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Preface

Cloud computing has emerged as the natural successor of the different strands of distributed systems - 
concurrent, parallel, distributed, and Grid computing. Like a killer application, cloud computing is 
causing governments and the enterprise world to embrace distributed systems with renewed interest. In 
evolutionary terms, clouds herald the third wave of Information Technology, in which virtualized re-
sources (platform, infrastructure, software) are provided as a service over the Internet. This economic 
front of cloud computing, whereby users are charged based on their usage of computational resources 
and storage, is driving its current adoption and the creation of opportunities for new service providers. 
As can be gleaned from press releases, the US government has registered strong interest in the overall 
development of cloud technology for the betterment of the economy.

The transformation enabled by cloud computing follows the utility pricing model (subscription/me-
tered approach) in which services are commoditized as practiced in electricity; water, telephony and gas 
industries. This approach follows a global vision in which users plug their computing devices into the 
Internet and tap into as much processing power as needed. Essentially, a customer (individual or organi-
zation) gets computing power and storage, not from his/her computer, but over the Internet on demand.

Cloud technology comes in different flavors: public, private, and hybrid clouds. Public clouds are 
provided remotely to users from third-party controlled data centers, as opposed to private clouds that 
are more of virtualization and service-oriented architecture hosted in the traditional settings by corpora-
tions. It is obvious that the economies of scale of large data centers (vendors like Google) offer public 
clouds an economic edge over private clouds. However, security issues are a major source of concerns 
about public clouds, as organizations will not distribute resources randomly on the Internet, especially 
their prized databases, without a measure of certainty or safety assurance. In this vein, private clouds 
will persist until public clouds mature and garner corporate trust.

The embrace of cloud computing is impacting the adoption of Grid technology. The perceived use-
fulness of Grid computing is not in question, but other factors weigh heavily against its adoption such 
as complexity and maintenance as well as the competition from clouds. However, the Grid might not 
be totally relegated to the background as it could complement research in the development of cloud 
middleware (Udoh, 2010). In that sense, this book considers and foresees other distributed systems not 
necessarily standing alone as entities as before, but largely subordinate and providing research stuff to 
support and complement the increasingly appealing cloud technology.

The new advances in cloud computing will greatly impact IT services, resulting in improved com-
putational and storage resources as well as service delivery. To keep educators, students, researchers, 
and professionals abreast of advances in the cloud, Grid, and high performance computing, this book 
series Cloud, Grid, and High Performance Computing: Emerging Applications will provide coverage 
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of topical issues in the discipline. It will shed light on concepts, protocols, applications, methods, and 
tools in this emerging and disruptive technology. The book series is organized in four distinct sections, 
covering wide-ranging topics: (1) Introduction (2) Scheduling (3) Security and (4) Applications.

Section 1, Introduction, provides an overview of supercomputing and the porting of applications to 
Grid and cloud environments. Cloud, Grid and high performance computing are firmly dependent on 
the information and communication infrastructure. The different types of cloud computing - software-
as-a-service (SaaS), platform-as-a-service (PaaS), infrastructure-as-a-service (IaaS), and the data centers 
exploit commodity servers and supercomputers to serve the current needs of on-demand computing. The 
chapter Supercomputers in Grids by Michael M. Resch and Edgar Gabriel, focuses on the integration 
and limitations of supercomputers in Grid and distributed environments. It emphasizes the understanding 
and interaction of supercomputers as well as its economic potential as demonstrated in a public-private 
partnership project. As a matter of fact, with the emergence of cloud computing, the need for super-
computers in data centers cannot be overstated. In a similar vein, Porting HPC Applications to Grids 
and Clouds by Wolfgang Gentzsch guides users through the important stages of porting applications to 
Grids and clouds as well as the challenges and solutions. Porting and running scientific grand challenge 
applications on the DEISA Grid demonstrated this approach. This chapter equally gave an overview of 
future prospects of building sustainable Grid and cloud applications. In another chapter, Grid-Enabling 
Applications with JGRIM, researchers Cristian Mateos, Alejandro Zunino, and Marcelo Campo recog-
nize the difficulties in building Grid applications. To simplify the development of Grid applications, the 
researchers developed JGRIM, which easily Gridifies Java applications by separating functional and 
Grid concerns in the application code. JGRIM simplifies the process of porting applications to the Grid, 
and is competitive with similar tools in the market.

Section 2, Scheduling, is a central component in the implementation of Grid and cloud technology. 
Efficient scheduling is a complex and an attractive research area, as priorities and load balancing have to 
be managed. Sometimes, fitting jobs to a single site may not be feasible in Grid and cloud environments, 
requiring the scheduler to improve allocation of parallel jobs for efficiency. In Moldable Job Allocation 
for Handling Resource Fragmentation in Computational Grid, Huang, Shih, and Chung exploited the 
moldable property of parallel jobs in formulating adaptive processor allocation policies for job schedul-
ing in Grid environment. In a series of simulations, the authors demonstrated how the proposed poli-
cies significantly improved scheduling performance in heterogeneous computational Grid. In another 
chapter, Speculative Scheduling of Parameter Sweep Applications Using Job Behavior Descriptions, 
Ulbert, Lőrincz, Kozsik, and Horváth demonstrated how to estimate job completion times that could ease 
decisions in job scheduling, data migration, and replication. The authors discussed three approaches of 
using complex job descriptions for single and multiple jobs. The new scheduling algorithms are more 
precise in estimating job completion times.

Furthermore, some applications with stringent security requirements pose major challenges in com-
putational Grid and cloud environments. To address security requirements, in A Security Prioritized 
Computational Grid Scheduling Model: An Analysis, Rekha Kashyap and Deo Prakash Vidyarthi proposed 
a security aware computational scheduling model that modified an existing Grid scheduling algorithm. 
The proposed Security Prioritized MinMin showed an improved performance in terms of makespan and 
system utilization. Taking a completely different bearing in scheduling, Zahid Raza and Deo Prakash 
Vidyarthi in the chapter A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid, 
developed a biological approach that incorporates genetic algorithm (GA). This natural selection and 
evolution method optimizes scheduling in computational Grid by minimizing turnaround time. The 
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developed model, which compared favorably to existing models, was used to simulate and evaluate 
clusters to obtain the one with minimum turnaround time for job scheduling. As the cloud environments 
expand to the corporate world, improvements in GA methods could find use in some search problems.

Section 3, Security, is one of the major hurdles cloud technology must overcome before any wide-
spread adoption by organizations. Cloud vendors must meet the transparency test and risk assessment 
in information security and recovery. Falling short of these requirements might leave cloud computing 
frozen in private clouds. Preserving user privacy and managing customer information, especially person-
ally identifiable information, are central issues in the management of IT services. Wolfgang Hommel, in 
the chapter A Policy-Based Security Framework for Privacy-Enhancing Data Access and Usage Control, 
discusses how recent advances in privacy enhancing technologies and federated identity management 
can be incorporated in Grid environments. The chapter demonstrates how existing policy-based privacy 
management architectures could be extended to provide Grid-specific functionality and integrated into 
existing infrastructures (demonstrated in an XACML-based privacy management system).

In Adaptive Control of Redundant Task Execution for Dependable Volunteer Computing, Wang,  
Murata, Takizawa, and Kobayashi examined the security features that could enable Grid systems to 
exploit the massive computing power of volunteer computing systems. The authors proposed the use of 
cell processor as a platform that could use hardware security features. To test the performance of such a 
processor, a secure, parallelized, K-Means clustering algorithm for a cell was evaluated on a secure system 
simulator. The findings point to possible optimization for secure data mining in the Grid environments.

To further provide security in Grid and cloud environments, Shreyas Cholia and R. Jefferson Porter 
discussed how to close the loopholes in the provisioning of resources and services in Publication and 
Protection of Sensitive Site Information in a Grid Infrastructure. The authors analyzed the various vec-
tors of information being published from sites to Grid infrastructures, especially in the Open Science 
Grid, including resource selection, monitoring, accounting, troubleshooting, logging, and site verification 
data. Best practices and recommendations were offered to protect sensitive data that could be published 
in Grid infrastructures.

Authentication mechanisms are common security features in cloud and Grid environments, where 
programs inter-operate across domain boundaries. Public key infrastructures (PKIs) provide means to 
securely grant access to systems in distributed environments, but as PKIs grow, systems become over-
taxed to discover available resources especially when certification authority is foreign to the prevailing 
environment. Massimiliano Pala, Shreyas Cholia, Scott A. Rea, and Sean W. Smith proposed, in Feder-
ated PKI Authentication in Computing Grids: Past, Present, and Future a new authentication model 
that incorporates PKI resource query protocol into the Grid security infrastructure that will as well find 
utility in the cloud environments. Mobile Grid systems and its security are a major source of concern, 
due to its distributed and open nature. Rosado, Fernández-Medina, López, and Piattini present a case 
study of the application of a secured methodology to a real mobile system in Identifying Secure Mobile 
Grid Use Cases.

Furthermore, Noordende, Olabarriaga, Koot, and de Laat developed a trusted data storage infrastructure 
for Grid-based medical applications. In Trusted Data Management for Grid-Based Medical Applications, 
while taking cognizance of privacy and security aspects, they redesigned the implementation of common 
Grid middleware components, which could impact the implementation of cloud applications as well.

Section 4, Applications, are increasingly deployed in the Grid and cloud environments. The archi-
tecture of Grid and cloud applications is different from the conventional application models and, thus 
requires a fundamental shift in implementation approaches. Cloud applications are even more unique as 
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they eliminate installation, maintenance, deployment, management, and support. These cloud applications 
are considered Software as a Service (SaaS) applications. Grid applications are forerunners to clouds and 
are still common in scientific computing. A biological application was introduced by Heinz Stockinger 
and co-workers in a chapter titled Large-Scale Co-Phylogenetic Analysis on the Grid. Phylogenetic data 
analysis is known to be compute-intensive and suitable for high performance computing. The authors 
improved upon an existing sequential and parallel AxParafit program, by producing an efficient tool that 
facilitates large-scale data analysis. A free client tool is available for co-phylogenetic analysis.

In chapter Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism by 
Philip Chan and David Abramson, the researchers described distributed algorithm for implementing 
dynamic resource availability in an asynchronous pipe mechanism that couples workflow components. 
Here, fault-tolerant communication was made possible by persistence through adaptive caching of pipe 
segments while providing direct data streaming. Ashish Agarwal and Amar Gupta in another chapter, 
Self-Configuration and Administration of Wireless Grids, described the peculiarities of wireless Grids 
such as the complexities of the limited power of the mobile devices, the limited bandwidth, standards 
and protocols, quality of service, and the increasingly dynamic nature of the interactions involved. To 
meet these peculiarities, the researcher proposed a Grid topology and naming service that self-configures 
and self-administers various possible wireless Grid layouts. In computational Grid and cloud resource 
provisioning, memory usage may sometimes be overtaxed. Although RAM Grid can be constrained 
sometimes, it provides remote memory for the user nodes that are short of memory. Researchers Rui 
Chu, Nong Xiao, and Xicheng Lu, in the chapter Push-Based Prefetching in Remote Memory Sharing 
System, propose the push-based prefetching to enable the memory providers to push the potential useful 
pages to the user nodes. With the help of sequential pattern mining techniques, it is expected that useful 
memory pages for prefetching can be located. The authors verified the effectiveness of the proposed 
method through trace-driven simulations.

