal for Parasitology, 34(4), 515–526. doi:10.1016/j.
ijpara.2003.12.002

Merkle, D., & Middendorf, M. (2005). Reconstruction of
the cophylogenetic history of related phylogenetic trees
with divergence timing information. Theory in Biosci-
ences, 123(4), 277–299. doi:10.1016/j.thbio.2005.01.003

Mickens, J. W., & Noble, B. D. (2006). Exploiting avail-
ability prediction in distributed systems. In Proceedings
of the 3rd Conference on Networked Systems Design &
Implementation (NSDI06), (pp. 6-19).

Microsoft. (2008). Microsoft Message Queueing. [online].
URL: http://www.microsoft.com/windowsserver2003/
technologies/msmq/default.mspx (March, 2008).

Microsoft. (n.d.). Peer name resolution protocol. Re-
trieved from http://technet.microsoft.com/en-us/library/
bb726971.aspx

Milojičić, D. S., Douglis, F., Paindaveine, Y., Wheeler, R.,
& Zhou, S. (2000). Process migration. ACM Computing
Surveys, 32(3), 241–299. doi:10.1145/367701.367728

Mockapetris, P. (1987). Domain names - implementation
and specification. RFC 1035. Internet Engineering Task
Force. IETF.

Mohsin, M., & Prakash, R. (2002). IP Address Assignment
in a Mobile Ad Hoc Network. IEEE Military Communi-
cations Conference (MILCOM 2002), 2(10), 856-861.

Mont, M. (2004). Dealing with privacy obligations in
enterprises. (Report No. HPL-2004-109). Bristol, UK:
HP Laboratories.

Montagnat, J., Frohner, A., Jouvenot, D., Pera, C., Kun-
szt, P., & Koblitz, B. (2007). A secure grid medical data
manager interfaced to the glite middleware. Journal of
Grid Computing, 6(1).

Morselli, R., Bhattacharjee, B., Srinivasan, A., & Marsh,
M. A. (2005). Efficient Lookup on Unstructured Topolo-
gies. Paper presented at the Proceedings of ACM PODC,
Las Vegas, NV, USA.

Moses, T. (Ed.). (2005). OASIS eXtensible access control
markup language 2.0, core specification. OASIS XACML
Technical Committee Standard.

Mouratidis, H. (2004). A security oriented approach in
the development of multiagent systems: Applied to the
management of the health and social are needs of older
people in England. University of Sheffield.

Mouratidis, H., & Giorgini, P. (2006). Integrating security
and software engineering: Advances and future vision.
Hershey, PA: IGI Global.

Mujumdar, M., Bheevgade, M., Malik, L., & Patrikar, R.
(2008). High performance computational Grids - fault
tolerance at system level. International Conference on
Emerging Trends in Engineering and Technology (ICE-
TET) (pp. 379-383).

Mutka, M. W., & Livny, M. (1988). Profiling workstations’
available capacity for remote execution. In Proceedings
of the 12th IFIP WG 7.3 International Symposium on
Computer Performance Modelling, Measurement and
Evaluation, (pp. 529–544).

Myers, M., & Schaad, J. (2007). Certificate management
over CMS (CMC) transport protocols. Internet Engineer-
ing Task Force. IETF.

Myers, A. D. (2002). Hybrid MAC Protocols For Mobile
Ad Hoc Networks. PhD thesis, Computer Science, Uni-
versity of Texas at Dallas.

MyGrid. (2008). Retrieved from www.mygrid.org.uk

Nabrizyski, J., Schopf, J. M., & Weglarz, J. (2003). Grid
resource management: State of the art and future trends.
In Nabrizyski, J., Schopf, J. M., & Weglarz, J. (Eds.),
International series in operations research and manage-
ment. Kluwer Academic Publishers Group.

Nadeem, F., Prodan, R., & Fahringer, T. (2008). Character-
izing, modeling and predicting dynamic resource avail-
ability in a large scale multi-purpose grid. In Proceedings
of the 2008 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGRID08), (pp. 348-357).

Compilation of References

363

Naedele, M. (2003). Standards for XML and Web Ser-
vices Security. Computer, 36(4), 96–98. doi:10.1109/
MC.2003.1193234

Nagaratnam, N., Janson, P., J. Dayka, Nadalin, A., Sieben-
list, F., Welch, V., et al. (2003). The security architecture
for open Grid services.

Nagel, W. E., Kröner, D. B., & Resch, M. M. (2007). High
Performance Computing in Science and Engineering 07.
Berlin, Heidelberg, New York: Springer.

NCSA. (2008). MyProxy credential management service.
Retrieved from http://grid.ncsa.uiuc.edu/myproxy/ca/

NEESGrid. (2008). Retrieved from www.nees.org/

Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C.,
Schlosser, M., Brunkhorst, I., & Lser, A. (2003). Super-
peer-based Routing and Clustering Strategies for RDF-
based Peer-to-Peer Networks. Paper presented at the
Proceedings of the 12th World Wide Web Conference.

Nesargi, S., & Prakash, R. (2002). MANETconf: Configu-
ration of Hosts in a Mobile Ad Hoc Network. Proceedings
of INFOCOM’02, (pp. 1059-1068.L).

Neuroth, H., Kerzel, M., & Gentzsch, W. (Eds.). (2007).
German Grid initiative D-Grid. Universitätsverlag Göt-
tingen Publishers. Retrieved from www.d-grid.de/ index.
php?id=4&L=1

Newhall, T., Amato, D., & Pshenichkin, A. (2008). Reli-
able adaptable network RAM. Paper presented at the
International Conference on Cluster Computing.

Niederberger, R., & Alessandrini, V. (2004). DEISA:
Motivations, strategies, technologies. In Proceedings of
the International Supercomputer Conference 2004.

NIST. (2007). Special publication 800-88: Guidelines for
media sanitization by the national institute of standards
and technology. Retrieved from http://csrc.nist.gov/
publications/nistpubs/#sp800-88

NPB. (2010). NAS parallel benchmark. Retrieved from
http://www.nas.nasa.gov/Resources /Software/npb.html

Nurmi, D., Brevik, J., & Wolski, R. (2005). Modeling
machine availability in enterprise and wide-area dis-
tributed computing environments. In Proceedings of the
11th International Euro-par Conference, (pp. 432-441).

OCCI. (2010). Open Cloud Computing Interface working
group at OGF. Retrieved 2010 from http://forge.ogf.org/
sf/ projects/occi-wg

OGF. (2008). Open Grid forum. Retrieved from www.
ogf.org

Olabarriaga, S. D., Nederveen, A. J., Snel, J. G., & Bel-
leman, R. G. (2006). Towards a virtual laboratory for
FMRI data management and analysis. Proc. HealthGrid
2006 (Vol. 120, pp. 43–54). Amsterdam, The Netherlands:
IOS Press.

Oleszkiewicz, J., Xiao, L., & Liu, Y. (2004). Parallel net-
work RAM: Effectively utilizing global cluster memory for
large data-intensive parallel programs. Paper presented
at the International Conference on Parallel Processing,
Montreal, Quebec, Canada.

Oliveira, L., Sales, L., Loureiro, E., Almeida, H., &
Perkusuch, A. (2006). Filling the gap between mobile and
service-oriented computing: issues for evolving mobile
computing towards wired infrastructures and vice versa.
International Journal of Web and Grid Services, 2(4),
355–378. doi:10.1504/IJWGS.2006.011710

Ong, S. H. (2003). Grid Computing: Business Policy and
Implications. Master’s Thesis, MIT, Cambridge, MA.

Open Grid Forum. (2006). The open Grid services archi-
tecture, version 1.5 o.

Open Group. (2009). TOGAF™ version 9 - the open
group architecture framework. Retrieved from http://
www.opengroup.org/architecture/togaf9-doc/arch/

Open Science Grid Consortium. from http://www.open-
sciencegrid.org/.

Open, C. A. (2008a). LibPKI: The easy PKI library.
Retrieved from http://www.openca.org/projects/libpki/

Open, C. A. (2008b). OpenCA-NG: The next generation
CA. Retrieved from http://www.openca.org/projects/ng/

Open, C. A. Labs. (2008c). OpenCA’s PKI resource
discovery package. Retrieved from http://www.openca.
org/projects/prqpd/

Compilation of References

364

Oppenheimer, D., Ganapathi, A., & Patterson, D. A.
(2003). Why do internet services fail, and what can be
done about it? In Proceedings of USENIX Symposium on
Internet Technologies and Systems (USITS 03), (p. 1).

OptorSim. (n.d.). Simulating data access optimization
algorithms. Retrieved from http://edg-wp2.web.cern.ch/
edg-wp2/optimization/ optorsim.html

OSG Grid Operations Center. from http://www.grid.
iu.edu/.

OSG Resource and Service Validation Project. from http://
rsv.grid.iu.edu/documentation/.

Ousterhout, J., Agrawal, P., Erickson, D., Kozyrakis, C.,
Leverich, J., & Mazieres, D. (2010). The case for RAM-
Clouds: Scalable high-performance storage entirely in
DRAM. ACM SIGOPS Operating Systems Review, 43(4),
92–105. doi:10.1145/1713254.1713276

Padmanabhan, A. (2007). OSG Information Services –
A Discussion. Presentation at OSG Site Administrators
Meeting, Dec 2007.

Pakin, S., & Johnson, G. (2007). Performance analysis
of a user-level memory server. Paper presented at the
International Conference on Cluster Computing.

Pala, M. (2008). PKI resource discovery protocol (PRQP).
Internet Engineering Task Force. IETF.

Pala, M., & Smith, S. W. (2007). AutoPKI: A PKI resources
discovery system. Public Key Infrastructure: EuroPKI
2007. [Springer-Verlag.]. LNCS, 4582, 154–169.

Pala, M. (2010). A proposal for collaborative Internet-
scale trust infrastructures deployment: The public key
system. 9th Symposium on Identity and Trust on the
Internet (IDTrust 2010). Gaithersburg, MD: NIST.

Pala, M., & Smith, S. W. (2008). PEACHES and peers.
5th European PKI Workshop: Theory and Practice. LNCS
5057, (pp. 223-238). Springer-Verlag.

Pan, Y., Lu, W., Zhang, Y., & Chiu, K. (2007). A static
load-balancing scheme for parallel XML parsing on
multicore CPUs. 7th IEEE International Symposium on
Cluster Computing and the Grid, (pp. 351-362).

Papadimitratos, P., & Haas, Z. J. (2005). Secure Routing
for Mobile Ad Hoc Networks. Advances in Wired and
Wireless Communication, IEEE/Sarnoff Symposium,
(pp. 168-171).

Parallel Workloads Archive. (n.d.). Retrieved from http://
www.cs.huji.ac.il/labs/ parallel/workload/

Paranhos, D., Cirne, W., & Brasileiro, F. (2003). Trading
cycles for information: Using replication to schedule bag-
of-tasks applications on computational grids. International
Conference on Parallel and Distributed Computing (Euro-
Par). Lecture Notes in Computer Science, 2790, 169–180.

Patel, J. K., Kapadia, C. H., & Owen, D. B. (1976).
Handbook of statistical distributions. Marcel Dekker, Inc.

Patterson, D. A. (2004). Latency lags bandwith.
Communications of the ACM , 47(10), 71–75.
doi:10.1145/1022594.1022596

Paventhan, A., Takeda, K., Cox, S., & Nicole, D. (2007).
MyCoG.NET: A multi-language CoG toolkit. Concur-
rency and Computation, 19(14), 1885–1900. doi:10.1002/
cpe.1133

Paxson, V., & Floyd, S. (1997). Why we don’t know
how to simulate the Internet. In Proceedings of the 29th
Conference on Winter Simulation, (pp. 1037–1044).

Pei, J., Han, J., Mortazavi-Asl, B., & Pinto, H. (2001).
PrefixSpan: Mining sequential patterns efficiently by
prefix-projected pattern growth. Paper presented at the
17th International Conference on Data Engineering.

Perez, J.M., Bellens, P., Badia, R.M., & Labarta, J. (2007).
CellSs: Programming the Cell/ B.E. made easier. IBM
Journal of R&D, 51(5).

Perkins, C. E. (2002). Mobile IP. Communica-
tions Magazine, IEEE, 40(5), 66–82. doi:10.1109/
MCOM.2002.1006976

Perkins, C., & Royer, E. (1999). Ad Hoc On-Demand
Distance Vector Routing. In 2nd IEEE Workshop on
Selected Areas in Communication, 2, 90–100.H.

Pettersson, J. S., Fischer-Hübner, S., Danielsson, N.,
Nilsson, J., Bergmann, M., Clauss, S., et al. Krasemann,
H. (2005). Making PRIME usable. In Proceedings of the
Symposium on Usable Privacy and Security (SOUPS).
ACM Press.