In chapters Distributed Dynamic Load Balancing in P2P Grid Systems by Yu, Huang, and Lai and An 
Ontology-Based P2P Network for Semantic Search by Gu, Zhang, and Pung, the researchers explored 
the potentials and obstacles confronting P2P Grids. Lai, Wu, and Lin described the effective utilization 
of P2P Grids in efficient scheduling of jobs by examining a P2P communication model. The model aided 
job migration technology across heterogeneous systems and improved the usage of distributed comput-
ing resources. On the other hand, Gu, Zhang, and Pung dwelt on facilitating efficient search for data in 
distributed systems using an ontology-based peer-to-peer network. Here, the researchers grouped together 
data with the same semantics into one-dimensional semantic ring space in the upper-tier network. In the 
lower-tier network, peers in each semantic cluster were organized as chord identifier space. The authors 
demonstrated the effectiveness of the proposed scheme through simulation experiment.

In this final section, there are other chapters that capture the research trends in the realm of high 
performance computing. In a high performance computing undertaking, researchers Djamel Tandjaoui, 
Messaoud Doudou, and Imed Romdhani proposed a new hybrid MAC protocol, named H-MAC, for 
wireless mesh networks. The protocol exploits channel diversity and a medium access control method 
in ensuring the quality of service requirement. Using ns-2 simulator, the researchers implemented and 
compared H-MAC with other MAC protocol used in Wireless Network and found that H-MAC performs 
better compared to Z-MAC, IEEE 802.11 and LCM-MAC.

IP telephony has emerged as the most widely used peer-to-peer-based application. Although success 
has been recorded in decentralized communication, providing a scalable peer-to-peer-based distributed 
directory for searching user entries still poses a major challenge. In a chapter titled A Decentralized 
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Directory Service for Peer-to-Peer-Based Telephony, researchers - Fabian Stäber, Gerald Kunzmann, 
and Jörg P. Müller, proposed the Extended Prefix Hash Tree algorithm that can be used to implement 
an indexing infrastructure supporting range queries on top of DHTs.

In conclusion, cloud technology is the latest iteration of information and communications technology 
driving global business competitiveness and economic growth. Although relegated to the background, 
research in Grid technology fuels and complements activities in cloud computing, especially in the 
middleware technology. In that vein, this book series is a contribution to the growth of cloud technology 
and global economy, and indeed the information age.

Emmanuel Udoh 
Indiana Institute of Technology, USA
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INTRODUCTION

Supercomputers have become widely used in 
academic research (Nagel, Kröner and Resch, 
2007) and industrial development over the past 
years. Architectures of these systems have varied 
over time. For a long time special purpose systems 
have dominated the market. This has changed 
recently. Supercomputing today is dominated by 
standard components.

A quick look at the list of fastest computers 
worldwide (TOP500, 2008) shows that clusters 

built from such standard components have become 
the architecture of choice. This is highlighted by 
the fact that the fraction of clusters in the list has 
increased from about 2% in 2000 to about 73% 
in 2006. The key driving factor is the availability 
of competitive processor technology in the mass 
market on the one hand and a growing aware-
ness of this potential in the user community on 
the other hand.

These trends have allowed using the same 
technology from the level of desktop systems to 
departmental systems and up to high end super-
computers. Simulation has hence been brought 
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Supercomputers in Grids

ABSTRACT

This article describes the state of the art in using supercomputers in Grids. It focuses on various ap-
proaches in Grid computing that either aim to replace supercomputing or integrate supercomputers in 
existing Grid environments. We further point out the limitations to Grid approaches when it comes to 
supercomputing. We also point out the potential of supercomputers in Grids for economic usage. For 
this, we describe a public-private partnership in which this approach has been employed for more than 
10 years. By giving such an overview we aim at better understanding the role of supercomputers and 
Grids and their interaction.
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deep into the development process of academia 
and industrial companies.

The introduction of standard hardware com-
ponents was accompanied by a similar trend in 
software. With Linux there is a standard operating 
system available today. It is also able to span the 
wide range from desktop systems to supercomput-
ers. Although we still see different architectural 
approaches using standard hardware components, 
and although Linux has to be adapted to these 
various architectural variations, supercomputing 
today is dominated by an unprecedented stan-
dardization process.

Standardization of supercomputer components 
is mainly a side effect of an accelerated standard-
ization process in information technology. As a 
consequence of this standardization process we 
have seen a closer integration of IT components 
over the last years at every level. In supercom-
puting, the Grid concept (Foster and Kesselman, 
1998) best reflects this trend. First experiments 
coupling supercomputers were introduced by 
Smarr and Catlett (1992) fairly early – at that time 
still being called metacomputing. DeFanti et al. 
(1996) showed further impressive metacomput-
ing results in the I-WAY project. Excellent results 
were achieved by experiments of the Japan Atomic 
Energy Agency (Imamura et al., 2000). Resch 
et al. (1999) carried out the first transatlantic 
metacomputing experiments. After initial efforts 
to standardize the Grid concept, it was finally 
formalized by Foster et al. (2001).

The promise of the Grid was twofold. Grids 
allow the coupling of computational and other 
IT resources to make any resource and any level 
of performance available to any user worldwide 
at anytime. On the other hand, the Grid allows 
easy access and use of supercomputers and thus 
reduces the costs for supercomputing simulations.

DEFINITIONS

When we talk about supercomputing we typically 
consider it as defined by the TOP500 list (TOP500, 
2008). This list, however, mainly summarizes 
the fastest systems in terms of some predefined 
benchmarks. A clear definition of supercomputers 
is not given. For this article we define the purpose 
of supercomputing as follows:

• We want to use the fastest system available 
to get insight that we could not get with 
slower systems. The emphasis is on getting 
insight rather than on achieving a certain 
level of speed.

Any system (hardware and software combined) 
that helps to achieve this goal and fulfils the criteria 
given is considered to be a supercomputer. The 
definition itself implies that supercomputing and 
simulations are a third pillar of scientific research 
and development, complementing empirical and 
theoretical approaches.

Often, simulation complements experiments. 
To a growing extent, however, supercomputing 
has reached a point where it can provide insight 
that cannot even be achieved using experimental 
facilities. Some of the fields where this happens 
are climate research, particle physics or astrophys-
ics. Supercomputing in these fields becomes a key 
technology if not the only possible one to achieve 
further breakthroughs.

There is also no official scientific definition for 
the Grid as the focus of the concept has changed 
over the years. Initially, supercomputing was the 
main target of the concept. Foster & Kesselman 
(1998) write:

A computational grid is a hardware and software 
infrastructure that provides dependable, consis-
tent, pervasive, and inexpensive access to high-end 
computational capabilities.



3

Supercomputers in Grids

This definition is very close to the concept 
of metacomputing coupling supercomputers to 
increase the level of performance. The Grid was 
intended to replace the local supercomputer. Soon, 
however it became clear that the Grid concept 
could and should be extended and Foster, Kessel-
man & Tuecke (2001) describe the Grid as

… flexible, secure, coordinated resource sharing 
among dynamic collections of individuals, institu-
tions, and resources. 

This is a much wider definition of the concept 
which goes way beyond the narrow problem of 
supercomputing. For the purpose of this article we 
use this second definition. We keep in mind though 
that the Grid started out as a concept to comple-
ment the existing supercomputing architectures.

GRIDS AND  SUPERCOMPUTERS

Today the main building blocks to create a real 
scientific Grid are mainly in place. High speed 
wide area networks provide the necessary com-
munication performance. Security procedures 
have been established which meet the limited 
requirements of scientists. Data management 
issues have been addressed to handle the large 
amount of data created e.g. in the high energy 
physics community (LHC, 2008). As of today, 
virtually every industrially developed nation has 
created its own national Grid infrastructure with 
trans-national Grids rapidly evolving (DEISA, 
2008; PRAGMA-Grid 2008).

From the point of view of supercomputing, the 
question arises which role Grids can play in high 
performance computing simulation. Some aspects 
are briefly discussed in the following.

Grids Do Support Supercomputing

The idea of the Grid is mainly an idea of coordina-
tion and consolidation. These aspects have been 
widely ignored by the supercomputing community 
for a long time. A supercomputer was – and still is 
today – a one of a kind system. It is only available 
to a small number of users. Its mode of operation 
can be compared to the exclusive usage of an 
experimental facility. Typically, a supercomputer 
has no free resources. The user typically has to 
wait to use a supercomputer system – not the 
other way round.

Access to a supercomputer is hence not seen to 
be a standard service and no specific measures are 
taken to provide supercomputing at a comparable 
level of service as is done for other IT-services.

The Grid has, however, changed our view 
of supercomputers. From stand-alone systems, 
they have turned into “large nodes” of a mesh 
of resources. Although they are still unique in 
their potential to solve large problems the Grid 
has integrated them now into an ecosystem in 
which they play an important role. Being part of 
such a larger IT-landscape supercomputers have 
started to benefit substantially from lower level 
systems technology. This is in a sense a change 
of paradigm since so far supercomputers have 
typically been ahead of smaller systems in terms 
of complexity and level of technology. The flow 
of innovation – that traditionally was directed 
from supercomputers towards PCs – has at least 
partially been reversed.

The current situation can be described as 
follows: Supercomputers have been integrated 
into an ecosystem of IT-services. The quality of 
service for users has been improved. Aspects like 
security, accounting and data management have 
been brought in by the Grid community and the 
supercomputing community has picked them up. 
The notable exceptions are dedicated large scale 
system in classified installations. It remains to 
be seen whether these can remain in splendid 
isolation without losing contact with the techno-
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logical drivers of the main stream IT-technology 
development.

Grids Cannot Replace 
Supercomputers

Sometimes the Grid is considered to be a replace-
ment for supercomputers. The reasoning behind 
this idea is that the Grid provides such a massive 
amount of CPU cycles that any problem can eas-
ily be solved “on the Grid”. The basic concept 
for such reasoning is the premise that a given 
problem can be described in terms of required 
CPU cycles needed. On the other hand, any given 
Grid configuration can be described in terms of 
CPU cycles provided. If one can match compute 
demand and compute supply, the problem is as-
sumed to be solved.

This is, however, a deeply flawed view of 
supercomputing. The purpose of a supercomputer 
is to provide the necessary speed of calculation to 
solve a complex problem in an acceptable time. 
Only when being able to focus a huge resource 
on a single problem can we achieve this goal. So, 
two aspects are important here.