Compilation of References

365

Pfitzmann, B. (2002). Privacy in browser-based attribute
exchange. In Proceedings of the ACM Workshop on
Privacy in Electronic Society (WPES 2002). ACM Press.

P-GRADE portal. (n.d.). Retrieved from http://www.lpds.
sztaki.hu /pgrade/

P-GRADE. (2003). Parallel Grid run-time and applica-
tion development environment. Retrieved from www.
lpds.sztaki.hu /pgrade/

Phan, T., Huang, L., Ruiz, N., & Bagrodia, R. (2005).
Integrating mobile wireless devices into the computa-
tional Grid. In Ilyas, M., & Mahgoub, I. (Eds.), Mobile
computing handbook. Auerbach Publications.

Phinjaroenphan, P., Bevinakoppa, S., & Zeephongsekul,
P. (2005). A method for estimating the execution time of
a parallel task on a Grid node. Lecture Notes in Computer
Science, 3470, 226–236. doi:10.1007/11508380_24

Pitzmann, A., & Köhntopp, M. (2001). Anonymity,
unobservability, and pseudonymity — a proposal for
terminology. Designing Privacy Enhancing Technologies
(pp. 1–9). LNCS.

Plank, J., & Elwasif, W. (1998). Experimental assessment
of workstation failures and their impact on checkpointing
systems. Twenty-Eighth Annual International Symposium
on Fault-Tolerant Computing, (pp. 48-57).

Popp, G., Jürjens, J., Wimmel, G., & Breu, R. (2003).
Security-critical system development with extended use
cases. Paper presented at the Tenth Asia-Pacific Software
Engineering Conference (APSEC’03).

Portal, C. H. R. O. N. O. S. (2004). Retrieved from http://
portal.chronos.org/ gridsphere/gridsphere

Powers, C., & Schunter, M. (2003). Enterprise privacy
authorization language. W3C member submission. Re-
trieved from http://www.w3.org/Submission /2003/
SUBM-EPAL-20031110/

Prabhakar, S., Ribbens, C., & Bora, P. (2002). Multifac-
eted web services: An approach to secure and scalable
grid scheduling. Proceedings of Euroweb, Oxford, UK.

PRACE. (2008). Partnership for advanced computing in
Europe. Retrieved from www.prace-project.eu/

PRAGMA-Grid. (2008). http://www.pragma-grid.net/
(1.5.2008)

Proactive. (2005). Proactive manual, rev.ed. 2.2. Proac-
tive, INRIA. Retrieved from http://www-sop.inria.fr /
oasis/Proactive/

Purtilo, J. M. (1994). The POLYLITH Software Bus. ACM
Transactions on Programming Languages and Systems,
16(1), 151–174. doi:10.1145/174625.174629

Qiang, Q., Jacob, L., Radhakrishna Pillai, R., & Prabha-
karan, B. (2002). MAC Protocol Enhancements for QoS
Guarantee and Fairness over the IEEE 802.11 Wireless
LAN. Proceeding of the Conference on Computer Com-
munication Network (ICCNC).

Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J.
J. (2003). Energy-Efficient, Collision-Free Medium Ac-
cess Control for Wireless Sensor Networks. Proceedings
of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys).

Ramabhadran, S., Ratnasamy, S., Hellerstein, J. M., &
Shenker, S. (2004). Prefix hash tree – an indexing data
structure over distributed hash tables. In PODC’04: 23rd
Annual ACM Symposium on Principles of Distributed
Computing.

Ranganathan, K., & Foster, I. (2003). Computation sched-
uling and data replication algorithms for data Grids. In
Nabrzysk, J., Schopf, J., Weglarz, J., Nabrzysk, J., Schopf,
J., & Weglarz, J. (Eds.), Grid resource management:
State of the art and future trends (pp. 359–373). Kluwer
Academic Publishers Group.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shen-
ker, S. (2001). A Scalable Content Addressable Network.
Paper presented at the Proceedings of ACM SIGCOMM.

Raza, Z., & Vidyarthi, D. P. (2009). GA based scheduling
model for computational Grid to minimize turnaround
time. International Journal of Grid and High Performance
Computing, 1(4), 70–90. doi:10.4018/jghpc.2009070806

Raza, Z., & Vidyarthi, D. P. (2008). Maximizing reli-
ability with task scheduling in a computational Grid.
Second International Conference on Information Systems
Technology and Management(ICISTM), Dubai, UAE.

Compilation of References

366

RDF. http://www.w3.org/RDF. World Wide Web Con-
sortium: Resource Description Framework. RDFStore.
http://rdfstore.sourceforge.net.

RDQL. http://www.w3.org/Submission/2004/SUBM-
RDQL-20040109/.

Reddy, M. V., Srinivas, A. V., Gopinath, T., & Janakiram,
D. (2006). Vishwa: A Reconfigurable P2P Middleware
for Grid Computations. In Proc. of the 2006 International
Conference on Parallel Processing (ICPP 2006). IEEE
Press.

Ren, X., & Eigenmann, R. (2006). Empirical studies on
the behavior of resource availability in fine-grained cycle
sharing systems. In Proceedings of 2006 International
Conference on Parallel Processing, (pp. 3-11).

Resch, M., Rantzau, D., & Stoy, R. (1999). Metacomput-
ing Experience in a Transatlantic Wide Area Application
Test bed. Future Generation Computer Systems, 5(15),
807–816. doi:10.1016/S0167-739X(99)00028-X

Rhee, I., Warrier, A., Aia, M., & Min, J. (2005). ZMAC:
a Hybrid MAC for Wireless Sensor Networks. Proceed-
ings of the 3rd international conference on Embedded
networked sensor systems (pp. 90-101).

Richmond, M., & Hitchens, M. (1997). A new process
migration algorithm. ACM SIGOPS Operating Systems
Review, 31(1), 31–42. doi:10.1145/254784.254790

Ricklefs, R. E., Fallon, S. M., & Birmingham, E. (2004).
Evolutionary relationships, cospeciation, and host switch-
ing in avian malaria parasites. Systematic Biology, 53(1),
111–119. doi:10.1080/10635150490264987

Risson, J., & Moors, T. (2006). Survey and research
towards robust peer-to-peer networks: Search methods.
Computer Networks, 50(17), 3485–3521. doi:10.1016/j.
comnet.2006.02.001

Ronquist, F., & Huelsenbeck, J. (2003). MrBayes 3:
Bayesian phylogenetic inference under mixed models.
Bioinformatics (Oxford, England), 19(12), 1572–1574.
doi:10.1093/bioinformatics/btg180

Rood, B., & Lewis, M. (2007). Multi-state grid resource
availability characterization. In Proceedings of 8th IEEE/
ACM International Conference on Grid Computing, (pp.
42-49).

Rosado, D. G., Fernández-Medina, E., & López, J. (2009b).
Obtaining security requirements for a mobile Grid system.
International Journal of Grid and High Performance
Computing, 1(3), 1–17. doi:10.4018/jghpc.2009070101

Rosado, D. G., Fernández-Medina, E., & López, J.
(2011a). Towards an UML extension of reusable secure
use cases for mobile Grid systems. IEICE Transactions
on Information and Systems, 94-D(2), 243–254.

Rosado, D. G., Fernández-Medina, E., & López, J. (2011b).
Security services architecture for secure mobile Grid
systems. Journal of Systems Architecture. Special Issue
on Security and Dependability Assurance of Software
Architectures, 57(3), 240–258.

Rosado, D. G., Fernández-Medina, E., López, J., & Piat-
tini, M. (2010a). Analysis of secure mobile Grid systems:
A systematic approach. Information and Software Tech-
nology, 52, 517–536. doi:10.1016/j.infsof.2010.01.002

Rosado, D. G., Fernández-Medina, E., López, J., &
Piattini, M. (2010b). Developing a secure mobile Grid
system through a UML extension. Journal of Universal
Computer Science, 16(17), 2333–2352.

Rosado, D. G., Fernández-Medina, E., López, J., & Piat-
tini, M. (2011). (in press). Systematic design of secure
mobile Grid systems. Journal of Network and Computer
Applications. doi:10.1016/j.jnca.2011.01.001

Rosado, D. G., Fernández-Medina, E., & López, J. (2009a).
Applying a UML extension to build use cases diagrams
in a secure mobile Grid application. Paper presented
at the 5th International Workshop on Foundations and
Practices of UML, in conjunction with the 28th Interna-
tional Conference on Conceptual Modelling, ER 2009,
Gramado, Brasil.

Rosado, D. G., Fernández-Medina, E., & López, J. (2009c).
Reusable security use cases for mobile Grid environ-
ments. Paper presented at the Workshop on Software
Engineering for Secure Systems, in conjunction with the
31st International Conference on Software Engineering,
Vancouver, Canada.

Rosado, D. G., Fernández-Medina, E., López, J., & Piat-
tini, M. (2008). PSecGCM: Process for the development
of secure Grid computing based systems with mobile
devices. Paper presented at the International Conference
on Availability, Reliability and Security (ARES 2008),
Barcelona, Spain.

Compilation of References

367

Rowstron, A. (1998). WCL: A Co-ordination Language
for Geographically Distributed Agents. World Wide Web
(Bussum), 1(3), 167–179. doi:10.1023/A:1019263731139

Rowstron, A., & Druschel, P. (2001). Pastry: Scalable.
Distributed Object Location and Routing for Large-scale
Peer-to-Peer Systems. Lecture Notes in Computer Science,
2218, 161–172.

Saara Väärtö, S. (Ed.). (2008). Advancing science in
Europe. DEISA – Distributed European Infrastructure for
Supercomputing Applications. EU FP6 Project. Retrieved
from www.deisa.eu/press/ DEISA-AdvancingScience
InEurope.pdf

Sabin, G., Lang, M., & Sadayappan, P. (2007). Moldable
parallel job scheduling using job efficiency: An iterative
approach. In Proceedings of the Conference on Job Sched-
uling Strategies for Parallel Processing (pp. 94-114).

SAGA. (2006). SAGA implementation homepage. Re-
trieved from http://fortytwo.cct.lsu.edu:8000/SAGA

Sajjad, A., Jameel, H., Kalim, U., Han, S. M., Lee, Y.-K.,
& Lee, S. (2005). AutoMAGI - an autonomic middle-
ware for enabling mobile access to Grid infrastructure.
Paper presented at the Joint International Conference on
Autonomic and Autonomous Systems and International
Conference on Networking and Services - (icas-icns’05).

Salzberg, S. L., Kingsford, C., & Cattoli, G. (2007).
Genome analysis linking recent European and African
influenza (H5N1) viruses. Emerging Infectious Diseases,
13(5), 713–718.

Sarkar, P., & Hartman, J. (1996). Efficient cooperative
caching using hints. Paper presented at the Symposium
on Operating Systems Design and Implementation,
Seattle, WA.

Saroiu, S., Gummadi, P., & Gribble, S. (2002). A Measure-
ment Study of Peer-to-Peer File Sharing Systems. Paper
presented at the Proceedings of Multimedia Computing
and Networking.

Sathya, S. S., Kuppuswami, S., & Ragupathi, R. (2006).
Replication strategies for data Grids. International Con-
ference on Advanced Computing and Communications
ADCOM, India (pp. 123-128).

Scarfone, K., & Mell, P. (2009) An analysis of CVSS
version 2 vulnerability scoring. Proceedings of the 3rd.
Int’l Symposium on Empirical Software Engineering and
Measurement (ESEM’09), (pp. 516-525).

Schiffers, M., Ziegler, W., Haase, M., Gietz, P., Groeper,
R., Pfeiffenberger, H., et al. Grimm, C. (2007). Trust is-
sues in Shibboleth-enabled federated Grid authentication
and authorization infrastructures supporting multiple Grid
middleware. In Proceedings of IEEE eScience 2007 and
International Grid Interoperability Workshop 2007 (IGIIW
2007). IEEE Computer Socienty.

Schmidt, C., & Parashar, M. (2004). Enabling flexible
queries with guarantees in P2P systems. IEEE Internet
Computing, 8(3), 19–26. doi:10.1109/MIC.2004.1297269

Schroeder, B., & Gibson, G. A. (2006). A large-scale study
of failures in high-performance computing systems. In
Proceedings of the International Conference on Depend-
able Systems and Networks (DSN06), (pp. 249-258).

Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee,
C., & Casanova, H. (2002). Overview of GridRPC: A re-
mote procedure call API for Grid computing. Proceedings
of the Third International Workshop on Grid Computing
[Baltimore, MD: Springer.]. Lecture Notes in Computer
Science, 2536, 274–278. doi:10.1007/3-540-36133-2_25

Sgaravatto, M. (2005). CEMon Service Guide. from
https://edms.cern.ch/document/585040.

SGI. (2010). Cyclone: HPC cloud results on demand.
Retrieved from http://www.sgi.com/products /hpc_cloud/
cyclone /index.htm

Shah, R., Veeravalli, B., & Misra, M. (2007). On the
design of adaptive and decentralized load balancing
algorithms with load estimation for computational Grid
Environments. IEEE Transactions on Parallel and
Distributed Systems, 18(12), 1675–1686. doi:10.1109/
TPDS.2007.1115

Shan, J., Chen, G., He, J., & Chen, X. (2002). Grid
society: A system view of Grid and P2P environment.
International Workshop on Grid and Cooperative Com-
puting, (pp. 19-28).

Compilation of References

368

Sharmin, M., Ahmed, S., & Ahamed, S. I. (2006). An
Adaptive Lightweight Trust Reliant Secure Resource
Discovery for Pervasive Computing Environments.
Proceedings of the Fourth Annual IEEE International
Conference on Pervasive Computing and Communica-
tions, March, 258-263.

Shi, X., Yang, Z., Peir, J.-K., Peng, L., Chen, Y.-K., Lee,
V., et al. (2006). Coterminous locality and coterminous
group data prefetching on chip-multiprocessors. Paper
presented at the 20th International Parallel and Distributed
Processing Symposium, Rhodes Island, Greece.

Shudo, K., Tanaka, Y., & Sekiguchi, S. (2005). P3: P2P-
based middleware enabling transfer and aggregation of
computational resources. IEEE International Symposium
on Cluster Computing and the Grid, (pp. 259- 266).

SIMDAT. (2008). Grids for industrial product de-
velopment. Retrieved from www.scai.fraunhofer.de /
about_simdat.html

Smarr, L., & Catlett, C. E. (1992). Metacomput-
ing. Communications of the ACM, 35(6), 44–52.
doi:10.1145/129888.129890

So, J., & Vaidya, N. (2004). Multi-Channel MAC for
Ad Hoc Networks: Handling Multi-Channel Hidden
Terminals Using A Single Transceiver. Proceedings of
the 5th ACM international symposium on Mobile ad hoc
networking and computing (pp. 222 – 233).

Soh, H., Shazia Haque, S., Liao, W., & Buyya, R. (2006).
Grid programming models and environments. In Dai, Y.-
S. (Eds.), Advanced parallel and distributed computing
(pp. 141–173). Nova Science Publishers.

Song, S., Kwok, Y. K., & Hwang, K. (2005). Trusted
Job Scheduling in Open Computational Grids: Secu-
rity-Driven Heuristics and A Fast Genetic Algorithms.
Proceedings of International Symposium Parallel and
Distributed Processing, Denver, Colorado.

Sonmez, O., Mohamed, H., & Epema, D. (2010). On the
benefit of processor coallocation in multicluster Grid
systems. IEEE Transactions on Parallel and Distributed
Systems, (June): 778–789. doi:10.1109/TPDS.2009.121

Sotomayor, B., & Childers, L. (2006). Globus toolkit
4 - programming Java services. Morgan Kaufmann
Publishers.

Spantzel, A., Squicciarini, A., & Bertino, E. (2005). Inte-
grating federated digital identity management and trust
negotiation. (Report No. 2005-46). Purdue University.

Srividya, S., Vijay, S., Rajkumar, K., Praveen, H., &
Sadayappan, P. (2002). Effective selection of partition
sizes for moldable scheduling of parallel jobs. Paper
presented at the 9th International Conference on High
Performance Computing.

Stäber, F. (2009). Service layer components for decentral-
ized applications. Doctoral Dissertation at the Clausthal
University of Technology

Stamatakis, A. (2006). RAxML-VI-HPC: maximum
likelihood-based phylogenetic analyses with thousands of
taxa and mixed models. Bioinformatics (Oxford, England),
22(21), 2688–2690. doi:10.1093/bioinformatics/btl446

Stamatakis, A., Auch, A. F., Meier-Kolthoff, J., & Göker,
M. (2007). AxPcoords & parallel AxParafit: statistical
co-phylogenetic analyses on thousands of taxa. BMC
Bioinformatics, 8, 405. doi:10.1186/1471-2105-8-405

Stamatakis, A., Hoover, P., & Rougemont, J. (2008).
(in press). A Rapid Bootstrapping Algorithm for
the RAxML Web Servers. Systematic Biology.
doi:10.1080/10635150802429642

Steel, C., Nagappan, R., & Lai, R. (2005). Chapter 8-the
alchemy of security design methodology, patterns, and
reality checks. In Core security patterns: Best practices
and strategies for J2EE™, Web services, and identity
management (pp. 10-88). Prentice Hall PTR/Sun Micros.

Sterck, H. D., Markel, R. S., & Knight, R. (2005). A
Lightweight, Scalable Grid Computing Framework for
Parallel Bioinformatics Applications. In HPCS’05: Proc.
of the 19th International Symposium on High Performance
Computing Systems and Applications. IEEE Press.

Sterck, H. D., Markel, R. S., Pohl, T., & Rüede, U. (2003).
A Lightweight Java Taskspaces Framework for Scientific
Computing on Computational Grids. In SAC2003: Proc.
of the ACM Symposium on Applied Computing, (pp.
1024–1030). New York, NY, USA: ACM Press.

Stevens, W. R. (1998). Unix Network Programming:
Networking APIs: Sockets and XTI, 1 (2nd ed.). Prentice-
Hall PTR.

Compilation of References

369

Stiefel, P. D., & Müller, J. P. (2010). A model-based soft-
ware architecture to support decentral product develop-
ment processes. In: Exploring the grand challenges for next
generation e-business. Proceedings of the 8th Workshop
on eBusiness (Web 2009). Volume 52 of Lecture Notes
in Business Information Processing. Springer-Verlag,
2010. To appear.

Stockinger, H., Pagni, M., Cerutti, L., & Falquet, L. (2006).
Grid Approach to Embarrassingly Parallel CPU-Intensive
Bioinformatics Problems. 2nd IEEE International Con-
ference on e-Science and Grid Computing (e-Science
2006), IEEE Computer Society Press, Amsterdam, The
Netherlands.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., &
Balakrishnan, H. (2001). Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM’01:
Proc. of the 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Com-
munications, (pp. 149–160). San Diego, CA: ACM Press.

Streit, A., Bergmann, S., Breu, R., Daivandy, J., Demuth,
B., & Giesler, A. … Lippert, T. (2009). UNICORE 6, a
European Grid technology. In W. Gentzsch, L. Grandinetti,
& G. Joubert (Eds.), High-speed and large scale scientific
computing, (pp. 157-176). IOS Press.

Stutzbach, D., & Rejaie, R. (2006). Understanding churn
in peer-to-peer networks. In IMC’06: Proc. of the 6th ACM
SIGCOMM on Internet Measurement, (pp. 189–202).
New York, NY: ACM Press.

Subrata, R., Zomaya, A. Y., & Landfeldt, B. (2008). Game-
theoretic approach for load balancing in computational
Grids. IEEE Transactions on Parallel and Distributed
Systems, 19(1), 66–76. doi:10.1109/TPDS.2007.70710

Sudha, S., Savitha, K., & Sadayappan, P. (2003). A
robust scheduling strategy for moldable scheduling of
parallel jobs.

Sun. (2010). Sun Network.com, SunGrid, and Sun utility
computing, now under Oracle. Retrieved from www.sun.
com/service/sungrid/

SURA Southeastern Universities Research Association.
(2007). The Grid technology cookbook. Programming
concepts and challenges. Retrieved from www.sura.org/
cookbook/gtcb/

Sweeney, L. (2002). K-anonymity: A model for pro-
tecting privacy. International Journal of Uncertainty.
Fuzziness and Knowledge-Based Systems, 10(5), 557–570.
doi:10.1142/S0218488502001648

SWITCH. (2008). SWITCH pki, an X.509 public key
infrastructure for the Swiss higher education system.
Retrieved from http://www.switch.ch/pki/

Syslog-ng Logging System. from http://www.balabit.
com/network-security/syslog-ng/.

Taiwan UniGrid. (n.d.). Retrieved October 13, 2009, from
http://www.unigrid.org.tw/index.html.

Talukder, A., & Yavagal, R. (2006). Security issues in
mobile computing. In Mobile computing. McGraw-Hill
Professional.

Tanenbaum, A. S. (2007). Modern operating systems (3rd
ed.). Prentice Hall.

Tanenbaum, A. S., & Steen, M. V. (2007). Distributed
Systems: Principles and Paradigms. Pearson Prentice
Hall, 2 edition.

Tang, Z., Birdwell, J. D., & Chiasson, J. (2008). Resource-
constrained load balancing controller for a parallel data-
base. IEEE Transactions on Control Systems Technology,
16(4), 834–840. doi:10.1109/TCST.2007.916305

Tang, C. Q., Xu, Z. C., & Dwarkadas, S. (2003). Peer-
to-Peer Information Retrieval Using Self-Organizing
Semantic Overlay Networks. Paper presented at the Pro-
ceedings of ACM SIGCOMM 2003, Karlsruhe, Germany.

Tarricone, L., & Esposito, A. (2005). Grid computing for
electromagnetics. Artech house Inc.

Taura, K., Kaneda, K., Endo, T., & Yonezawa, A. (2003).
Phoenix: A Parallel Programming Model for Accommo-
dating Dynamically Joining/Leaving Resources. In PPoPP
’03: Proc. of the Ninth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, (pp.
216–229), New York, NY, USA: ACM Press.

TAVERNA. (2008). The Taverna workbench 1.7. Re-
trieved from http://taverna.sourceforge.net/

Teragrid. from http://www.teragrid.org/.

Compilation of References

370

Thain, D., Tannenbaum, T., & Livny, M. (2005). Dis-
tributed computing in practice: The Condor experience.
Concurrency and Computation, 17(2-4), 323–356.
doi:10.1002/cpe.938

Thain, D., Tannenbaum, T., & Livny, M. (2003). Condor
and the grid. In Berman, F., Fox, G., & Hey, A. (Eds.), Grid
computing: Making the global infrastructure a reality (pp.
299–335). New York, NY, USA: John Wiley & Sons Inc.

The DataGrid Project. (n.d.). Retrieved from http://eu-
datagrid.web.cern.ch /eu-datagrid/

Thomas, P. L., & Menzies, J. G. (1997). Cereal smuts
in Manitoba and Saskatchewan, 1989-95. Cana-
dian Journal of Plant Pathology, 19(2), 161–165.
doi:10.1080/07060669709500546

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994).
CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice.
Nucleic Acids Research, 22(22), 4673–4680. doi:10.1093/
nar/22.22.4673

Tian, J., & Dai, Y. (2007). Understanding the dynamic
of peer-to-peer systems. In Sixth International Workshop
on Peer-to-Peer Systems (IPTPS2007).

Tiang, H. (2003). Grid Computing as an Integrating
Force in Virtual Enterprises. Master’s Thesis, MIT,
Cambridge, MA.

Tierney, B. L., Gunter, D., & Schopf, J. M. (2007). The
CEDPS Troubleshooting Architecture and Deployment on
the Open Science Grid. J. Phys.: Conf. Ser. 78 012075,
SciDAC 2007. Virtual Data Toolkit (VDT). from http://
www.cs.wisc.edu/vdt/.

Tonellotto, N., Yahyapour, R., & Wieder P. H.(2006). A
Proposal for a Generic Grid Scheduling Architecture.
Core GRID TR-0025.

TOP500 List. (2008). http://www.top500.org/ (1.5.2008).

Travostino, F., Daspit, P., Gommans, L., Jog, C., de Laat, C.
T. A. M., & Mambretti, J. (2006). Seamless live migration
of virtual machines over the man/wan. Future Genera-
tion Computer Systems, 22(8), 901–907. doi:10.1016/j.
future.2006.03.007

TRIANA. (2003). The Triana project. Retrieved from
www.trianacode.org/

Trujillo, J., Soler, E., Fernández-Medina, E., & Piattini,
M. (2009). An engineering process for developing secure
data warehouses. Information and Software Technology,
51(6), 1033–1051. doi:10.1016/j.infsof.2008.12.003

Tschantz, M. C., & Krishnamurthi, S. (2006). Towards
reasonability properties for access-control policy lan-
guages. In Proceedings of SACMAT 2006. ACM Press.

Tschumperlé, D., & Deriche, R. (2003). Vector-valued im-
age regularization with PDE’s: A common framework for
different applications. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR ’03), Madison,
WI, USA, 1, 651-656. IEEE Computer Society.