The size of a problem: We know of a number 
of problems that we call large which can actually 
be split into several small problems. For such em-
barrassingly parallel problems the Grid typically 
is a very good solution. A number of approaches 
have been developed among which Berkeley Open 
Infrastructure for Network Computing (BOINC 
2008) and the World Community Grid (2008) are 
the most interesting ones. Both provide access 
to distributed resources for problems that can be 
split into very small junks of work. These small 
problems are sent out to a mass of computers 
(virtually every PC can be used). Doing this, 
the systems are able to tap into the Petaflops of 
performance available across the globe in an ac-
cumulation of small computers. However, there 
are other large scale problems that cannot be split 
into independent smaller parts. These truly large 
scale problems (high resolution CFD, high resolu-

tion complex scenario crash,) by nature cannot be 
made embarrassingly parallel and any distributed 
Grid solution has so far failed on them.

The time to solution: Most of the large scale 
problems mentioned above actually can run on 
smaller systems. However, on such smaller sys-
tems their solution may take weeks or even months. 
For any practical purpose such simulations would 
make little sense. The Grid is hence unable to 
provide scientists with a tool for these simulation 
experiments if it aims to replace supercomputers 
by a large amount of distributed systems.

THE ROLE OF 
SUPERCOMPUTERS IN GRIDS

The Grid has often been compared to the power grid 
(Chetty and Buyya, 2002). It actually is useful to 
look at the power grid as an analogy for any Grid 
to be set up. Power Grids are characterized by:

• A core of view production facilities pro-
viding a differing level of performance 
much higher than the need of any single 
user. Small facilities complement the over-
all power Grid.

• A very large number of users that typically 
require a very small level of performance 
compared to the production capacity of the 
providers.

• A standardized way of bringing suppliers 
and users together.

• A loosely coordinated operation of suppli-
ers across large geographic areas.

• Breakdowns of the overall system if coor-
dination is too loose or if single points of 
failure are hit.

• Special arrangements for users requiring a 
very high level of performance on a per-
manent basis. These are typically large 
scale production facilities like aluminum 
production.
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When comparing the power grid to the compute 
Grid we notice a number of differences that have 
to be considered.

• Electrical power production can be 
changed at request (depending on the level 
of usage) with a maximum level of power 
defined. Depending on the type of power 
plant the performance may be increased to 
maximum or decreased to zero within min-
utes to days. Compute power, on the other 
hand, is always produced regardless of its 
usage. We speak of idle processors.

• Resources for electrical power production 
can be stored and used later. Even electric-
ity that is produced can be stored for later 
usage by transferring it to hydro power 
plants’ storage systems or using hydrogen 
storage devices. Compute power can never 
be stored.

• The lifetime of an electrical power plant 
is measured in tens of years. Powering up 
and powering down such plants can eco-
nomically make sense. The lifetime of a 
supercomputer is more like three to five 
years. In order to make sense economi-
cally a supercomputer has to run 7x24 for 
this short period of life. Given the increase 
in speed of standard computer components 
this situation will not change over the next 
years.

When we analyze the analogy between the com-
pute Grid and the power Grid carefully we find:

• A number of concepts that make sense in 
a large scale power Grid do not work in 
compute Grids.

• The economy of supercomputing differs 
substantially from the economy of the 
power Grid.

• Supercomputers are similar to large scale 
suppliers in the power grid as they provide 
a high level of performance.

• Supercomputer users are like special pur-
pose users in the power grid that need 
a permanent supply of a high level of 
performance.

From this, we can conclude that supercomput-
ers have to be part of a cyber-infrastructure. They 
have to be seen as large scale instruments that are 
available to a small number of users with large 
scale problems. In that sense supercomputers are 
special nodes in any compute Grid.

In the following we describe a prototype Grid 
that was developed over long time. It is charac-
terized by:

• Integration of a small set of supercomput-
ers and high-end compute-servers

• Dual use by academia and industry
• A commercial approach to supercomputing

A PUBLIC-PRIVATE 
SUPERCOMPUTING-
GRID PARTNERSHIP

The University of Stuttgart is a technically oriented 
university with one of the leading mechanical en-
gineering departments in Germany. The university 
has created a strong long term relationship with 
various companies in the region of Stuttgart. The 
most important ones are Daimler, Porsche and 
Bosch. The computing center of the university 
has hence been working closely with these com-
panies since the early days of high performance 
computing in Stuttgart.

The computing center had been running HPC 
systems for some 15 years when in the late 1980s 
it decided to collaborate directly with Porsche 
in HPC operations. The collaboration resulted 
in shared investment in vector supercomputers 
for several years. Furthermore, the collaboration 
helped to improve the understanding of both 
sides and helped to position high performance 
computing as a key technology in academia and 
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industry. The experiment was successful and was 
continued for about 10 years.

First attempts of the computing center to at-
tract also usage from Daimler initially failed. 
This changed when in 1995 both the CEO of 
Daimler and the prime minister of the state of 
Baden-Württemberg gave their support for a col-
laboration of Daimler and the computing center 
at the University of Stuttgart in the field of high 
performance computing. The cooperation was 
realized as a public-private partnership. In 1995, 
hww was established with hww being an acronym 
for Höchstleistungsrechner für Wissenschaft und 
Wirtschaft (HPC for academia and industry)

The initial share holders of hww were:

• Daimler Benz had concentrated all its IT 
activities in a subsidiary called debis. So 
debis became the official share holder of 
hww holding 40% of the company.

• Porsche took a minority share of 10% of 
the company mainly making sure to con-
tinue the partnership with the University of 
Stuttgart and its computing center.

• The University of Stuttgart took a share 
of 25% and was represented by the High 
Performance Computing Center Stuttgart 
(HLRS).

• The State of Baden-Württemberg took 
a share of 25% being represented by the 
Ministry of Finance and the Ministry of 
Science.

The purpose of hww was not only to bring 
together academia and industry in using high 
performance computers, but to harvest some of the 
benefits of such collaboration. The key advantages 
were expected to be:

• Leverage of market power: Combining 
the purchasing power of industry and aca-
demia should help to achieve better price/
performance for all partners both for pur-
chase price and maintenance costs.

• Sharing of operational costs: Creating a 
group of operational experts should help to 
bring down the staff cost for running sys-
tems. This should be mainly achieved by 
combining the expertise of a small group 
of people and by being able to handle vaca-
tion time and sick leave much easier than 
before.

• Optimize system usage: Industrial usage 
typically comes in bursts when certain 
stages in the product development cycle 
require a lot of simulations. Industry then 
has a need for immediate availability of 
resources. In academia most simulations 
are part of long term research and systems 
are typically filled continuously. The intent 
was to find a model to intertwine the two 
modes for the benefit of both sides.

Prerequisites and Problems

A number of issues had to be resolved in order to 
make hww operational. The most pressing ones 
were: Security related issues: This included the 
whole complex of trust and reliability from the 
point of view of industrial users. While for aca-
demic users data protection and availability of 
resources are of less concern, it is vital for industry 
that its most sensitive data are protected and no 
information leaks to other users. Such information 
may even include things as the number and size of 
jobs run by a competitor. Furthermore, permanent 
availability of resources is a must in order to meet 
internal and external deadlines. While academic 
users might accept a failure of resources once in 
a while, industry requires reliable systems.

Data and communication: This includes the 
question of connectivity and handling input 
and output data. Typically network connectivity 
between academia and industry is poor. Most 
research networks are not open for industry. Most 
industries are worried about using public networks 
for security reasons. Accounting mechanisms for 
research networks are often missing. So, even to 
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connect to a public institution may be difficult for 
industry. The amount of data to be transferred is 
another big issue as the size of output data can get 
prohibitively high. Both issues were addressed by 
increasing speed of networks and were helped by 
a tendency of German and local research networks 
opening up to commercial users.

Economic issues: One of the key problems 
was the establishment of costs for the usage of 
various resources. Until then no sound pricing 
mechanism for the usage of HPC system had been 
established either at the academic or industrial 
partners. Therefore, the partners had to agree on 
a mechanism to find prices for all resources that 
are relevant for the usage of computers.

Legal and tax issues: The collaboration of 
academia and industry was a challenge for lawyers 
on both sides. The legal issues had to be resolved 
and the handling of taxes had to be established in 
order to make the company operational.

After sorting out all these issues, the company 
was brought to life and its modes of operation had 
to be established.

Mode of Operation

In order to help achieve its goals, a lean organi-
zation for hww was chosen. The company itself 
does not have any staff. It is run by two part time 
directors. Hww was responsible for operation of 
systems, security, and accounting of system us-
age. In order to do this, work was outsourced to 
the partners of hww.

A pricing mechanism has been established 
that guarantees that any service of hww is sold to 
share holders of hww at cost price minimizing the 
overhead costs to the absolutely necessary. Costs 
and prices are negotiated for a one year period 
based on the requirements and available services 
of all partners. This requires an annual planning 
process for all services and resources offered by 
the partners through hww. The partners specifi-
cally have to balance supply and demand every 

year and have to adapt their acquisition strategy 
to the needs of hww.

Hww is controlled by an advisory board 
that meets regularly (typically 3 times a year). 
The board approves the budget of hww and dis-
cusses future service requirements of the overall 
company. The partners of hww have agreed that 
industrial services are provided by industry only 
while academic services are provided by academic 
partners only.

The Public-Private Grid

Over the life time of hww, a Grid infrastructure 
was set up that today consist of the following key 
components:

• A national German supercomputer facility, 
a number of large clusters and a number of 
shared memory systems.

• File system providing short and long term 
data storage facilities.

• Network connectivity for the main partners 
at the highest speed available.

• A software and security concept that meets 
the requirements of industrial users with-
out restraining access for academic users.

The cyber-infrastructure created through the 
cooperation in hww is currently used by scientists 
from all over Germany and Europe and engineers 
in several large but also small and medium sized 
enterprises. Furthermore, the concept has been 
integrated into the German national D-Grid project 
and the state-wide Baden-Württemberg Grid. It 
thus provides a key backbone facility for simula-
tion in academia and industry.

DISCUSSION OF RESULTS

We now have a 13 years experience with the 
hww concept. The company has undergone some 
changes over the years. The main changes are:
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• Change of partners: When Daimler sold 
debis, the shares of an automotive com-
pany were handed over to an IT company. 
The new partner T-Systems further diver-
sified its activities creating a subsidiary 
(called T-Systems SfR) together with the 
German Aerospace Center. T-Systems SfR 
took 10% of the 40% share of T-Systems. 
On the public side, two other universities 
were included with the four public partners 
holding 12.5% each.

• Change of operational model: Initially 
systems were operated by hww which out-
sourced task to T-Systems and HLRS at the 
beginning. Gradually, a new model was 
used. Systems are operated by the owners 
of the systems following the rules and reg-
ulations of hww. The public-private part-
nership gradually moves from being an op-
erating company towards being a provider 
of a platform for the exchange of services 
and resources for academia and industry.

These organizational changes had an impact on 
the operation of hww. Having replaced an end user 
(Daimler) by a re-seller hww focused more on the 
re-selling of CPU cycles. This was emphasized by 
public centers operating systems themselves and 
only providing hww with CPU time. The increase 
in number of partners, on the other hand, made it 
more difficult to find consensus.