Tzamaloukas, A., & Garcia-Luna-Aceves, J. J. (2001).
A Receiver-Initiated Collision-Avoidance Protocol for
Multi-Channel Networks. Proceedings of the 20th IEEE
INFOCOM (pp. 189-198).

U.S. Congress (1996). Health insurance portability and
accountability act, 1996.

U.S. Safe Harbor Framework. (n.d.). Retrieved from
http://www.export.gov/safeharbor/

UNICORE. (2008). Uniform interface to computing
resources. Retrieved from www.unicore.eu/

UPnP forum. (2008). Universal plug and play specifica-
tions. Retrieved from http://www.upnp.org/resources/

Vaidya, N. H. (2002). Weak Duplicate Address Detection
in Mobile Ad Hoc Networks. MIBIHOC2002, June.

van Heiningen, W., MacDonald, S., & Brecht, T. (2008).
Babylon: middleware for distributed, parallel, and mobile
Java applications. Concurrency and Computation, 20(10),
1195–1224. doi:10.1002/cpe.1264

van Nieuwpoort, R. V., Maassen, J., Wrzesinska, G., Hof-
man, R. F. H., Jacobs, C. J. H., Kielmann, T., & Bal, H.
E. (2005). Ibis: a Flexible and Efficient Java-based Grid
Programming Environment. Concurrency and Computa-
tion, 17(7–8), 1079–1107. doi:10.1002/cpe.860

Compilation of References

371

Van ‘t Noordende, G. J., Brazier, F. M. T., & Tanenbaum,
A. S. (2004). Security in a mobile agent system. 1st
IEEE Symp. on Multi-Agent Security and Survivability,
Philadelphia.

Van ‘t Noordende, G., Balogh, A., Hofman, R., Brazier,
F. M. T., & Tanenbaum, A. S. (2007). A secure jailing
system for confining untrusted applications. 2nd Int’l
Conf. on Security and Cryptography (SECRYPT), (pp.
414-423). Barcelona, Spain.

Vanderwiel, S. P., & Lilja, D. J. (2000). Data prefetch
mechanisms. ACM Computing Surveys, 32(2), 174–199.
doi:10.1145/358923.358939

Venugopal, S., Buyya, R., & Winton, L. (2004). A Grid
service broker for scheduling distributed data-oriented
applications on global grids. Proceedings of the 2nd
workshop on Middleware for Grid computing, (pp.
75–80). Toronto, Canada. Retrieved from www.Gridbus.
org/broker

Verbeke, J., Nadgir, N., Ruetsch, G., & Sharapov, I.
(2002). Framework for peer-to-peer distributed comput-
ing in a heterogeneous, decentralized environment. In
Proceedings of Third International Workshop on Grid
Computing, (pp. 1-12).

Vidyarthi, D. P., Sarker, B. K., Tripathi, A. K., & Yang, L.
T. (2009). Scheduling in distributed computing systems.
Springer. doi:10.1007/978-0-387-74483-4

Vincze, G., Novák, Z., Pap, Z., & Vida, R. (2008). RE-
SERV: A distributed, load balanced Information System
for Grid applications. 8th IEEE International Symposium
on Cluster Computing and the Grid, (pp. 596-601).

Vishwanath, V., Burns, R., Leigh, J., & Seablom, M.
(2008). Accelerating tropical cyclone analysis using
LambdaRAM, a distributed data cache over wide-area
ultra-fast networks. Future Generation Computer Systems,
25(2), 184–191. doi:10.1016/j.future.2008.07.005

Vivas, J. L., López, J., & Montenegro, J. A. (2007).
Grid security architecture: Requirements, fundamentals,
standards, and models. In Xiao, Y. (Ed.), Security in
distributed, Grid, mobile, and pervasive computing (p.
440). Tuscaloosa, USA.

Voelker, G. M., Anderson, E. J., Kimbrel, T., Feeley, M. J.,
Chase, J. S., Karlin, A. R., et al. (1998). Implementing co-
operative prefetching and caching in a globally-managed
memory system. Paper presented at the Joint International
Conference on Measurement and Modeling of Computer
Systems, Madison, Wisconsin, United States.

von Laszewski, G., Gawor, J., Lane, P., Rehn, N., & Rus-
sell, M. (2003). Features of the Java Commodity Grid Kit.
Concurrency and Computation, 14(13-15), 1045–1055.
doi:10.1002/cpe.674

Walfredo, C., & Francine, B. (2002). Using moldabil-
ity to improve the performance of supercomputer jobs.
Journal of Parallel and Distributed Computing, 62(10),
1571–1601.

Walfredo, C., & Francine, B. (2000). Adaptive selec-
tion of partition size for supercomputer requests. Paper
presented at the Workshop on Job Scheduling Strategies
for Parallel Processing.

Walker, E. (2008). Benchmarking Amazon EC2 for high-
performance scientific computing. Retrieved from http://
www.usenix.org/ publications/login/ 2008-10/openpdfs/
walker.pdf

Walls, C., & Breidenbach, R. (2005). Spring in action.
Greenwich, Connecticut, USA: Manning Publications Co.

Walton, J., & Whicker, L. (1996) Virtual Enterprise: Myth
and Reality. Journal of Control, (pp. 22-25).

Wang, H., Takizawa, H., & Kobayashi, H. (2007). A
dependable peer-to-peer computing platform. Future Gen-
eration Computer Systems, 23(8), 939–955. doi:10.1016/j.
future.2007.03.004

Wang, N., Liu, X., He, J., Han, J., Zhang, L., & Xu, Z.
(2007). Collaborative memory pool in cluster system.
Paper presented at the International Conference on Paral-
lel Processing.

Wason, T. (Ed.). (2004). Liberty identity federation frame-
work ID-FF architecture overview. Liberty Alliance Speci-
fication. Retrieved from http://www.project-liberty.org/

Weiler, S., & Ihren, J. (2006). Minimally covering NSEC
records and DNSSEC online signing. Internet Engineer-
ing Task Force. IETF.

Compilation of References

372

Welch, V., Barton, T., Keahey, K., & Siebenlist, F. (2005).
Attributes, anonymity, and access: Shibboleth and Globus
integration to facilitate Grid collaboration. In Proceedings
of the Internet2 PKI R&D Workshop.

Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Cza-
jkowski, K., Gawor, J., et al. (2003). Security for Grid
services. Paper presented at the 12th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-12 ‘03).

Weniger, K., & Zitterbart, M. (2004). Mobile ad hoc net-
works – current approaches and future directions. Network,
IEEE, 18(4), 6–11. doi:10.1109/MNET.2004.1316754

WGBO. (1994). Dutch ministry of health, welfare and
sport – WGBO. Retrieved from http://www.hulpgids.nl/
wetten/wgbo.htm

Witten, I. H., & Frank, E. (2005). Data mining: Practical
machine learning tools and techniques (2nd ed.). Morgan
Kaufmann.

WMO. (1998). Dutch ministry of health, welfare and
sport - WMO. Retrieved from http://www.healthlaw.nl/
wmo.html.

World Community Grid. (2008). http://www.worldcom-
munitygrid.org/ (1.5.2008).

Wrzesinska, G., van Nieuwport, R., Maassen, J., Kiel-
mann, T., & Bal, H. (2006). Fault-tolerant scheduling of
fine-grained tasks in Grid environments. International
Journal of High Performance Computing Applications,
20(1), 103–114. doi:10.1177/1094342006062528

Wu, Y. J., Lin, S. J., Lai, K. C., Huang, K. C., & Wu, C.
C. (2008). Distributed dynamic load balancing strategies
in P2P Grid systems. 5th Workshop on Grid Technologies
and Applications, (pp. 95-102).

Wyckoff, P., McLaughry, S. W., Lehman, T. J., & Ford,
D. A. (1998). T Spaces. IBM Systems Journal, 37(3),
454–474. doi:10.1147/sj.373.0454

Xia, Y., Chen, S., & Korgaonkar, V. (2006). Load balanc-
ing with multiple hash functions in peer-to-peer networks.
IEEE 12th International Conference on Parallel and Dis-
tributed Systems, (pp. 411-420).

Xie, T., & Qin, X. (2007). Performance Evaluation of
a New Scheduling Algorithm for Distributed Systems
with Security Heterogeneity. Journal of Parallel and
Distributed Computing, 67, 1067–1081. doi:10.1016/j.
jpdc.2007.06.004

Xu, L. (2005). Hydra: A platform for survivable and
secure data storage systems. ACM StorageSS.

Xu, J., Kalbarczyk, Z., & Iyer, R. (1999). Networked
Windows NT system field failure data analysis. In Pro-
ceedings of 1999 Pacific Rim International Symposium
on Dependable Computing, (pp. 178-185).

Xu, Z., & Bhuyan, L. (2006). Effective load balancing
in P2P systems. 6th IEEE International Symposium on
Cluster Computing and the Grid, (pp. 81-88).

Yang, C.-L., Lebeck, A. R., Tseng, H.-W., & Lee, C.-H.
(2004). Tolerating memory latency through push prefetch-
ing for pointer-intensive applications. ACM Transactions
on Architecture and Code Optimization, 1(4), 445–475.
doi:10.1145/1044823.1044827

Yang, C. T., Li, C. T., Chiang, W. C., & Shih, P. C. (2005).
Design and implementation of TIGER Grid: An integrated
metropolitan-scale Grid environment. 6th International
Conference on Parallel and Distributed Computing Ap-
plications and Technologies, (pp. 518-520).

Yanmin, Z., Jinsong, H., Yunhao, L., & Ni, L. M. Chun-
ming, H., & Jinpeng, H. (2005). TruGrid: A self-sustaining
trustworthy Grid. Paper presented at the 25th IEEE Inter-
national Conference on Distributed Computing Systems
Workshops, 2005.

Ying, Z., Ananda, A. L., & Jacob, L. (2003). A QoS Enabled
MAC Protocol for Multi-Hop Ad Hoc Wireless Networks.
Proceeding of IEEE International Conference on Per-
formance, Computing, and Communications (IPCCC).

Zhang, X., Freschl, J., & Schopf, J. (2007). Scalability
analysis of three monitoring and information systems:
MDS2, R-GMA, and Hawkeye. Journal of Parallel and
Distributed Computing, 67(8), 883–902. doi:10.1016/j.
jpdc.2007.03.006

Zhang, J., & Honeyman, P. (2008). Performance and
availability tradeoffs in replicated file systems. Eighth
IEEE International Symposium on Cluster Computing
and the Grid, Lyon, France (pp. 771-776).

Compilation of References

373

Zhang, J., Zhou, G., Huang, C., Son, S. H., & Stankovic,
J. A. (2007). TMMAC: An Energy Efficient Multi- Chan-
nel MAC Protocol for Ad Hoc Networks. Proceedings
of IEEE International Conference on Communications
(pp. 24-28).

Zhang, Y., & Dao, S. (1995). A ‘Persistent Connection’
Model for Mobile and Distributed Systems. In ICCCN ’95:
Proc. of the 4th International Conference on Computer
Communications, (pp. 300–307). IEEE Computer Society.

Zhang, Y., Li, D., Chu, R., Xiao, N., & Lu, X. (2007).
PIBUS: A network memory-based peer-to-peer IO buff-
ering service. Paper presented at the 6th International
IFIP-TC6 Conference on Ad Hoc and Sensor Networks,
Wireless Networks, Next Generation Internet.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph,
A. D., & Kubiatowicz, J. D. (2004). Tapestry: A Resilient
Global-scale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications, 22(1),
41–53. doi:10.1109/JSAC.2003.818784

Zhong, X., & Xu, C.-Z. (2004). A Reliable Connection
Migration Mechanism for Synchronous Transient Com-
munication in Mobile Codes. In Proc. of the 2004 Inter-
national Conference on Parallel Processing. IEEE Press.

Zhou, G., Huang, C., Yan, T., He, T., Stankovic, J. A., &
Abdelzaher, T. (2006). MMSN: Multi-Frequency Media
Access Control for Wireless Sensor Networks. Proceed-
ings of the 25th IEEE INFOCOM (pp. 1-13).

Zhu, F., Mutka, M., & Mi, L. (2003). Splendor: A secure,
private, and location-aware service discovery protocol
supporting mobile services (pp. 235–242). Pervasive
Computing and Communications.

Zwickl, D. (2006). Genetic algorithm approaches for
the phylogenetic analysis of large biological sequence
datasets under the maximum likelihood criterion. PhD
Thesis, The University of Texas at Austin.

374

About the Contributors

Emmanuel Udoh is a Professor of Computer Science at the Indiana Institute of Technology, USA.
He received his PHD degree in Information Technology and Master of Business Administration (MBA)
degree from Capella University, USA. Moreover, he is also a PhD holder in Geology from the Univer-
sity of Erlangen, Germany.

* * *

David Abramson has been involved in computer architecture and high performance computing re-
search since 1979. Previous to joining Monash University in 1997, he has held appointments at Griffith
University, CSIRO, and RMIT. At CSIRO he was the program leader of the Division of Information
Technology High Performance Computing Program, and was also an Adjunct Associate Professor at
RMIT in Melbourne. He served as a program manager and chief investigator in the Co-operative Re-
search Centre for Intelligent Decisions Systems and the Co-operative Research Centre for Enterprise
Distributed Systems. Abramson is currently an ARC professorial fellow; Professor of Computer Science
in the faculty of Information Technology at Monash University, Australia, and associate director of the
Monash e-Research Centre. Abramson has served on committees for many conferences and workshops,
and has published over 150 papers and technical documents. He has given seminars and received awards
around Australia and internationally and has received over $3.6 million in research funding. He also
has a keen interest in R&D commercialization and consults for Axceleon Inc, who produce an industry
strength version of Nimrod, and Guardsoft, a company focused on commercializing the Guard relative
debugger. Abramson’s current interests are in high performance computer systems design and software
engineering tools for programming parallel, distributed supercomputers.

Ashish Agarwal is currently a doctoral student at the Tepper School of Business, Carnegie Mellon
University. He holds a Bachelor’s degree in Materials Engineering from the Indian Institute of Tech-
nology, Bombay, India and a Master’s in Engineering from the Massachusetts Institute of Technology.
His research interests include distributed computing, wireless networks, and economics of Information
Systems.

Alexander Auch works as freelance software developer and consultant for industry as well as aca-
demia. He has received a Master’s degree in bioinformatics from the University of Tübingen in 2005,
and is currently working on his doctoral thesis.

About the Contributors

Marcelo Campo received a PhD degree in Computer Science from UFRGS, Porto Alegre, Brazil.
He is a full Associate Professor at the Computer Science Department and Head of the ISISTAN. He is
also a research fellow of the CONICET. He has over 70 papers published in conferences and journals
about software engineering topics.

Philip Chan is a doctoral candidate under the faculty of Information Technology at Monash Univer-
sity. He is currently a project officer at the Research Support Services of the Information Technology
Services Division, where he develops various solutions to assist scientific end-users of the Monash
Campus Grid facility. He is on research leave-of-absence from the Software Technology Department,
College of Computer Studies, De La Salle University, Manila, Philippines where he has served as an as-
sistant professor since 1995. His research interests include parallel/distributed programming techniques,
distributed shared memory, and concurrency theory. In 1995, he was a visiting fellow at the United
Nations University/International Institute for Software Technology (UNU/IIST) where he developed
duration calculus formal specifications for real-time schedulers. Chan is a member of ACM and EATCS.

Shreyas Cholia is a software engineer at the National Energy Research Scientific Computing Center
(NERSC) of Lawrence Berkeley National Laboratory. He is primarily responsible for managing the grid
and science gateway infrastructure at NERSC, in conjunction with the Open Science Grid. Cholia has
been involved with various grid projects since 2002, including the Open Science Grid, HPSS-GridFTP
integration project, the Grid-File-Yanker, SGE Gratia development, the NERSC Online CA, the OSG
MPI integration effort, and the NERSC Web Toolkit. He has a Bachelor’s degree from Rice University
in Computer Science and Cognitive Sciences. Prior to his work at NERSC, Shreyas was a developer
and consultant for IBM with the HPSS project.

Rui Chu was born in 1979. He received the B.S. degree in Computer Science from the National
University of Defense Technology in 2001, and the M.S. degree and PhD degree in Computer Science
from the National Laboratory for Parallel and Distributed Processing, in 2003 and 2008, respectively, and
was employed as a one-year visiting scholar of the Hong Kong University of Science and Technology in
2007-2008. He achieved the Outstanding Winner in Mathematical Contest in Modeling held by COMAP
in 2000, and was involved in several projects including network computing environment architecture,
Grid software data resource management, Grid file system technology, et cetera. He is currently an As-
sistant Professor in National Laboratory for Parallel and Distributed Processing, where he mainly worked
on the Internet-based virtual computing environment project. His research interests include parallel and
distributed computing, cloud computing, real-time operating system for sensor network, and so on. He
is a member of the ACM and China Computer Federation.

Yeh-Ching Chung received a B.S. degree in Information Engineering from Chung Yuan Christian
University in 1983, and the M.S. and Ph.D. degrees in Computer and Information Science from Syra-
cuse University in 1988 and 1992, respectively. He joined the Department of Information Engineering
at Feng Chia University as an Associate Professor in 1992 and became a full professor in 1999. From
1998 to 2001, he was the chairman of the department. In 2002, he joined the Department of Computer
Science at National Tsing Hua University as a Full Professor. His research interests include parallel and
distributed processing, cluster systems, Grid computing, multi-core tool chain design, and multi-core
embedded systems. He is a member of the IEEE Computer Society and ACM.

 375

About the Contributors

Messaoud Doudou is a PhD student at the University of Science and Technology Houari Boumediène
(USTHB). He obtained a Master degree and an Engineer degree in Computer Science from the same
university. He is also a research member at the Center of Research on Scientific and Technical Information
(CERIST) in Algiers. His research interest includes mesh networks, security, sensor networks, and QoS.

Eduardo Fernández-Medina (Eduardo.fdezmedina@uclm.es) holds a PhD and an MSc in Computer
Science from the University of Sevilla. He is associate Professor at the Escuela Superior de Informática
of the University of Castilla-La Mancha at Ciudad Real (Spain), his research activity being in the field
of security in databases, datawarehouses, Web services and Information Systems, and also in security
metrics. Fernández-Medina is co-editor of several books and chapter books on these subjects, and has
several dozens of papers in national and international conferences (DEXA, CAISE, UML, ER, etc.).
Author of several manuscripts in national and international journals (Information Software Technol-
ogy, Computers And Security, Information Systems Security, etc.), he leads the GSyA research group
of the Information Systems and Technologies Department at the University of Castilla-La Mancha, in
Ciudad Real, Spain. He belongs to various professional and research associations (ATI, AEC, ISO, IFIP
WG11.3 etc.).

Edgar Gabriel is an Assistant Professor in the Department of Computer Science at the University
of Houston, Texas, USA. He got his PhD and Dipl.-Ing. in Mechanical Engineering from the University
of Stuttgart. His research interests are message passing systems, high performance computing, parallel
computing on distributed memory machines, and Grid computing.

Wolfgang Gentzsch is dissemination advisor for the DEISA Distributed European Initiative for Su-
percomputing Applications. From 2008 to 2010, Dr. Gentzsch was a member of the Board of Directors
of the Open Grid Forum standards organization. Before, he was the Chairman of the German D-Grid
Initiative; managing director of MCNC Grid and Data Center Services in Durham; Adjunct Professor of
Computer Science at Duke University; and visiting scientist at RENCI Renaissance Computing Institute
at UNC Chapel Hill, North Carolina. During this time, he was also a member of the US President’s
Council of Advisors for Science and Technology, PCAST. In 2000, he joined Sun Microsystems in Menlo
Park, CA, as the senior director of Grid Computing. Before, he was the President, CEO, and CTO of
start-up companies Genias and Gridware, and a Professor of Mathematics and Computer Science at the
University of Applied Sciences in Regensburg, Germany. Dr. Gentzsch studied mathematics and physics
at the Technical Universities in Aachen and Darmstadt, Germany.

Markus Göker received his Diploma in Biology in July 1999 from the University of Heidelberg. In
December 2003 he received his PhD for research on “Molecular and light microscopical investigations
into the phylogeny of the obligate biotrophic Peronosporales” from the University of Tübingen. Since
then he has been working as a postdoctoral researcher at the Institute of Organismic Botany/Mycol-
ogy in Tübingen. His research interests include evolution, taxonomy and co-phylogenetic analyses of
plant-parasitic fungi with a focus on downy mildews and smut fungi, and phylogenetic inference with
alignment-free approaches, and from sequences with intra-individual variability. He has been particularly
interested in compiling very large host-parasite datasets to conduct co-phylogenetic tests.

376

About the Contributors

Tao Gu is currently an Assistant Professor at University of Southern Denmark. He received his PhD
degree in Computer Science from National University of Singapore (NUS). His research interests involve
ubiquitous and pervasive computing, wireless sensor networks and peer-to-peer computing. He published
more than 30 journal and conference papers in these areas in the past five years. He frequently served
as a technical committee member in many international conferences in ubiquitous/pervasive computing
such as PERCOM and Mobiquitous.

Amar Gupta is Thomas R. Brown endowed Chair of Management and Technology; Professor of
Entrepreneurship, Management Information Systems, management of organizations, and Computer
Science; all at the University of Arizona. In addition, he is visiting Professor at MIT for part of the year.
Earlier, he was with the MIT Sloan School of Management (1979-2004); for half of this 25-year period,
he served as the founding co-director of the productivity from Information Technology (PROFIT) initia-
tive. He has published over 100 papers, and serves as a founding associate editor of ACM Transactions on
Internet Technology. His most recent book is an edited one and is entitled: Outsourcing and Offshoring
of Professional Services: Business Optimization in a Global Economy. He holds a Bachelor’s degree in
Electrical Engineering from the Indian Institute of Technology, Kanpur, India; a Master’s in Manage-
ment from the Massachusetts Institute of Technology; and a Doctorate in Computer Science from the
Indian Institute of Technology, Delhi, India. He is a senior member of IEEE and a member of ACM.

Wolfgang Hommel has a PhD in Computer Science from Ludwig Maximilians University, Munich,
and heads the network services planning group at the Leibniz Supercomputing Centre (LRZ) in Ger-
many. His current research focuses on IT security and privacy management in large distributed systems,
including identity federations and Grids. Emphasis is put on a holistic perspective, i.e. the problems and
solutions are analyzed from the design phase through software engineering, deployment in heteroge-
neous infrastructures, and during the operation and change phases according to IT service management
process frameworks, such as ISO/IEC 20000-1. Being both a regional computing centre for higher edu-
cation institutions with more than 100,000 users and a national supercomputing centre, the LRZ offers
a plethora of real world scenarios and large projects to apply and refine the research results in practice.

Zoltán Horváth received his MSc in Mathematics, Physics and Computer Science in 1986 at Eötvös
Loránd University (Budapest, Hungary). He received his PhD (title: “A Relational Model of Parallel
Programs”) in 1996 and completed his habilitation process (title: “Verification of Distributed Functional
Programs”) in 2004 at the same university. He is head of Department of Programming Languages and
Compilers since 2003, and full Professor since 2008. Between 2007 and 2010, he was vice-dean for
scientific affairs and international relations of Faculty of Informatics. Since 2010 he is vice-rector for
international relations. He is the leader of the Budapest Associate Node of EIT ICT Labs.

Kuo-Chan Huang received his B.S. and Ph.D. degrees in Computer Science and Information Engi-
neering from National Chiao-Tung University, Taiwan, in 1993 and 1998, respectively. He is currently
an Assistant Professor in Computer and Information Science Department at National Taichung Univer-
sity, Taiwan. He is a member of ACM and IEEE Computer Society. His research areas include parallel
processing, cluster and Grid computing, and workflow computing.

 377

About the Contributors

Po-Jung Huang received the BS and MS degree in Computer and Information Science from the
National Taichung University, Taiwan. His research interests include P2P computing, Grid computing,
load balancing, and cloud computing.

Hiroaki Kobayashi is currently a Director and Professor of Cyberscience Center and a Professor
of Graduate School of Information Sciences, Tohoku University. His research interests include high-
performance computer architectures and their applications. He received the B.E. Degree in Communica-
tion Engineering, and the M.E. and D.E. Degrees in Information Engineering from Tohoku University in
1983, 1985, and 1988 respectively. He is a senior member of IEEE CS, and a member of ACM, IEICE
and IPSJ.

Matthijs R. Koot is a PhD-student in the System and Network Engineering group at the University
of Amsterdam. His research interests include privacy and anonymity, and the application of privacy-
enhancing technologies to Grid environments. His teaching interests include intrusion detection and
honeypots.

Tamás Kozsik received his PhD (summa cum laude) in Computer Science in 2006 at Eötvös Loránd
University (Budapest, Hungary), where he works as Associate Professor and vice-dean for scientific
affairs and international relations of Faculty of Informatics. Since 1992 he has been teaching program-
ming languages, as well as distributed and concurrent programming. His research fields are program
analysis and verification, refactoring, type systems and distributed systems. His PhD thesis investigated
the integration of logic-based and type system based verification of functional programs.