Overall, however, the results of 13 years of 
hww are positive. With respect to the expected 
benefits and advantages both of hww and its Grid 
like model the followings are noticeable:

The cost issue: Costs for HPC can potentially 
be reduced for academia if industry pays for us-
age of systems. Overall, hww was positive for 
its partners in this respect over the last 13 years. 
Additional funding was brought in through selling 
CPU time but also because hardware vendors had 
an interest to have their systems used by industry 
through hww. At the same time, however, industry 
takes away CPU cycles from academia increasing 

the competition for scarce resources. The other 
financial argument is a synergistic effect that ac-
tually allowed achieving lower prices whenever 
academia and industry merged their market power 
through hww to buy larger systems together.

Improved resource usage: The improved us-
age of resources during vacation time quickly 
is optimistic at best as companies – at least in 
Europe - tend to schedule their vacation time in 
accordance with public education vacations. As 
a result, industrial users are on vacation when 
scientists are on vacation. Hence, a better resource 
usage by anti-cyclic industrial usage turns out to 
be not achievable. Some argue that by reducing 
prices during vacation time for industry one might 
encourage more industrial usage when resources 
are available. However, here one has to compare 
costs: the costs for CPU time are in the range 
of thousands of Euro that could potentially be 
saved. On the other side, companies would have 
to adapt their working schedules to the vacation 
time of researchers and would have to make sure 
that their staff – very often with small children - 
would have to stay at home. Evidence shows that 
this is not happening

The analysis shows that financially the dual 
use of high performance computers in a Grid can 
be interesting. Furthermore, a closer collaboration 
between industry and research in high performance 
computing has helped to increase the awareness 
for the problems on both sides. Researchers 
understand what the real issues in simulation in 
industry are. Industrial designers understand how 
they can make good use of academic resources 
even though they have to pay for them.

CONCLUSION

Supercomputers can work as big nodes in Grid 
environments. Their users benefit from the soft-
ware developed in general purpose Grids. Industry 
and academia can successfully share such Grids.
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Porting HPC Applications 
to Grids and Clouds

ABSTRACT

A Grid enables remote, secure access to a set of distributed, networked computing and data resources. 
Clouds are a natural complement to Grids towards the provisioning of IT as a service. To “Grid-enable” 
applications, users have to cope with: complexity of Grid infrastructure; heterogeneous compute and 
data nodes; wide spectrum of Grid middleware tools and services; the e-science application architec-
tures, algorithms and programs. For clouds, on the other hand, users don’t have many possibilities to 
adjust their application to an underlying cloud architecture, because of its transparency to the user. 
Therefore, the aim of this chapter is to guide users through the important stages of implementing HPC 
applications on Grid and cloud infrastructures, together with a discussion of important challenges and 
their potential solutions. As a case study for Grids, we present the Distributed European Infrastructure 
for Supercomputing Applications (DEISA) and describe the DEISA Extreme Computing Initiative (DECI) 
for porting and running scientific grand challenge applications on the DEISA Grid. For clouds, we pres-
ent several case studies of HPC applications running on Amazon’s Elastic Compute Cloud EC2 and its 
recent Cluster Compute Instances for HPC. This chapter concludes with the author’s top ten rules of 
building sustainable Grid and cloud e-infrastructures.
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INTRODUCTION

Over the last 40 years, the history of computing 
is deeply marked of the affliction of the applica-
tion developers who continuously are porting and 
optimizing their applications codes to the latest 
and greatest computing architectures and environ-
ments. After the von-Neumann mainframe came 
the vector computer, then the shared-memory 
parallel computer, the distributed-memory par-
allel computer, the very-long-instruction word 
computer, the workstation cluster, the meta-
computer, and the Grid (never fear, it continues, 
with SOA, Cloud, Virtualization, Many-core, and 
so on). There is no easy solution to this, and the 
real solution would be a separation of concerns 
between discipline-specific content and domain-
independent software and hardware infrastructure. 
However, this often comes along with a loss of 
performance stemming from the overhead of the 
infrastructure layers. Recently, users and devel-
opers face another wave of complex computing 
infrastructures: the Grid.

Let’s start with answering the question: What 
is a Grid? Back in 1998, Ian Foster and Carl 
Kesselman (1998) attempted the following defi-
nition: “A computational Grid is a hardware and 
software infrastructure that provides dependable, 
consistent, pervasive, and inexpensive access to 
high-end computational capabilities.” In a sub-
sequent article (Foster, 2002), “The Anatomy of 
the Grid,” Ian Foster, Carl Kesselman, and Steve 
Tuecke changed this definition to include social 
and policy issues, stating that Grid computing is 
concerned with “coordinated resource sharing and 
problem solving in dynamic, multi-institutional 
virtual organizations.” The key concept is the 
ability to negotiate resource-sharing arrangements 
among a set of participating parties (providers 
and consumers) and then to use the resulting 
resource pool for some purpose. This definition 
seemed very ambitious, and as history has proven, 
many of the Grid projects with a focus on these 
ambitious objectives did not lead to a sustainable 

Grid production environment. The simpler the 
Grid infrastructure, and the easier to use, and the 
sharper its focus, the bigger is its chance for suc-
cess. And it is for a good reason (which we will 
explain in the following) that currently Clouds 
are becoming more and more popular (Amazon, 
2007 and 2010).

Over the last ten years, hundreds of applica-
tions in science, industry and enterprises have 
been ported to Grid infrastructures, mostly pro-
totypes in the early definition of Foster & Kes-
selman (1998). Each application is unique in that 
it solves a specific problem, based on modeling, 
for example, a specific phenomenon in nature 
(physics, chemistry, biology, etc.), presented as 
a mathematical formula together with appropri-
ate initial and boundary conditions, represented 
by its discrete analogue using sophisticated nu-
merical methods, translated into a programming 
language computers can understand, adjusted to 
the underlying computer architecture, embedded 
in a workflow, and accessible remotely by the user 
through a secure, transparent and application-
specific portal. In just these very few words, this 
summarizes the wide spectrum and complexity we 
face in problem solving on Grid infrastructures.

The user (and especially the developer) faces 
several layers of complexity when porting applica-
tions to a computing environment, especially to 
a compute or data Grid of distributed networked 
nodes ranging from desktops to supercomputers. 
These nodes, usually, consist of several to many 
loosely or tightly coupled processors and, more and 
more, these processors contain few to many cores. 
To run efficiently on such systems, applications 
have to be adjusted to the different layers, taking 
into account different levels of granularity, from 
fine-grain structures deploying multi-core archi-
tectures at processor level to the coarse granularity 
found in application workflows representing for 
example multi-physics applications. Not enough, 
the user has to take into account the specific re-
quirements of the grid, coming from the different 
components of the Grid services architecture, such 
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as security, resource management, information 
services, and data management.

Obviously, in this article, it seems impossible 
to present and discuss the complete spectrum of 
applications and their adaptation and implementa-
tion on grids. Therefore, we restrict ourselves in the 
following to briefly describe the different applica-
tion classes, present a checklist (or classification) 
with respect to grouping applications according 
to their appropriate grid-enabling strategy. Also, 
for lack of space, here, we are not able to include 
a discussion of mental, social, or legal aspects 
which sometimes might be the knock-out criteria 
for running applications on a grid. Other show-
stoppers such as sensitive data, security concerns, 
licensing issues, and intellectual property, were 
discussed in some detail in Gentzsch (2007a).

In the following, we will consider the main 
three areas of impact on porting applications to 
grids: infrastructure issues, data management is-
sues, and application architecture issues. These 
issues can have an impact on effort and success 
of porting, on the resulting performance of the 
Grid application, and on the user-friendly access 
to the resources, the Grid services, the applica-
tion, the data, and the final processing results, 
among others.

APPLICATIONS AND THE 
GRID INFRASTRUCTURE

As mentioned before, the successful porting of an 
application to a Grid environment highly depends 
on the underlying distributed resource infrastruc-
ture. The main services components offered by a 
Grid infrastructure are security, resource manage-
ment, information services, and data management. 
Bart Jacob et al. suggest that each of these com-
ponents can affect the application architecture, its 
design, deployment, and performance. Therefore, 
the user has to go through the process of matching 
the application (structure and requirements) with 
those components of the Grid infrastructure, as 

described here, closely following the description 
in Jacob at al. (2003).

Applications and Security

The security functions within the Grid archi-
tecture are responsible for the authentication 
and authorization of the user, and for the secure 
communication between the Grid resources. For-
tunately, these functions are an inherent part of 
most Grid infrastructures and don’t usually affect 
the applications themselves, supposed the user 
(and thus the user’s application) is authorized to 
use the required resources. Also, security from 
an application point of view might be taken into 
account in the case that sensitive data is passed to 
a resource to be processed by a job and is written 
to the local disk in a non-encrypted format, and 
other users or applications might have access to 
that data.

Applications and Resource 
Management

The resource management component provides the 
facilities to allocate a job to a particular resource, 
provides a means to track the status of the job while 
it is running and its completion information, and 
provides the capability to cancel a job or other-
wise manage it. In conjunction with Monitoring 
and Discovery Service (described below) the ap-
plication must ensure that the appropriate target 
resource(s) are used. This requires that the applica-
tion accurately specifies the required environment 
(operating system, processor, speed, memory, and 
so on). The more the application developer can 
do to eliminate specific dependencies, the better 
the chance that an available resource can be found 
and that the job will complete. If an application 
includes multiple jobs, the user must understand 
(and maybe reduce) their interdependencies. 
Otherwise, logic has to be built to handle items 
such as inter-process communication, sharing of 
data, and concurrent job submissions. Finally, the 
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job management provides mechanisms to query 
the status of the job as well as perform opera-
tions such as canceling the job. The application 
may need to utilize these capabilities to provide 
feedback to the user or to clean up or free up 
resources when required. For instance, if one job 
within an application fails, other jobs that may be 
dependent on it may need to be cancelled before 
needlessly consuming resources that could be 
used by other jobs.

Applications and Resource 
Information Services

An important part of the process of grid-enabling 
an application is to identify the appropriate (if not 
optimal) resources needed to run the application, 
i.e. to submit the respective job to. The service 
which maintains and provides the knowledge 
about the Grid resources is the Grid Information 
Service (GIS), also known as the Monitoring and 
Discovery Service (e.g. MDS in Globus (Jacob, 
2003). MDS provides access to static and dynamic 
information of resources. Basically, it contains the 
following components:

• Grid Resource Information Service 
(GRIS), the repository of local resource 
information derived from information 
providers.

• Grid Index Information Service (GIIS), 
the repository that contains indexes of re-
source information registered by the GRIS 
and other GIISs.

• Information providers, translate the prop-
erties and status of local resources to the 
format defined in the schema and configu-
ration files.

• MDS client which initially performs a 
search for information about resources in 
the Grid environment.

Resource information is obtained by the infor-
mation provider and it is passed to GRIS. GRIS 

registers its local information with the GIIS, which 
can optionally also register with another GIIS, and 
so on. MDS clients can query the resource infor-
mation directly from GRIS (for local resources) 
and/or a GIIS (for grid-wide resources).

It is important to fully understand the require-
ments for a specific job so that the MDS query can 
be correctly formatted to return resources that are 
appropriate. The user has to ensure that the proper 
information is in MDS. There is a large amount 
of data about the resources within the Grid that is 
available by default within the MDS. However, 
if the application requires special resources or 
information that is not there by default, the user 
may need to write her own information providers 
and add the appropriate fields to the schema. This 
may allow the application or broker to query for the 
existence of the particular resource/requirement.

Applications and Data Management

Data management is concerned with collectively 
maximizing the use of the limited storage space, 
networking bandwidth, and computing resources. 
Within the application, data requirements have 
been built in which determine, how data will 
be move around the infrastructure or otherwise 
accessed in a secure and efficient manner. Stan-
dardizing on a set of Grid protocols will allow 
to communicate between any data source that is 
available within the software design. Especially 
data intensive applications often have a federated 
database to create a virtual data store or other 
options including Storage Area Networks, net-
work file systems, and dedicated storage serv-
ers. Middleware like the Globus Toolkit provide 
GridFTP and Global Access to Secondary Storage 
data transfer utilities in the Grid environment. 
The GridFTP facility (extending the FTP File 
Transfer Protocol) provides secure and reliable 
data transfer between Grid hosts.

Developers and users face a few important data 
management issues that need to be considered in 
application design and implementation. For large 
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datasets, for example, it is not practical and may be 
impossible to move the data to the system where 
the job will actually run. Using data replication 
or otherwise copying a subset of the entire dataset 
to the target system may provide a solution. If 
the Grid resources are geographically distributed 
with limited network connection speeds, design 
considerations around slow or limited data access 
must be taken into account. Security, reliability, 
and performance become an issue when moving 
data across the Internet. When the data access may 
be slow or prevented one has to build the required 
logic to handle this situation. To assure that the 
data is available at the appropriate location by the 
time the job requires it, the user should schedule 
the data transfer in advance. One should also be 
aware of the number and size of any concurrent 
transfers to or from any one resource at the same 
time.

Beside the above described main requirements 
for applications for running efficiently on a Grid 
infrastructure, there are a few more issues which 
are discussed in Jacob (2003), such as schedul-
ing, load balancing, Grid broker, inter-process 
communication, and portals for easy access, and 
non-functional requirements such as performance, 
reliability, topology aspects, and consideration of 
mixed platform environments.

The Simple API for Grid 
Applications (SAGA)

Among the many efforts in the Grid community 
to develop tools and standards which simplify the 
porting of applications to Grids by enabling the ap-
plication to make easy use of the Grid middleware 
services as described above, one of the more pre-
dominant ones is SAGA, a high-level Application 
Programmers Interface (API), or programming 
abstraction, defined by the Open Grid Forum 
(OGF, 2008), an international committee that 
coordinates standardization of Grid middleware 
and architectures. SAGA intends to simplify the 
development of grid-enabled applications, even 

for scientists without any background in computer 
science or Grid computing. Historically, SAGA 
was influenced by the work on the GAT Grid 
Application Toolkit, a C-based API developed 
in the EU-funded project GridLab (GAT, 2005). 
The purpose of SAGA is two-fold:

1.  Provide a simple API that can be used with 
much less effort compared to the interfaces 
of existing Grid middleware.

2.  Provide a standardized, portable, common 
interface for the various Grid middleware 
systems.

According to Goodale (2008) SAGA facilitates 
rapid prototyping of new Grid applications by al-
lowing developers a means to concisely state very 
complex goals using a minimum amount of code.

SAGA provides a simple, POSIX-style API to 
the most common Grid functions at a sufficiently 
high-level of abstraction so as to be able to be 
independent of the diverse and dynamic Grid 
environments. The SAGA specification defines 
interfaces for the most common grid-programming 
functions grouped as a set of functional packages. 
Version 1.0 (Goodale, 2008) defines the follow-
ing packages:

• File package - provides methods for access-
ing local and remote file systems, browsing 
directories, moving, copying, and deleting 
files, setting access permissions, as well as 
zero-copy reading and writing

• Replica package - provides methods for 
replica management such as browsing 
logical file systems, moving, copying, de-
leting logical entries, adding and removing 
physical files from a logical file entry, and 
search logical files based on attribute sets.

• Job package - provides methods for de-
scribing, submitting, monitoring, and 
controlling local and remote jobs. Many 
parts of this package were derived from 
the largely adopted DRMAA Distributed 
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Resource Management Application API 
specification, an OGF standard.

• Stream package - provides methods for 
authenticated local and remote socket con-
nections with hooks to support authoriza-
tion and encryption schemes.

• RPC package - is an implementation of the 
OGF GridRPC API definition and provides 
methods for unified remote procedure calls.

The two critical aspects of SAGA are its sim-
plicity of use and the fact that it is well on the road 
to becoming a community standard. It is important 
to note, that these two properties are provide the 
added value of using SAGA for Grid application 
development. Simplicity arises from being able 
to limit the scope to only the most common and 
important grid-functionality required by applica-
tions. There a major advantages arising from its 
simplicity and imminent standardization. Stan-
dardization represents the fact that the interface is 
derived from a wide-range of applications using 
a collaborative approach and the output of which 
is endorsed by the broader community.

More information about the SAGA C++ 
Reference Implementation (developed at the 
Center for Computation and Technology at the 
Louisiana State University) and various aspects of 
Grid enabling toolkits is available on the SAGA 
implementation home page (SAGA, 2006). It also 
provides additional information with regard to 
different aspects of Grid enabling toolkits.

GRID APPLICATIONS AND DATA

Any e-science application at its core has to deal 
with data, from input data (e.g. in the form of output 
data from sensors, or as initial or boundary data), 
to processing data and storing of intermediate 
results, to producing final results (e.g. data used 
for visualization). Data has a strong influence 
on many aspects of the design and deployment 
of an application and determines whether a Grid 

application can be successfully ported to the grid. 
Therefore, in the following, we present a brief 
overview of the main data management related 
aspects, tasks and issues which might affect the 
process of grid-enabling an application, such as 
data types and size, shared data access, temporary 
data spaces, network bandwidth, time-sensitive 
data, location of data, data volume and scalability, 
encrypted data, shared file systems, databases, 
replication, and caching. For a more in-depth dis-
cussion of data management related tasks, issues, 
and techniques, we refer to Bart Jacob’s tutorial on 
application enabling with Globus (Jacob, 2003).

Shared Data Access

Sharing data access can occur with concurrent jobs 
and other processes within the network.

Access to data input and the data output of 
the jobs can be of various kinds. During the plan-
ning and design of the Grid application, potential 
restrictions on the access of databases, files, or 
other data stores for either read or write have to 
be considered. The installed policies need to be 
observed and sufficient access rights have to be 
granted to the jobs. Concerning the availability of 
data in shared resources, it must be assured that at 
run-time of the individual jobs the required data 
sources are available in the appropriate form and 
at the expected service level. Potential data access 
conflicts need to be identified up front and planned 
for. Individual jobs should not try to update the 
same record at the same time, nor dead lock each 
other. Care has to be taken for situations of con-
current access and resolution policies imposed.

The use of federated databases may be use-
ful in data Grids where jobs must handle large 
amounts of data in various different data stores, 
you. They offer a single interface to the applica-
tion and are capable of accessing data in large 
heterogeneous environments. Federated database 
systems contain information about location (node, 
database, table, record) and access methods (SQL, 
VSAM, privately defined methods) of connected 
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data sources. Therefore, a simplified interface to 
the user (a Grid job or other client) requires that 
the essential information for a request should not 
include the data source, but rather use a discovery 
service to determine the relevant data source and 
access method.

Data Topology

Issues about the size of the data, network band-
width, and time sensitivity of data determine the 
location of data for a Grid application. The total 
amount of data within the Grid application may 
exceed the amount of data input and output of 
the Grid application, as there can be a series of 
sub-jobs that produce data for other sub-jobs. 
For permanent storage the Grid user needs to be 
able to locate where the required storage space is 
available in the grid. Other temporary data sets 
that may need to be copied from or to the client 
also need to be considered.

The amount of data that has to be transported 
over the network is restricted by available band-
width. Less bandwidth requires careful planning of 
the data traffic among the distributed components 
of a Grid application at runtime. Compression and 
decompression techniques are useful to reduce the 
data amount to be transported over the network. 
But in turn, it raises the issue of consistent tech-
niques on all involved nodes. This may exclude 
the utilization of scavenging for a grid, if there 
are no agreed standards universally available.

Another issue in this context is time-sensitive 
data. Some data may have a certain lifetime, 
meaning its values are only valid during a defined 
time period. The jobs in a Grid application have 
to reflect this in order to operate with valid data 
when executing. Especially when using data 
caching or other replication techniques, it has to 
be assured that the data used by the jobs is up-
to-date, at any given point in time. The order of 
data processing by the individual jobs, especially 
the production of input data for subsequent jobs, 
has to be carefully observed.

Depending on the job, the authors Jacob at al. 
(2003) recommend to consider the following data-
related questions which refer to input as well as 
output data of the jobs within the Grid application:

• Is it reasonable that each job or set of jobs 
accesses the data via the network?

• Does it make sense to transport a job or set 
of jobs to the data location?

• Is there any data access server (for exam-
ple, implemented as a federated database) 
that allows access by a job locally or re-
motely via the network?

• Are there time constraints for data trans-
port over the network, for example, to 
avoid busy hours and transport the data 
to the jobs in a batch job during off-peak 
hours?

• Is there a caching system available on the 
network to be exploited for serving the 
same data to several consuming jobs?

• Is the data only available in a unique loca-
tion for access, or are there replicas that are 
closer to the executable within the grid?

Data Volume

The ability for a Grid job to access the data it needs 
will affect the performance of the application. 
When the data involved is either a large amount 
of data or a subset of a very large data set, then 
moving the data set to the execution node is not 
always feasible. Some of the considerations as to 
what is feasible include the volume of the data 
to be handled, the bandwidth of the network, and 
logical interdependences on the data between 
multiple jobs.

Data volume issues: In a Grid application, 
transparent access to its input and output data is 
required. In most cases the relevant data is per-
manently located on remote locations and the jobs 
are likely to process local copies. This access to 
the data results in a network cost and it must be 
carefully quantified. Data volume and network 
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bandwidth play an important role in determining 
the scalability of a Grid application.

Data splitting and separation: Data topology 
considerations may require the splitting, extrac-
tion, or replication of data from data sources 
involved. There are two general approaches that 
are suitable for higher scalability in a Grid ap-
plication: Independent tasks per job and a static 
input file for all jobs. In the case of independent 
tasks, the application can be split into several jobs 
that are able to work independently on a disjoint 
subset of the input data. Each job produces its own 
output data and the gathering of all of the results 
of the jobs provides the output result by itself. 
The scalability of such a solution depends on the 
time required to transfer input data, and on the 
processing time to prepare input data and generate 
the final data result. In this case the input data may 
be transported to the individual nodes on which 
its corresponding job is to be run. Preloading of 
the data might be possible depending on other 
criteria like timeliness of data or amount of the 
separated data subsets in relation to the network 
bandwidth. In the case of static input files, each 
job repeatedly works on the same static input data, 
but with different parameters, over a long period 
of time. The job can work on the same static input 
data several times but with different parameters, 
for which it generates differing results. A major 
improvement for the performance of the Grid 
application may be derived by transferring the 
input data ahead of time as close as possible to 
the compute nodes.