Gerald Kunzmann studied Electrical and Information Engineering at the Technische Universität
München (TUM) in Munich, Germany with special focuses on information and communication technol-
ogy. In his diploma thesis at the Institute of Communication Networks, he evaluated a distributed network
monitoring service realized at the edges of the network. Following, he researched novel, distributed,
and self-organizing routing protocols and network architectures for the Next Generation Internet. Then,
he worked in several industrial projects; amongst others, he evaluated and enhanced a serverless VoIP
communication architecture developed by Siemens AG. Within the scope of the BMBF funded G-Lab
project, he developed a scalable, hierarchical Internet mapping architecture based on distributed hash
tables. In his dissertation at the TUM, he evaluated the performance of structured overlay networks and
developed novel concepts and algorithms for their optimized operation. Dr. Kunzmann is now working
as researcher for NTT DOCOMO Communication Laboratories Europe GmbH in Munich, where he is
evolving mobile services and networks for the realization of a society where everyone can live a safe,
secure, and comfortable life, filled with richness, beyond borders, and across generations.

Cees de Laat is Professor and leader of the System and Network Engineering research group at the
University of Amsterdam. Research in his group includes optical/switched networking for Internet transport
of massive amounts of data in TeraScale eScience applications, Semantic web to describe networks and
associated resources, distributed cross organization Authorization architectures and systems security, and
privacy of information in distributed environments. He serves in the Open Grid Forum as IETF Liaison
and is acting co-chair of the Grid High Performance Networking Research Group (GHPN-RG) and is

378

About the Contributors

chair of GridForum.nl and boardmember of ISOC.nl. He is co-founder and organizer of several of the
past meetings of the Global Lambda Integrated Facility (GLIF) and founding member of CineGrid.org.
http://www.science.uva.nl/~delaat

Kuan-Chou Lai received his MS degree in Computer Science and Information Engineering from
the National Cheng Kung University in 1991, and the PhD degree in Computer Science and Information
Engineering from the National Chiao Tung University in 1996. Currently, he is an Associate Professor in
the Department of Computer and Information Science at the National Taichung University. His research
interests include parallel processing, system architecture, P2P, cluster computing, Grid computing, and
cloud computing. He is a member of the IEEE and the IEEE Computer Society.

Javier Lopez (jlm@lcc.uma.es) received his M.S. and PhD. degrees in Computer Science in 1992 and
2000, respectively, from the University of Malaga, where he currently is a Full Professor. His research
activities are mainly focused on network security and critical information infrastructures, and he leads
national and international research projects in those areas. He is also Co-Editor in Chief of Springer’s
International Journal of Information Security (IJIS), a member of the editorial boards of international
journals, and the Spanish representative on the IFIP Technical Committee 11 on security and protection
in Information Systems.

László Csaba Lőrincz received his MSc in Computer Science at Eötvös Loránd University (Bu-
dapest, Hungary). The title of his thesis was “Optimization of Data Access on Clusters and Data Grids
-- Strategy, aspect, extension of JDL.” László started his PhD studies in 2004 under the supervision of
Zoltán Horváth. His research areas are distributed systems, data Grids, and multiagent systems. He has
also been working at different IT companies since 2000.

Xicheng Lu was born in 1946. He received the B.S degree in Computer Science from Haerbin
Military Engineering College in 1970, and was employed as a visiting scholar of the University of Mas-
sachusetts in 1982-1984. He is currently the Fellow of the Chinese Academy of Engineering, the Chief
Director of National Laboratory for Parallel and Distributed Processing, and the Professor and Ph.D.
supervisor of the National University of Defense Technology. His current research interests include
computer architecture, computer networks, and parallel and distributed technology. He has published
more than 100 papers in referred journals, conferences, and books including IEEE Transactions on
Software Engineering, IEEE Transactions on Neural Networks, IEEE Transactions on Knowledge and
Data Engineering, et cetera, and has served as the Program Chair or Program Committee Member of
international conferences such as ICDCS, GCC, APPT, and ICCNMC. He is a senior member of China
Computer Federation, and member of ACM and IEEE.

Cristian Mateos received a PhD degree in Computer Science from UNICEN, Tandil, Argentina,
in 2008. He is a full Teacher Assistant at the computer science department of UNICEN and a research
fellow of the CONICET. His recent thesis was on solutions to ease Grid application development and
tuning through dependency injection and policies.

 379

About the Contributors

Jan Meier-Kolthoff is employed as a software developer in bioinformatics at a medium-sized biotech
company in Bavaria, Germany. In March 2007 Jan received a Master’s degree in Bioinformatics from
Eberhard Karls Universität Tübingen. Despite his job-related occupation he is still highly interested and
involved in scientific challenges.

Jörg P. Müller holds a Chair for Business Information Technology at Clausthal University of Tech-
nology; currently, he is Head of the Department of Informatics at CUT. Previously, Prof. Dr. Müller
was Principal Researcher at Siemens AG, John Wiley & Sons, Zuno Ltd., Mitsubishi Electric, and the
German Artificial Intelligence Research Center (DFKI). He holds a Ph.D. from Saarbrücken University
and an M.Sc. in Computer Science from Kaiserslautern University. Within the last fifteen years, he has
published over 160 papers on intelligent agents and multi-agent systems, business Information Systems,
and distributed computing. His current research interests include methods, technologies and applications
for multiagent systems, decentral (P2P) coordination and resource management, enterprise interoper-
ability, and model-driven business process automation.

Yoshitomo Murata is currently a post-doctoral fellow in Cyberscience Center, Tohoku University.
His research interests include distributed computing systems and their applications. He received the
B.E. Degree in Mechanical Engineering, and the M.S. and Ph.D. Degrees in Information Sciences from
Tohoku University in 2003, 2005 and 2008, respectively. He is a member of the IEEE CS.

Guido J. van ‘t Noordende is a researcher at the University of Amsterdam, The Netherlands. He
is finishing his Ph.D. in Computer Science at the Vrije Universiteit Amsterdam while working in the
System and Network Engineering group at the University of Amsterdam. His research interests include
security and privacy in distributed systems, in particular for (bio)medical applications, and security of
electronic medical record systems.

Silvia D. Olabarriaga is Assistant Professor of the Academic Medical Center of the University of
Amsterdam. She leads the e-Bioscience group of the Bioinformatics Laboratory, which researches the
design, development, deployment and evaluation of advanced infrastructures to enable and enhance bio-
medical research. Her main research interest lies on improving the usability of production e-infrastructures
for the benefit of the biomedical researcher as end-user. Research topics include scientific workflows,
data management, resource selection, monitoring, and fault tolerance. She also actively participates in
various initiatives that promote the adoption of e-infrastructures for biomedical research, including the
HealthGrid Association and the European Life Science Grid Community.

Massimiliano Pala joined Dartmouth College as a Post-Doctoral Research Fellow with the Com-
puter Science department and the Institute for Security, Technology, and Society in 2007. He received
his Ph.D. from the Poilitecnico di Torino in Computer Engineering in March 2007. In addition to his
activity as Security and PKI consultant, he is actively involved in standardization bodies like IETF. In
1998, he started the OpenCA project and he still leads its development and management as Director of
the OpenCA Labs. Today, his work is focused on usable security with special regards to Internet trust
infrastructures.

380

About the Contributors

Mario Piattini has an MSc and a PhD in Computer Science from the Politechnical University of
Madrid. He is a Certified Information System Auditor from the ISACA (Information System Audit and
Control Association). Full Professor at the Escuela Superior de Informática of the Castilla-La Mancha
University (Spain), and author of several books and papers on databases, software engineering, and
Information Systems, Piattini leads the ALARCOS research group of the Information Systems and
Technologies Department at the University of Castilla-La Mancha, in Ciudad Real, Spain. His research
interests are: advanced database design, database quality, software metrics, object- oriented metrics and
software maintenance. His e-mail address is Mario.Piattini@uclm.es

R. Jefferson Porter has worked for many years as an experimental research Physicist in the field
of relativistic heavy ion physics. During his career, he has participated in several scientific computing
infrastructure projects that focused on challenges in data-intensive distributed computing. He is cur-
rently on staff with NERSC at LBNL as a member of the validation and integration team for the Open
Science Grid.

Hung Keng Pung is an Associate Professor in the Department of Computer Science, National
University of Singapore. He heads the Networks Systems and Services Laboratory as well as holding a
joint appointment as a principal scientist at the Institute of Infocomm Research in Singapore. His areas
of research are context-aware systems, service-oriented computing, quality of service management,
protocols design, and networking.

Zahid Raza is currently an Assistant Professor in the School of Computer and Systems Sciences,
Jawaharlal Nehru University, India. He has a Master degree in Electronics, Master’s degree in Com-
puter Science, and Ph.D. in Computer Science. Prior to joining Jawaharlal Nehru University, he served
as a Lecturer in Banasthali Vidyapith University, Rajasthan, India. His research interest is in the area
of Grid computing and has proposed a few models for job scheduling in a computational Grid. He is a
member of IEEE.

Scott Rea joined DigiCert Inc. as the Sr. PKI architect in September 2009; he previously performed
a similar role for Dartmouth College from May 2004, and still advises them in that capacity. Rea is
also responsible for the implementation and operation of the Research & Education Bridge Certificate
Authority (REBCA) which facilitates trust between disparate PKIs in the education and research fields.
He received his MS from Queensland University of Technology in Information Security in March
1999, and has since been working in his field of discipline as a PKI/Security consultant/expert. Rea is
a founding member and current Chair of the Americas Grid Policy Management Authority (TAGPMA)
which is a member constituent of the International Grid Trust Federation (IGTF), and for which Rea is
also currently serving as Chair. Rea is active in multiple initiatives for authorization and authentication
services, including REBCA, the US Federal PKI, and the Four Bridges Forum (4BF).

Michael M. Resch is a Full Professor of High Performance Computing at the Department of Energy
Technology, Process Engineering, and Biological Engineering of the University of Stuttgart in Germany.
He received his Dipl.-Ing. (MSc) in Technical Mathematics from the Technical University of Graz,
Austria, and his PhD in Engineering from the University of Stuttgart, Germany. His research interests
include supercomputing architectures and software, Grid computing, and simulation in research and
industrial development.

 381

About the Contributors

Imed Romdhani is a Lecturer in Networking in the School of Computing at Napier University in
Edinburgh, UK since June 2005. He received his PhD degree from the University of Technology of
Compiegne, France in May 2005. While working toward his PhD, he was a Research Engineer with
Motorola Labs Paris for four years. He obtained a Master’s degree in networking from Louis Pasteur
University of Strasbourg (ULP), France in 2001 and an Engineering degree in Computer Science from
the National School of Computer Sciences (ENSI), Tunis, Tunisia in 1998. His research interest includes
IP multicast, mobile IP, moving network (NEMO), mesh networks, IP security, and QoS.

David G. Rosado (david.grosado@uclm.es) has an MSc and PhD. in Computer Science from the
University of Málaga (Spain) and from the University of Castilla-La Mancha (Spain), respectively. His
research activities are focused on security for Information Systems and mobile Grid computing. He has
published several papers in national and international conferences on these subjects. He is a member of
the GSyA research group of the Information Systems and Technologies Department at the University
of Castilla-La Mancha, in Ciudad Real, Spain.

Po-Chi Shih received the B.S. and M.S. degrees in Computer Science and Information Engineering
from Tunghai University in 2003 and 2005, respectively. He is now studying Ph.D. degree at Computer
Science in National Tsing Hua University.

Sean Smith is currently in the Department of Computer Science at Dartmouth College; previously,
he worked as a scientist for IBM and for Los Alamos National Lab. His research interests focus on hu-
man and hardware aspects of security.

Fabian Stäber was a research student at Siemens Corporate Technology. He received his Ph.D.
from the Clausthal University of Technology, and his M.Sc. in Computer Science from the University
of Erlangen-Nürnberg. His focus is on transferring research results from the field of peer-to-peer-based
infrastructures to industrial applications. In his Ph.D. thesis, he presented a service layer for decentral-
ized applications. That service layer allows for the definition of re-usable components that can be used
as building blocks when fulfilling the requirements of emerging industrial applications. The resulting
architecture and methodology was applied to different application scenarios, including IP telephony,
distributed power generation, and business collaboration. Before his Ph.D., Dr. Fabian Stäber was a
graduate-trainee at the Siemens Industry sector. He did his Diploma thesis at Siemens Transportation
Systems, evaluating a new communication infrastructure for rail vehicles. Dr. Fabian Stäber recently
became a consultant at MGM technology partners GmbH in Munich, Germany.