Other cases of data separation: More unfa-
vorable cases may appear when jobs have depen-
dencies on each other. The application flow may be 
carefully checked in order to determine the level of 
parallelism to be reached. The number of jobs that 
can be run simultaneously without dependences 
is important in this context. For independent jobs, 
there needs to be synchronization mechanisms in 
place to handle the concurrent access to the data.

Synchronizing access to one output file: 
Here all jobs work with common input data and 

generate their output to be stored in a common 
data store. The output data generation implies that 
software is needed to provide synchronization 
between the jobs. Another way to process this 
case is to let each job generate individual output 
files, and then to run a post-processing program 
to merge all these output files into the final result. 
A similar case is that each job has its individual 
input data set, which it can consume. All jobs then 
produce output data to be stored in a common data 
set. Like described above, the synchronization of 
the output for the final result can be done through 
software designed for the task.

Hence, thorough evaluation of the input and 
output data for jobs in the Grid application is 
needed to properly handle it. Also, one should 
weigh the available data tools, such as federated 
databases, a data joiner, and related products and 
technologies, in case the Grid application is highly 
data oriented or the data shows a complex structure.

PORTING AND PROGRAMMING 
GRID APPLICATIONS

Besides taking into account the underlying Grid 
resources and the application’s data handling, as 
discussed in the previous two paragraphs, another 
challenge is the porting of the application program 
itself. In this context, developers and users are 
facing mainly two different approaches when 
implementing their application on a grid. Either 
they port an existing application code on a set of 
distributed Grid resources. Often, in the past, the 
application previously has been developed and 
optimized with a specific computer architecture in 
mind, for example, mainframes or servers, single- 
or multiple-CPU vector computers, shared- or 
distributed-memory parallel computers, or loosely 
coupled distributed systems like workstation 
clusters, for example. Or developers start from 
scratch and design and develop a new application 
program with the Grid in mind, often such that the 
application architecture respectively its inherent 
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numerical algorithms are optimally mapped onto 
the best-suited (set of) resources in a grid.

In both scenarios, the effort of implementing an 
application can be huge. Therefore, it is important 
to perform a careful analysis beforehand on: the 
user requirements for running the application on 
a Grid (e.g. cost, time); on application type (e.g. 
compute or data intensive); application architec-
ture and algorithms (e.g. explicit, or implicit) and 
application components and how they interact (e.g. 
loosely or tightly coupled, or workflows); what is 
the best way to map the application onto a grid; 
and which is the best suited Grid architecture to 
run the application in an optimally performing 
way. Therefore, in the following, we summarize 
the most popular strategies for porting an exist-
ing application to a grid, and for designing and 
developing a new Grid application.

Many scientific papers and books deal with 
the issues of designing, programming, and porting 
Grid applications, and it is difficult to recommend 
the best suited among them. Here, we mainly 
follow the books from Ian Foster and Carl Kes-
selman (1999 & 2004), the IBM Redbook (Jacob, 
2003), the SURA Grid Technology Cookbook 
(SURA, 2007), several research papers on pro-
gramming models and environments, e.g. Soh 
(2006), Badia (2003), Karonis (2002), Seymour 
(2002), Buyya (2000), Venugopal (2004), Luther 
(2005), Altintas (2004), and Frey (2005), and our 
own experience at Sun Microsystems and MCNC 
(Gentzsch, 2004), RENCI (Gentzsch, 2007), D-
Grid (Gentzsch, 2008, and Neuroth, 2007), and 
currently in DEISA-2 (Lederer, 2008).

Grid Programming Models 
and Environments

Our own experience in porting applications to 
distributed resource environments is very similar 
to the one from Soh et al. (2006) who present a 
useful discussion on Grid programming models 
and environments which we briefly summarize 
in the following. In their paper, they start with 

differentiating application porting into resource 
composition and program composition. Resource 
composition, i.e. matching the application to the 
Grid resources needed, has already been discussed 
in paragraphs 2 and 3 above.

Concerning program composition, there is 
a wide spectrum of strategies of distributing an 
application onto the available Grid resources. 
This spectrum ranges from the ideal situation of 
simply distributing a list of, say, n parameters 
together with n identical copies of that applica-
tion program onto the grid, to the other end of the 
spectrum where one has to compose or parallelize 
the program into chunks or components that can 
be distributed to the Grid resources for execu-
tion. In the latter case, Soh (2006) differentiates 
between implicit parallelism, where programs 
are automatically parallelized by the environ-
ment, and explicit parallelism which requires 
the programmer to be responsible for most of 
the parallelization effort such as task decomposi-
tion, mapping tasks to processors and inter-task 
communication. However, implicit approaches 
often lead to non-scalable parallel performance, 
while explicit approaches often are complex and 
work- and time-consuming. In the following we 
summarize and update the approaches and methods 
discussed in detail in Soh (2006):

Superscalar (or STARSs), sequential ap-
plications composed of tasks are automatically 
converted into parallel applications where the 
tasks are executed in different parallel resources. 
The parallelization takes into account the existing 
data dependences

between the tasks, building a dependence 
graph. The runtime takes care of the task sched-
uling and data handling between the different 
resources, and takes into account the locality of 
the data between other aspects. There are several 
implementations available, like GRID Superscalar 
(GRIDSs) for computational Grids (Badia, 2003), 
which is also used in production at the MareNo-
strum supercomputer at the BSC in Barcelona; or 
Cell Superscalar (CellSs) for the Cell processor 
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(Perez, 2007) and SMP Superscalar (SMPSs) 
for homogeneous multicores or shared memory 
machines.

Explicit Communication, such as Message 
Passing and Remote Procedure Call (RPC). A 
messages passing example is MPICH-G2 (Karo-
nis, 2002), a grid-enabled implementation of the 
Message Passing Interface (MPI) which defines 
standard functions for communication between 
processes and groups of processes, extended by 
the Globus Toolkit. An RPC example is GridRPC, 
an API for Grids (Seymour, 2002), which offers 
a convenient, high-level abstraction whereby 
many interactions with a Grid environment can 
be hidden.

Bag of Tasks, which can be easily distributed 
on Grid resources. An example is the Nimrod-G 
Broker (Buyya, 2000) which is a grid-aware ver-
sion of Nimrod, a specialized parametric model-
ing system. Nimrod uses a simple declarative 
parametric modeling language and automates the 
task of formulating, running, monitoring, and ag-
gregating results. Another example is the Gridbus 
Broker (Venugopal, 2004) that permits users access 
to heterogeneous Grid resources transparently.

Distributed Objects, as in ProActive (2005), 
a Java based library that provides an API for the 
creation, execution and management of distributed 
active objects. Proactive is composed of only 
standard Java classes and requires no changes to 
the Java Virtual Machine (JVM) allowing Grid 
applications to be developed using standard Java 
code.

Distributed Threads, for example Alchemi 
(Luther, 2005), a Microsoft .NET Grid comput-
ing framework, consisting of service-oriented 
middleware and an application program interface 
(API). Alchemi features a simple and familiar 
multithreaded programming model.

Grid Workflows. Many Workflow Environ-
ments have been developed in recent years for 
grids, such as Triana, Taverna, Simdat, P-Grade, 
and Kepler. Kepler, for example, is a scientific 
workflow management system along with a set 

of Application Program Interfaces (APIs) for 
heterogeneous hierarchical modeling (Altintas, 
2004). Kepler provides a modular, activity oriented 
programming environment, with an intuitive GUI 
to build complex scientific workflows.

Grid Services. An example is the Open Grid 
Services Architecture (OGSA), (Frey, 2005), 
which is an ongoing project that aims to enable 
interoperability between heterogeneous resources 
by aligning Grid technologies with established 
Web service technology. The concept of a Grid 
service is introduced as a Web service that pro-
vides a set of well defined interfaces that follow 
specific conventions. These Grid services can 
be composed into more sophisticated services to 
meet the needs of users.

GRID-ENABLING APPLICATION 
PROGRAMS AND NUMERICAL 
ALGORITHMS

In many cases, restructuring (grid-enabling, de-
composing, parallelizing) the core algorithm(s) 
within a single application program doesn’t make 
sense, especially in the case of a more powerful 
higher-level grid-enabling strategy. For example, 
in the case of parameter jobs (see below), many 
identical copies of the application program 
together with different data-sets can easily be 
distributed onto many Grid nodes, or where the 
application program components can be mapped 
onto a workflow, or where applications (granu-
larity, run time, special dimension, etc.) simply 
are too small to efficiently run on a grid, and the 
Grid latencies and management overhead become 
too dominant. In other cases, however, where 
e.g. just one very long run has to be performed, 
grid-enabling the application program itself can 
lead to dramatic performance improvements and, 
thus, time savings. In an effort to better guide the 
reader through this complex field, in the follow-
ing, we will briefly present a few popular appli-
cation codes and their algorithmic structure and 
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provide recommendations for some meaningful 
grid-enabling strategies.

General Approach. First, we have to make 
sure that we gain an important benefit form run-
ning our application on a grid. And we should start 
asking a few more general questions, top-down. 
Has this code been developed in-house, or is it 
a third-party code, developed elsewhere? Will I 
submit many jobs (as e.g. in a parameter study), 
or is the overall application structure a workflow, 
or is it a single monolithic application code? In 
case of the latter, are the core algorithms within 
the application program of explicit or of implicit 
nature? In many cases, grid-enabling those kinds 
of applications can be based on experience made in 
the past with parallelizing them for the moderately 
or massively parallel systems, see e.g. Fox et al. 
(1994) and Dongarra et al. (2003).

In-house Codes. In case of an application 
code developed in-house, the source code of this 
application is often still available, and ideally the 
code developers are still around. Then, we have 
the possibility to analyze the structure of the code, 
its components (subroutines), dependencies, data 
handling, core algorithms, etc. With older codes, 
sometimes, this analysis has already been done 
before, especially for the vector and parallel com-
puter architectures of the 1980ies and 1990ies. 
Indeed, some of this knowledge can be re-used 
now for the grid-enabling process, and often only 
minor adjustments are needed to port such a code 
to the grid.

Third-Party Codes licensed from so-called 
Independent Software Vendors (ISVs) cannot 
be grid-enabled without the support from these 
ISVs. Therefore, in this case, we recommend to 
contact the ISV. In case the ISV receives similar 
requests from other customers as well, there might 
be a real chance that the ISV will either provide a 
grid-enabled code or completely change its sales 
strategy and sell its software as a service, or de-
velops its own application portal to provide access 
to the application and the computing resources. 

But, obviously, this requires patience and is thus 
not a solution if you are under a time constraint.

Parameter Jobs. In science and engineering, 
often, the application has to run many times: same 
code, different data. Only a few parameters have 
to be modified for each individual job, and at the 
end of the many job runs, the results are analyzed 
with statistical or stochastic methods, to find a 
certain optimum. For example, during the design of 
a new car model, many crash simulations have to 
be performed, with the aim to find the best-suited 
material and geometry for a specific part of the 
wire-frame model of the car.

Application Workflows. It is very common 
in so-called Problem Solving Environments 
that the application program consists of a set of 
components or modules which interact with each 
other. This can be modeled in Grid workflow 
environments which support the design and the 
execution of the workflow representing the ap-
plication program. Usually, these Grid workflow 
environments contain a middleware layer which 
maps the application modules onto the different 
resources in the grid. Many Workflow Environ-
ments have been developed in recent years for 
grids, such as Triana (2003), Taverna (2008), Sim-
dat (2008), P-Grade (2003), and Kepler (Altintas, 
2004). One application which is well suited for 
such a workflow is climate simulation. Today’s 
climate codes consist of modules for simulating 
the weather on the continent with mesoscale 
meteorology models, and include other modules 
for taking into account the influence from ocean 
and ocean currents, snow and ice, sea ice, wind, 
clouds and precipitation, solar and terrestrial 
radiation, absorption, emission, and reflection, 
land surface processes, volcanic gases and par-
ticles, and human influences. Interactions happen 
between all these components, e.g. air-ocean, 
air-ice, ice-ocean, ocean-land, etc. resulting in a 
quite complex workflow which can be mapped 
onto the underlying Grid infrastructure.

Highly Parallel Applications. Amdahl’s Law 
states that the scalar portion of a parallel program 
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becomes a dominant factor as processor number 
increases, leading to a loss in application scal-
ability with growing number of processors. Gus-
tafson (1988) proved that this holds only for fixed 
problem size, and that in practice, with increasing 
number of processors, the user increases problem 
size as well, always trying to solve the largest 
possible problem on any given number of CPUs. 
Gustafson demonstrated this on a 1028-proces-
sor parallel system, for several applications. For 
example, he was able to achieve a speed-up factor 
of over 1000 for a Computational Fluid Dynam-
ics application with 1028 parallel processes on 
the 1028-processor system. Porting these highly 
parallel applications to a grid, however, has shown 
that many of them degrade in performance simply 
because overhead of communication for message-
passing operations (e.g. send and receive) drops 
from a few microseconds on a tightly-coupled 
parallel system to a few milliseconds on a (loosely-
coupled) workstation cluster or grid. In this case, 
therefore, we recommend to implement a coarse-
grain Domain Decomposition approach, i.e. to 
dynamically partition the overall computational 
domain into sub-domains (each consisting of as 
many parallel processes, volumes, finite elements, 
as possible), such that each sub-domain com-
pletely fits onto the available processors of the 
corresponding parallel system in the grid. Thus, 
only moderate performance degradation from the 
reduced number of inter-system communication 
can be expected. A prerequisite for this to work 
successfully is that the subset of selected parallel 
systems is of homogeneous nature, i.e. architecture 
and operating system of these parallel systems 
should be identical. One Grid infrastructure which 
offers this feature is the Distributed European 
Infrastructure for Supercomputing Applications 
(DEISA, 2010), which (among others) provides 
a homogeneous cluster of parallel AIX machines 
distributed over several of the 11 European su-
percomputing centers which are part of DEISA 
(see also Section 5 in this Chapter).

Moderately Parallel Applications. These 
applications, which have been parallelized in the 
past, often using Message Passing MPI library 
functions for the inter-process communication on 
workstation clusters or on small parallel systems, 
are well-suited for parallel systems with perhaps 
a few dozen to a few hundreds of processors, 
but they won’t scale easily to a large number of 
parallel processes (and processors). Reasons are a 
significant scalar portion of the code which can’t 
run in parallel and/or the relatively high ratio of 
inter-process communication to computation, 
resulting in relatively high idle times of the CPUs 
waiting fore the data. Many commercial codes 
fall in this category, for example finite-element 
codes such as Abaqus, Nastran, or Pamcrash. 
Here we recommend to check if the main goal is 
to analyze many similar scenarios with one and 
the same code but on different data sets, and run 
as many codes in parallel as possible, on as many 
moderately parallel sub-systems as possible (this 
could be virtualized sub-systems on one large 
supercomputer, for example).

Explicit versus Implicit Algorithms. Dis-
crete Analogues of systems of partial differential 
equations, stemming from numerical methods 
such as finite difference, finite volume, or finite 
element discretizations, often result in large sets 
of explicit or implicit algebraic equations for the 
unknown discrete variables (e.g. velocity vectors, 
pressure, temperature). The explicit methods 
are usually slower (in convergence to the exact 
solution vector of the algebraic system) than the 
implicit ones but they are also inherently parallel, 
because there is no dependence of the solution 
variables among each other, and therefore there 
are no recursive algorithms. In case of the more 
accurate implicit methods, however, solution 
variables are highly inter-dependent leading to 
recursive sparse-matrix systems of algebraic equa-
tions which cannot easily split (parallelized) into 
smaller systems. Again, here, we recommend to 
introduce a Domain Decomposition approach as 
described in the above section on Highly Parallel 
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Algorithms, and solve an implicit sparse-matrix 
system within each domain, and bundle sets of 
‘neighboring’ domains into super-sets to submit 
to the (homogeneous) grid.

Domain Decomposition. This has been dis-
cussed in the paragraphs on Highly Parallel Appli-
cations and on Explicit versus Implicit Algorithms.

Job Mix. Last but not lease, one of the most 
trivial but most widely used scenarios often found 
in university and research computer centers is 
the general job mix, stemming from hundreds or 
thousands of daily users, with hundreds or even 
thousands of different applications, with varying 
requirements for computer architecture, data han-
dling, memory and disc space, timing, priority, etc. 
This scenario is ideal for a Grid which is managed 
by an intelligent Distributed Resource Manager 
(DRM), for example GridWay (2008) for a global 
grid, Sun Grid Engine Enterprise Edition (Chaubal, 
2003) for an enterprise grid, or the open source 
Grid Engine (2001) for a departmental Grid or a 
simple cluster. These DRMs are able to equally 
balance the overall job load across the distributed 
resource environment and submit the jobs always 
to the best suited and least loaded resources. This 
can result in overall resource utilization of 90% 
and higher.

Applications and Grid Portals

Grid portals are an important part of the process 
of grid-enabling, composing, manipulating, run-
ning, and monitoring applications. After all the 
lower layers of the grid-enabling process have 
been performed (described in the previous para-
graphs), often, the user is still exposed to the many 
details of the Grid services and even has to take 
care of configuring, composing, provisioning, 
etc. the application and the services “by hand”. 
This however can be drastically simplified and 
mostly hidden from the user through a Grid por-
tal, which is a Web-based portal able to expose 
Grid services and resources through a browser to 
allow users remote, ubiquitous, transparent and 

secure access to Grid services (computers, storage, 
data, applications, etc). The main goal of a Grid 
portal is to hide the details and complexity of the 
underlying Grid infrastructure from the user in 
order to improve usability and utilization of the 
grid, greatly simplifying the use of grid-enabled 
applications through a user-friendly interface.

Grid portals have become popular in research 
and the industry communities. Using Grid portals, 
computational and data-intensive applications 
such as genomics, financial modeling, crash 
test analysis, oil and gas exploration, and many 
more, can be provided over the Web as tradi-
tional services. Examples of existing scientific 
application portals are the GEONGrid (2008) 
and CHRONOS (2004) portals that provide a 
platform for the Earth Science community to study 
and understand the complex dynamics of Earth 
systems; the NEESGrid project (2008) focuses on 
earthquake engineering research; the BIRN portal 
(2008) targets biomedical informatics researchers; 
and the MyGrid portal (2008) provides access to 
bioinformatics tools running on a back-end Grid 
infrastructure. As it turns out, scientific portals 
are usually being developed inside specific re-
search projects. As a result they are specialized 
for specific applications and services satisfying 
project requirements for that particular research 
application area.

In order to rapidly build customized Grid 
portals in a flexible and modular way, several 
more generic toolkits and frameworks have been 
developed. These frameworks are designed to 
meet the diverse needs and usage models arising 
from both research and industry. One of these 
frameworks is EnginFrame, which simplifies 
development of highly functional Grid portals 
exposing computing services that run on a broad 
range of different computational Grid systems. 
EnginFrame (Beltrame, 2006) has been adopted 
by many industrial companies, and by organiza-
tions in research and education.
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Example: The EnginFrame 
Portal Environment

EnginFrame (2008) is a Web-based portal technol-
ogy that enables the access and the exploitation of 
grid-enabled applications and infrastructures. It al-
lows organizations to provide application-oriented 
computing and data services to both users (via Web 
browsers) and in-house or ISV applications (via 
SOAP/WSDL based Web services), thus hiding the 
complexity of the underlying Grid infrastructure. 
Within a company or department, an enterprise 
portal aggregates and consolidates the services 
and exposes them to the users, through the Web. 
EnginFrame can be integrated as Web applica-
tion in a J2EE standard application server or as a 
portlet in a JSR168 compliant portlet container.

As a Grid portal framework, EnginFrame offers 
a wide range of functionalities to IT developers 
facing the task to provide application-oriented 
services to the end users. EnginFrame’s plug-in 
mechanism allows to easily and dynamically 
extend its set of functionalities and services. A 
plug-in is a self-contained software bundle that 
encapsulates XML Extensible Markup Language 
service descriptions, custom layout or XSL Ex-
tensible Stylesheet Language and the scripts or 
executables involved with the services actions. A 
flexible authentication delegation offers a wide 
set of pre-configured authentication mechanisms: 
OS/NIS/PAM, LDAP, Microsoft Active Directory, 
MyProxy, Globus, etc. It can also be extended 
throughout the plug-in mechanism.

Besides authentication, EnginFrame provides 
an authorization framework that allows to define 
groups of users and Access Control Lists (ACLs), 
and to bind ACLs to resources, services, service 
parameters and service results. The Web interface 
of the services provided by the portal can be au-
thorized and thus tailored to the specific users’ 
roles and access rights.

EnginFrame supports a wide variety of 
compute Grid middleware like LSF, PBS, Sun 
Grid Engine, Globus, gLite and others. An XML 

virtualization layer invokes specific middleware 
commands and translates results, jobs and Grid 
resource descriptions into a portable XML for-
mat called GridML that abstracts from the actual 
underlying Grid technology. For the GridML, as 
for the service description XML, the framework 
provides pre-built XSLs to translate GridML into 
HTML. EnginFrame data management allows for 
browsing and handling data on the client side or 
remotely archived in the Grid and then to host a 
service working environment in file system areas 
called spoolers.