Alexandros Stamatakis received his Diploma in Computer Science in March 2001 from the Technical
University of Munich. In October 2004, he received his PhD for research on “Distributed and Parallel
Algorithms and Systems for Inference of Huge Phylogenetic Trees based on the Maximum Likelihood
Method” also from the Technical University of Munich. From January 2005 to June 2006, he worked
as postdoctoral researcher at the Institute of Computer Science in Heraklion, Greece. In July 2006 he
joined Bernard Moret’s group at the Swiss Federal Institute of Technology at Lausanne as a PostDoc.
In January 2008 he moved back to Munich to set up a junior research group funded under the auspices
of the Emmy-Noether program by the German Science Foundation (DFG), at the bioinformatics de-

382

About the Contributors

partment of the Ludwig-Maximilians University of Munich. His main research interest are: technical
and algorithmic solutions for inference of huge phylogenetic trees, applications of high performance
computing techniques in bioinformatics, and challenging phylogenetic analyses of real-world datasets
in collaboration with biologists.

Heinz Stockinger has been working in Grid projects in Europe (CERN, etc.) and in the USA (Stan-
ford Linear A Accelerator Center) in various technical, scientific, and management functions. Heinz is
affiliated with the Swiss Institute of Bioinformatics where he works on diverse Grid subjects. He has
been appointed “Privatdozent” at the University of Vienna - leading the Research Lab for Computational
Technologies and Applications in 2005. Currently, he is also a lecturer at the Swiss Federal Institute of
Technology in Lausanne (EPFL). Heinz holds a PhD degree in Computer Science and Business Admin-
istration from the University of Vienna, Austria.

Hiroyuki Takizawa is currently an Associate Professor in Graduate School of Information Sciences,
Tohoku University. His research interests include high-performance computing systems and their ap-
plications. He received the B.E. Degree in Mechanical Engineering, and the M.S. and Ph.D. Degrees in
Information Sciences from Tohoku University in 1995, 1997, and 1999, respectively. He is a member
of the IEEE CS, the IEICE, and the IPSJ.

Djamel Tandjaoui is a Researcher at the Center of Research on Scientific and Technical Information
(CERIST) in Algiers, Algeria since 1999. He received his PhD degree from the University of Science
and Technology Houari Boumediène (USTHB), Algiers in 2005. He obtained a Master’s degree and
an Engineer degree in Computer Science from the same university. Currently, he is member of Basic
Software Laboratory at CERIST. His research interest includes mobile networks, mesh networks, sensor
networks, ad hoc networks, QoS and security.

Attila Ulbert received his MSc in Computer Science (with distinction) in 1999, and his PhD in In-
formatics (summa cum laude) in 2004, both at Eötvös Loránd University (Budapest, Hungary). The title
of his PhD thesis was “Pluggable Semantic Elements and Semantic Extensions in Distributed Object
Systems.” Attila Ulbert has taken part in several research projects on Grid systems since 2002. His main
research areas are: distributed systems, data Grids, and telecommunication. Currently he is working for
Ericsson as Software Architect.

Deo Prakash Vidyarthi, received Master degree in Computer Application from MMM Engineer-
ing College Gorakhpur and PhD in Computer Science from Banaras Hindu University, Varanasi. He
was associated with the Department of Computer Science of Banaras Hindu University, Varanasi for
more than 12 years. He joined JNU in 2004 and currently works as Associate Professor in the School of
Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi. Dr. Vidyarthi has published
around 50 research papers in various peer reviewed International Journals and Transactions (including
IEEE, Elsevier, Springer, World Scientific, IGI, Inderscience, etc.) and around 25 research papers in the
proceedings of peer-reviewed international conferences in India and abroad. He has authored a book
(Research Monograph) entitled “Scheduling in Distributed Computing Systems: Design, Analysis and
Models” published by Springer, USA released in December, 2008. He has contributed chapters in many

 383

About the Contributors

edited books. He is in the editorial board of two International Journals and in the reviewer’s panel of
many International Journals. Dr. Vidyarthi is member of IEEE, International Society of Research in Sci-
ence and Technology (ISRST), USA and senior member of the International Association of Computer
Science and Information Technology (IACSIT), Singapore. His research interests include parallel and
distributed system, Grid computing, and mobile computing.

Hong Wang is currently with Nomura International (Hong Kong) Ltd, as a Senior Associate in Fixed
Income Analytics Group. Prior to Nomura, he was a Ph.D. student in the Graduate School of Informa-
tion Sciences of Tohoku University. During his Ph.D. study, Hong did research in the field of workflow
management, fault tolerance, and performance optimization for Peer-to-Peer computing platforms. He
received his B.S. (2003) in Computer Science from Peking University in China, and the M.S. (2006)
and Ph.D. (2009) in Information Sciences from Tohoku University in Japan.

Nong Xiao was born in 1969. He received the B.S. degree and the PhD degree in computer science
from the National University of Defense Technology in 1990 and 1996 respectively. He is currently a
Professor and Ph.D. supervisor of the National University of Defense Technology. His research inter-
ests include Grid computing, ubiquitous computing, P2P computing, parallel computer architecture,
distributed computing, and wireless sensor network. He is the director of the key projects “Distributed
Data Management in Large-scale network storage environment,” and “Dynamic Scalable Architecture
for Data-intensive Computing in Network Environment” funded by National Natural Science Founda-
tion of China, and senior member in projects such as China National Grid, National High Performance
Computing Environment in China, Spatial Information Grid, et cetera. He was employed as the Special
Expert on high performance computing and kernel software by the Ministry of Science and Technology
of China, and served as Program Co-Chair of the 5th International Conference on Grid and Cooperative
Computing.

You-Fu Yu received the BBA degree in Computer Science and Information Management from the
Providence University, and the MS degree in Computer and Information Science from the National
Taichung University, Taiwan. He is currently a project assistant in the National Taichung University. His
research interests include P2P computing, Grid computing, resource discovery and cloud computing.

Daqing Zhang is a Professor at Institute TELECOM & Management SudParis, France. He obtained
his PhD from University of Rome “La Sapienza” and University of L’Aquila, Italy in 1996. His research
interests include pervasive healthcare, service-oriented computing, context aware systems, et cetera. He
has published more than 90 papers in referred journals, conferences, and books. Zhang was the program
chair of First International Conference of Smart Home and Health Telematics (ICOST2003) in Paris,
France. He served as the General Co-Chair of ICOST2004 (Singapore), ICOST2005 (Canada), SH
2008 (China) and WISH 2008 (Australia), respectively. He also served in the technical committee for
conferences such as UbiComp, Pervasive, PerCom, et cetera. Zhang was a frequent invited speaker in
various international events such as pHealth, Net@Home, OSGi World Congress, e/home, SH, et cetera.

Alejandro Zunino received a PhD degree in Computer Science from UNICEN in 2003. He is a
full Assistant Professor at the Computer Science Department of UNICEN and a research fellow of the
CONICET. He has published over 30 papers in journals and conferences.

384

 385

A
absolute loading (AL) 2, 12, 16, 18, 20, 35, 37, 39-

47, 50, 53, 60-61, 73-74, 88, 92-94, 121, 126,
131, 133, 137-138, 149, 177, 181-183, 190-
192, 204, 206-207, 210-211, 214-215, 217-218,
223, 225-226, 230, 232, 235, 240-241, 256,
259-260, 262-263, 266, 270-272, 274, 277,
279-281, 283, 285-288, 291-292, 297, 299-300,
306, 309-310, 316, 331-333, 337, 340, 343-344

acceptable use policies (AUP) 120
actual organization (AO) 258, 261-266
Ad hoc On-Demand Distance Vector Routing

(AODV) 260, 268
ad-hoc traffic indication message (ATIM) 316, 325
Amazon Web Services (AWS) 28, 35, 37
Application Workflows 11, 20
Aspect-oriented modeling (AOM) 182
Asynchronous Pipe Mechanism 238
Attribute release filtering (ARF) 121
Attribute release policies (ARPs) 121
Authentication schemes 212
Authentication Servers (ASs) 266
Authority Information Access (AIA) 169, 172, 314-

316, 321, 329
Axelerated Principal Coordinates (AxPcoords) 226-

227, 236
AxParafit program 222, 225, 232

B
Bag of Tasks 19
Bandwidth capabilities 181, 330
Base Station (BS) 261-262, 264-266
Basic Linear Algebra Subroutines (BLAS) 225-226
Berkeley Open Infrastructure for Network Comput-

ing (BOINC) 4, 9, 136, 152
Binary tree 337
Bioinformatics 22, 222-223, 231, 235-236, 253

C
Cache 225, 243-244, 248, 269-273, 277-279, 281-

283, 297, 333, 337
Certificate Policy (CP) 125, 170-171
Certification Authority (CA) 37, 54, 165-177, 179,

204, 236, 267, 282, 297, 311, 320, 341, 343-
344

Certification Practices Statement (CPS) 170-171
Cloud computing 10, 26, 28, 30-35, 37-38, 132,

203, 269
Cloud-enabling applications 27
Cluster Compute Instances 10, 29-30, 35
Cluster profile 81
Cluster Table (CT) 104, 106-108, 110, 249
Command messages 288
Common Open Policy Service (COPS) 266
Common vulnerability and exposures (CVE) 217
Complex job description 77, 80-82
Comprehensive, Lightweight Application Security

Process (CLASP) 183, 205
Computational grid 2, 11, 22, 35, 58-62, 66-70, 90,

96, 99, 101-102, 115, 205-206, 222, 259, 267,
286, 297

Computational Grid model 60
Compute resource broker (CRB) 209, 212-213,

215, 220
Computing element 73, 83, 228, 231
Control flow graph 76
Cumulative distribution function (CDF) 138, 143

D
Data access 14-16, 74, 76-77, 85, 89, 118, 120-123,

125, 131, 209, 212-213, 216, 218, 257, 270,
280

Data access pattern 76-77
Datablock 76-79, 81
Data collection 210, 212

Index

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

386

Index

Data fields 331
Data handling agreements 218
Data management 3, 10, 12-13, 15, 23-24, 208, 219,

231, 258
Data protection 6, 27, 119-120, 124-125, 161, 210,

218
Data replication 14, 73, 89
Data separation 17
Data splitting 17
Data storage 7, 166, 208-209, 220, 256, 332
Decentralization 330, 344
DEISA Extreme Computing Initiative (DECI) 10,

25-26, 28, 32, 36
DEISA Project 9, 24
Deoxyribonucleic acid (DNA) 223-224, 235
Dependency Injection (DI) 43-46, 54, 81
Description generator 74, 76, 78, 84-85
Description repository service 74, 78-79, 82-83, 85
Distinguished Names (DN) 158, 168-169
Distributed computing environment 39, 286
Distributed computing network system 101
Distributed European Infrastructure for Supercom-

puting Applications (DEISA) 3, 9-10, 21,
24-26, 28, 32, 36-38, 129, 133

Distributed hash tables (DHTs) 300, 331, 339-341,
344

Distributed Objects 19
Distributed phone book 331-334, 336-337, 339
Distributed Resource Management Application API

specification (DRMAA) 14
Distributed systems 4, 17, 70, 100, 120, 123, 133,

152-153, 163, 181, 208, 238, 240, 253, 297-
298, 343-344

Distributed Threads 19, 47
Domain Decomposition 21-22
Down Time (DT) 137-138, 149
Dynamic Configurability 259
Dynamic data feeder 82-86
Dynamic Fastest Processor to Largest Task First

(DFPLTF) 92-93
Dynamic Source Routing Protocol (DSR) 260

E
Earliest Completion Time (ECT) 83, 92-93, 95
Earth Systems Grid (ESG) 167
Economy-based decision algorithms 73
EnginFrame 22-23, 35-36
Estimated failure probability (EFP) 135-136, 140,

143, 146
Explicit Communication 19

Explicit contention notification (ECN) 319-321,
323

Extended prefix hash trees (EPHTs) 331-332, 335-
336, 338, 340

eXtensible Access Control Markup Language
(XACML) 120, 128-129, 133

F
Federated identity management (FIM) 118-121,

128-130, 132
File access description 78-79
File transfer module 288
Freenet 300, 311
Fully Qualified Attribute Name (FQAN) 168
Functional service (FS) 44, 85
Fusion dictionaries 333

G
Generic Information Provider (GIP) 157, 161, 163
Genetic Algorithm (GA) 104-105, 113, 115, 237
Genome 223, 236
Gnutella 300, 311
Great Internet Mersenne Prime Search (GIMPS)

135
Grid algorithms 10
Grid applications 10, 14-15, 17-19, 35, 37, 39-41,

43-44, 51-54, 72, 168, 181, 183-185, 188, 191,
240, 248, 298

Grid Application Toolkit 14, 36, 54
Grid-based storage 218
Grid computing 1, 10-11, 14, 19, 31, 35-38, 54-55,

59-60, 68-70, 88-89, 91, 102-103, 115, 119,
123, 132, 152-154, 156, 162-163, 165, 167,
172, 180-181, 183, 186-188, 194, 206-207,
219, 223, 228, 230, 236, 253, 255, 267-269,
284, 286, 288, 296, 310-311

Grid concept 2-3
Grid-enabling 12-13, 15, 19-20, 22, 27, 33-34, 39
Grid Engine 22-23, 28, 35, 37
GridFTP 13, 160, 209, 211, 213-214, 216, 218, 239
Grid Information Service (GIS) 13, 83
Grid information system 132
Grid Lines of Code (GLOC) 50
Grid middleware 10, 14, 23-24, 54, 72-73, 104,

114, 120, 123, 125, 128, 130, 132-133, 156,
161, 208-211, 214, 218, 223, 228

Grid portals 10, 22, 26
Grid programming models 18, 37-38
Grid Resource Information Service (GRIS) 13

 387

Index

Grid resources 12-14, 17-19, 39-41, 53, 58-59, 66,
90-91, 96, 102, 131, 156-157, 166, 209-210,
227, 233-235, 256, 262, 285-286

Grid scheduling algorithm 90, 92
Grid security infrastructure (GSI) 157, 161, 167,

173, 178, 206, 210-211, 215-217
Grid Services 11-12, 19, 22, 36, 40-43, 53-54, 157,

167, 205-207, 268
Grid Topology 255-256, 260
Grid Workflows 19, 34, 240, 251

H
Hashing 300, 302, 305, 332-334, 337, 341
Heterogeneous computing resources 90, 101
High contention level (HCL) 314, 317, 319-320,

322
High-performance computing (HPC) 3, 5-10, 24-

32, 35-38, 55-56, 70, 99-100, 115, 132, 137,
152, 154, 164, 206, 235, 237, 247, 252-254,
268, 282, 284, 296, 312, 329

Host 23, 27, 153, 156, 161, 172, 184, 211-216, 218,
222-226, 228-229, 232, 234, 236, 239, 267, 289

Host property list (HPL) 212-218, 311
HPC Clouds 27, 32
Hybrid MAC (H-MAC) 313-317, 319-329

I
Ian Foster 11, 18, 167
Identity provider (IDP) 121-122, 126
Implicit Algorithms 21-22
Independent Software Vendors (ISVs) 20
Information Services 12-13, 156, 162, 164, 285,

310
In-house Codes 20
Instant messaging 330
IP telephony 330
IT service providers 118

J
JGRIM 39-55
Job behaviour description 73-74, 76-77, 82, 84,

87-88
Job Mix 22
Job Precedence and Dependence Graph (JPDG)

104, 106
Job submission description language (JSDL) 210,

219

K
Kernel data structures 84
Kesselman, Carl 11, 18
Key performance indicators (KPIs) 131, 337

L
Large Hadron Collider 9, 166
Large scale problems 4-5
Latent semantic indexing (LSI) 310
Least Failure Probability Dispatch (LFPD) 136,

139-140, 142-150, 152
Lightweight Directory Access Protocol (LDAP) 23,

266
LINPACK Benchmark 29-30, 136
Linux 2, 49, 84, 89, 211, 217, 223, 231
Load balancing strategy 296-297
Local data 301-302, 306, 309
Low contention level (LCL) 314, 317, 319, 322
Lower-tier network 299-302, 304-306, 310

M
MAC protocols 313-316, 321-322, 327-329
MATLAB 30, 37
Maximum Likelihood Estimation (MLE) 137
Mean Time Between Failure (MTBF) 137
Mean Time to Reboot (MTR) 138
Medical data manager (MDM) 217, 219
Message-oriented middleware (MoM) 240
Message Passing Interface (MPI) 9, 19, 21, 29, 37,

88, 229, 240-241, 251-252
Metacomputing 2-3, 9, 251
Metadata services 156, 215
Microsoft Message Queueing System (MSMQ)

240, 253
Middlewares 285
Mobile Ad-hoc Networks (MANET) 260
Mobile Computing 180-181, 203, 206-207, 255,

268, 328
Mobile Grid 45, 180-183, 185-196, 202-203, 206-

207
Mobile Grid service (MGS) 45-47
Moldable job allocation 58-60, 62-69
Moldable property 59, 61, 63, 69, 267
Multi-attribute addressable network (MAAN) 310
Multi-channel MAC protocols 314-316

N
NAS Parallel Benchmark 29, 37

388

Index

Neighbor-aware contention resolution (NCR) 317
Network overhead 314
Network topologies 306
Network traffic 50-51, 187, 286, 314, 332, 337-338
Network weather services (NWS) 285
Non-functional services (NFS) 44, 56

O
Object Identifiers (OIDs) 171, 173-174
Obligation monitor (OM) 131
Open Grid Forum (OGF) 14-15, 27-28, 32, 36-38,

184, 206
Open Science Grid (OSG) 155-164, 167-168
Operating system (OS) 2, 12, 21, 23, 31, 74, 137,

153, 157, 160, 172, 176, 211, 214, 271-272,
286

Overall failure probability (OFP) 135-136, 142-144,
146, 152

P
P2P architecture 286
P2P grids 284, 297
Parallel Applications 18, 20-22, 32, 63, 69, 252
Parallel computing environments 59
Parameter Jobs 19-20
Parasite 222-226, 228-229, 232, 234
Pattern 54-55, 61, 76-77, 84, 104-106, 111-112,

138, 149, 259, 263, 269, 271, 273-274, 281-283
peer-to-peer (P2P) 37, 53, 137-138, 145, 152-154,

175-178, 238, 252-253, 269, 283-286, 288-291,
296-300, 302, 306, 309-312, 330-333, 338-344

Performance 2-6, 8-9, 11-12, 14, 16-19, 21, 24, 26-
27, 29-30, 32, 35, 37, 40, 47-48, 50-53, 55-56,
58-61, 63-71, 73-74, 87-89, 91-97, 99-104,
112-116, 129, 131-132, 135-137, 142-143, 145-
146, 149-150, 152-153, 160, 164, 185, 206-
208, 217, 223, 225, 230-234, 237, 248-254,
267-271, 274, 276, 278, 281-283, 285-288,
292, 294, 296-297, 300, 306, 312, 314, 321-
331, 333-334, 337, 340, 342-344

Personally identifiable information (PII) 118-120,
122-126, 130, 203

Phylogenetic data analysis 222
Phylogenetic (evolutionary) 54, 222-225, 235-237
Phylogenetic tree 224
PKI Resource Query Protocol (PRQP) 165-166,

169, 171-175, 177, 179
Policy decision point (PDP) 121-122, 126, 128, 130
Policy enforcement points (PEP) 121-122, 130

Porting applications 11-12, 18, 39, 41, 43, 55
PRACE Consortium 28
Prefetching 269-281, 283
Prefix hash tree (PHT) 330-332, 334-335, 337, 339-

341, 344
Prefix Span-Prefetching (PSP) 253, 275-276, 278
Privacy enhancing technologies (PET) 118-120,

204, 206
Program composition 18
Property-based privacy policies (PBPP) 125
Proxy Certificate (PC) 4, 167-168, 211-213, 214,

216, 230, 235, 261, 344
Public Key Infrastructures (PKIs) 165-166, 168-

169, 171, 175
Public Key System (PKS) 165-166, 175-177, 179

Q
Quality of service (QoS) 3, 92, 102, 104, 186, 255,

257, 260, 266, 313-314, 316-317, 319-320,
327, 329

R
Radio technologies 313
RAM Grid 270-271, 277, 280-282
Rational Unified Process (RUP) 182, 205
RDF data query language (RDQL) 301, 311
Receiver based channel assignment algorithm

(RBCA) 314, 317-318, 322
Redundancy 28, 76, 80, 103, 112, 127, 130, 140,

142, 233, 259, 261, 266
Relational database management systems (RDBMS)

121, 131
Relative loading (RL) 291-292
Remote host property list (RHPL) 212-216, 218
Replica Based Co-Scheduler (RBS) 101-107, 112-

115
Replica manager 83
Resource description framework (RDF) 300-301,

308-311
Resource fragmentation 58-60, 66, 68
Resource Management 12, 15, 35-36, 42, 69, 73,

89, 92, 94, 204, 206, 258, 342-343
Resource monitoring system (REMOS) 284-285,

288, 290
Resource Selection Service (ReSS) 157
Root Station (RS) 260-266

S
Scheduling strategy 71, 86, 91, 103-104

 389

Index

Secure Sockets Layer (SSL) 91, 99, 161, 166, 172,
216

Secure Unified Process (SUP) 182
Security 3, 6-7, 12, 14, 27, 31, 42-44, 53, 90-100,

104, 118, 120, 122-125, 127-129, 131-133,
152, 155-157, 159-160, 162-163, 165, 167,
170-173, 177-178, 180-197, 199, 201-210, 212,
214, 217-219, 258, 260, 266, 289, 333, 340,
342-344

Security Assertion Markup Language (SAML) 120,
133

Security Association (SA) 266
Security demand (SD) 91-94, 96, 98
Security level (SL) 92-94, 192, 201
Security Prioritized MinMin (SPMinMin) 90-91,

93-99
Self-adaptive load balance (SALB) 290-294, 296
Self-organization 186, 330, 343
Semantic clusters 300-302, 304-310
Semantic overlay networks (SONs) 55, 115, 309,

311-312
Sender based slot assignment algorithm (SBSA)

314, 317-319, 322
Simple API for Grid Applications (SAGA) 14-15,

37-38
Six degrees of separation 290
Skip graphs 332, 340
Small world phenomenon 307
Small world theory 290
Socket module 290
Space filling curve (SFC) 332-333
Static data feeder 82-87
Storage resource broker (SRB) 35, 209-210, 212-

214, 218
Subject Information Access (SIA) 169, 172
Supercomputers 1-5, 8, 11, 25-26, 32, 91, 136, 238
Supercomputing 1-5, 9-10, 21, 24-26, 28-29, 36,

38, 88, 118, 126, 130, 132
Super peers 285, 289-290
Superscalar 18-19, 35

T
Technical services 40
Terena Academic CA Repository (TACAR) 166,

169, 173-175, 177

Third-Party Codes 20
Time-to-Fail (TTF) 137-139, 141, 143, 145-146,

149-150, 152
Time-to-Stability (TS) 277, 309
TOP500 1-2, 9, 136
Total Lines of Code (TLOC) 50, 52
Transport Layer Security (TLS) 36, 91, 99, 216
Trust-based security framework 218
Trusted storage resource broker (TSRB) 212-217,

220
Turnaround Based Scheduling Model (TSM) 104-

108, 113
Two-step gridification methodology 40

U
UNICORE 25-26, 28, 38, 285
University of Stuttgart 1, 5-6
Upper-tier network 299-304, 310
User-based access control lists (User ACLs) 212

V
Victorian Partnership for Advanced Computing

(VPAC) 247-248, 251
Video communication 330
Virtual Data Toolkit (VDT) 157, 164
Virtual Machines (VMs) 27-28, 30-31, 132, 219
Virtual Organization Management Service (VOMS)

168, 178, 218
Virtual Organizations (VOs) 9, 11, 26, 36, 99, 119,

125-126, 132-133, 155, 157, 161-162, 165-168,
172-173, 175, 177, 184, 212, 217-219, 258,
260-262, 264-265, 267, 284-286

Voice communication 330

W
Wide-area networks 299-300, 310
Wired grid 255-256
Wireless mesh networks 313-314, 327-328
Wireless networks 181, 185-186, 203-204, 265,

267, 283, 313-314, 326, 328-329
Wireless sensor networks (WSNs) 316, 329

	Title
	Copyright Page
	Table of Contents
	Detailed Table of Contents
	Preface
	Section 1 Introduction
	Supercomputers in Grids
	Porting HPC Applications to Grids and Clouds
	Grid-Enabling Applications with JGRIM

	Section 2 Scheduling
	Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid
	Speculative Scheduling of Parameter Sweep Applications using Job Behaviour Descriptions
	A Security Prioritized Computational Grid Scheduling Model
	A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

	Section 3 Security
	A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control in Grids
	Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing
	Publication and Protection of Sensitive Site Information in a Grid Infrastructure
	Federated PKI Authentication in Computing Grids
	Identifying Secure Mobile Grid Use Cases
	Trusted Data Management for Grid-Based Medical Applications

	Section 4 Applications
	Large-Scale Co-Phylogenetic Analysis on the Grid
	Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism
	Self-Configuration and Administration of Wireless Grids
	Push-based Prefetching in Remote Memory Sharing System
	Distributed Dynamic Load Balancing in P2P Grid Systems
	An Ontology-Based P2P Network for Semantic Search
	FH-MAC
	A Decentralized Directory Service for Peer-to-Peer-Based Telephony

	Compilation of References
	About the Contributors
	Index