The EnginFrame architecture is structured into 
three tiers, Client, Resource, Server. The Client 
Tier normally consists of the user’s Web browser 
and provides an easy-to-use interface based on 
established Web standards like XHTML and Ja-
vaScript, and it is independent from the specific 
software and hardware environment used by the 
end user. When needed, the client tier also provides 
integration with desktop virtualization technolo-
gies like Citrix Metaframe (ICA), VNC, X, and 
Nomachine NX. The Resource Tier consists of 
one or more Agents deployed on the back-end 
Grid infrastructure whose role is to control and 
provide distributed access to the actual computing 
resources. The Server Tier consists of a server 
component that provides resource brokering to 
manage resource activities in the back-end.

The EnginFrame server authenticates and au-
thorizes incoming requests from the Web, and asks 
an Agent to execute the required actions. Agents 
can perform different kind of actions that range 
from the execution of a simple command on the 
underlying Operating System, to the submission 
of a job to the grid. The results of the executed 
action are gathered by the Agent and sent back to 
the Server which applies post processing trans-
formations, filters the output according to ACLs 
and transforms the results into a suitable format 
according to the nature of the client: HTML for 
Web browsers and XML in a SOAP message for 
Web services client applications.
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GRID CASE STUDY: HPC ON THE 
DEISA E-INFRASTRUCTURE

As one example, in the following, we will briefly 
discuss the DEISA Distributed European In-
frastructure for Supercomputing Applications. 
A more detailed description can be found in 
(Gentzsch, 2010, 2011). DEISA is different 
from many other Grid initiatives which aim at 
building a general purpose Grid infrastructure 
and therefore have to cope with many (almost) 
insurmountable barriers such as complexity, re-
source sharing, crossing administrative (and even 
national) domains, handling IP and legal issues, 
dealing with sensitive data, working on interoper-
ability, and facing the issue to expose every little 
detail of the underlying infrastructure services 
to the Grid application user. DEISA avoids most 
of these barriers by staying very focused: The 
main focus of DEISA is to provide the European 
supercomputer user with a flexible, dynamic, user-
friendly supercomputing ecosystem (one could say 
Supercomputing Cloud, see next paragraph) for 
easy handling, submitting, and monitoring long-
running jobs on the best-suited and least-loaded 
supercomputer(s) in Europe, trying to avoid the 
just mentioned barriers. In addition, DEISA of-
fers application-enabling support. For a similar 
European funded initiative especially focusing 
on enterprise applications, we refer the reader to 
the BEinGRID project (2008), which consists of 
18 so-called business experiments each dealing 
with a pilot application that addresses a concrete 
business case, and is represented by an end-user, 
a service provider, and a Grid service integrator. 
Experiments come from key business sectors such 
as multimedia, financial, engineering, chemistry, 
gaming, environmental science, and logistics and 
so on, based on different Grid middleware solu-
tions, see (BEinGRID, 2008).

The DEISA Project

DEISA is the Distributed European Initiative for 
Supercomputing Applications, funded by the EU 
in Framework Programme 6 (DEISA1, 2004 – 
2008) and Framework Programme 7 (DEISA2, 
2008 – 2011). The DEISA Consortium consists 
of 11 partners, MPG-RZG (Germany, consor-
tium lead), BSC (Spain), CINECA (Italy), CSC 
(Finland), ECMWF (UK), EPCC (UK), FZJ 
(Germany), HLRS (Germany), IDRIS (France), 
LRZ (Germany), and SARA (Netherlands). Fur-
ther centers were integrated as associate partners: 
CEA-CCRT (France), CSCS (Switzerland), and 
KTH (Sweden).

DEISA developed and supports a distrib-
uted high performance computing infrastructure 
and a collaborative environment for capability 
computing and data management. The resulting 
infrastructure enables the operation of a power-
ful supercomputing Grid built on top of national 
supercomputing services, facilitating Europe’s 
ability to undertake world-leading computational 
science research. DEISA is instrumental for ad-
vancing computational sciences in scientific and 
industrial disciplines within Europe and is paving 
the way towards the deployment of a cooperative 
European HPC ecosystem. The existing infrastruc-
ture is based on the coupling of eleven leading 
national supercomputing centers, using dedicated 
network interconnections (currently 10 GBs) of 
GÉANT2 and the NRENs.

DEISA2 developed activities and services 
relevant for applications enabling, operation, and 
technologies, as these are indispensable for the 
effective support of computational sciences in the 
area of supercomputing. The service provisioning 
model has been extended from one that supports 
a single project (in DEISA1) to one supporting 
Virtual European Communities (now in DEISA2). 
Collaborative activities are carried out with 
European and other international initiatives. Of 
strategic importance is the cooperation with the 
PRACE (2008) initiative which is preparing for 
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the installation of a limited number of leadership-
class Tier-0 supercomputers in Europe.

The DEISA Infrastructure Services

The essential services to operate the infrastructure 
and support its efficient usage are organized in 
three Service Activities: Operations, Technolo-
gies, and Applications:

Operations refer to operating the infrastructure 
including all existing services, adopting approved 
new services from the Technologies Activity, 
and advancing the operation of the DEISA HPC 
infrastructure to a turnkey solution for the future 
European HPC ecosystem by improving the op-
erational model and integrating new sites.

Technologies cover monitoring of technolo-
gies in use in the project, identifying and select-
ing technologies of relevance for the project, 
evaluating technologies for pre-production de-
ployment, and planning and designing specific 
sub-infrastructures to upgrade existing services 
or deliver new ones based on approved technolo-
gies. User-friendly access to the DEISA Super-
computing Grid is provided by DEISA Services 
for Heterogeneous management Layer (DESHL, 
2008) and the UNiforme Interface for COmputing 
Resources (UNICORE, 2008).

Applications cover the areas ‘applications 
enabling’ and ‘extreme computing projects’, 
‘environment and user related application sup-
port’, and ‘benchmarking’. Applications enabling 
focuses on enhancing scientific applications 
from the DEISA Extreme Computing Initiative 
(DECI), Virtual Communities and EU projects. 
Environment and user related application support 
addresses the maintenance and improvement of the 
DEISA application environment and interfaces, 
and DEISA-wide user support in the applications 
area. Benchmarking refers to the provision and 
maintenance of a European Benchmark Suite for 
supercomputers.

In DEISA2, two Joint Research Activities 
(JRA) complement the portfolio of service ac-

tivities. JRA1 (Integrated DEISA Development 
Environment) aims at an integrated environment 
for scientific application development, based on 
a software infrastructure for tools integration, 
which provides a common user interface across 
multiple computing platforms. JRA2 (Enhancing 
Scalability) aims at the enabling of supercomputer 
applications for the efficient exploitation of current 
and future supercomputers, to cope with a produc-
tion infrastructure characterized by an aggressive 
parallelism on heterogeneous HPC architectures 
at a European scale.

DECI: DEISA Extreme 
Computing Initiative for 
Supercomputing Applications

The DEISA Extreme Computing Initiative 
(DECI, 2010) has been launched in May 2005 
by the DEISA Consortium, as a way to enhance 
its impact on science and technology. The main 
purpose of this initiative is to enable a number 
of “grand challenge” applications in all areas of 
science and technology. These leading, ground 
breaking applications must deal with complex, 
demanding and innovative simulations that would 
not be possible without the DEISA infrastructure, 
and which benefit from the exceptional resources 
provided by the Consortium. The DEISA applica-
tions are expected to have requirements that cannot 
be fulfilled by the national HPC services alone.

In DEISA2, the single-project oriented activi-
ties (DECI) are qualitatively extended towards 
persistent support of Virtual Science Communities. 
This extended initiative benefits from and builds 
on the experiences of the DEISA scientific Joint 
Research Activities where selected computing 
needs of various scientific communities and a 
pilot industry partner were addressed. Examples of 
structured science communities with which close 
relationships are established are EFDA and the 
European climate community. DEISA2 provides a 
computational platform for them, offering integra-
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tion via distributed services and web applications, 
as well as managing data repositories.

Applications Adapted to the 
DEISA Grid Infrastructure

In the following, we describe examples of appli-
cation profiles and use cases that are well-suited 
for the DEISA supercomputing grid, and that 
can benefit from the computational resources 
made available by the DECI Extreme Comput-
ing Initiative.

International collaboration involving sci-
entific teams that access the nodes of the AIX 
super-cluster in different countries, can benefit 
from a common data repository and a unique, 
integrated programming and production environ-
ment (via common global file systems). Imagine, 
for example, that team A in France and team B in 
Germany dispose of allocated resources at IDRIS 
in Paris and FZJ in Juelich, respectively. They can 
benefit from a shared directory in the distributed 
super-cluster, and for all practical purposes it looks 
as if they were accessing a single supercomputer.

Extreme computing demands of a chal-
lenging project requiring a dominant fraction of 
a single supercomputer. Rather than spreading a 
huge, tightly coupled parallel application on two 
or more supercomputers, DEISA can organize 
the management of its distributed resource pool 
such that it is possible to allocate a substantial 
fraction of a single supercomputer to this project 
which is obviously more efficient that splitting 
the application and distributing it over several 
supercomputers.

Workflow applications involving at least 
two different HPC platforms. Workflow applica-
tions are simulations where several independent 
codes act successively on a stream of data, the 
output of one code being the input of the next 
one in the chain. Often, this chain of computa-
tions is more efficient if each code runs on the 
best-suited HPC platform (e.g. scalar, vector, or 
parallel supercomputers) where it develops the 

best performance. Support of these applications 
via UNICORE (2008) which allows treating the 
whole simulation chain as a single job is one of 
the strengths of the DEISA Grid.

Coupled applications involving more than 
one platform. In some cases, it does make sense 
to spread a complex application over several 
computing platforms. This is the case of multi-
physics, multi-scale application codes involving 
several computing modules each dealing with 
one particular physical phenomenon, and which 
only need to exchange a moderate amount of data 
in real time.

HPC APPLICATIONS IN THE CLOUD

With increasing demand for higher performance, 
efficiency, productivity, agility, and lower cost, 
since several years, Information Communica-
tion Technologies, ICT, are dramatically chang-
ing from static silos with manually managing 
resources and applications, towards dynamic 
virtual environments with automated and shared 
services, i.e. from silo-oriented to service-oriented 
architectures.

With sciences and businesses turning global 
and competitive, applications, products and 
services becoming more complex, and research 
and development teams being distributed, ICT 
is in transition again. Global challenges require 
global approaches: on the horizon, so-called vir-
tual organizations and partner Grids will provide 
the necessary communication and collaboration 
platform, with Grid portals for secure access to 
resources, applications, data, and collaboratories.

One component which will certainly foster this 
next-generation scenario is Cloud Computing, 
as recently offered by companies like Amazon 
(2007 and 2010) Elastic Cloud Computing EC2, 
IBM (2008), Google (2008) App Engine and 
Google Group (2010), SGI (Cyclone, 2010), 
and many more. Clouds will become important 
dynamic components of research and enterprise 
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infrastructures, adding a new ‘external’ dimension 
of ‘elasticity’ to them by enhancing their ‘home’ 
resource capacity whenever needed, on demand. 
Existing businesses will use them for their peak 
demands and for new projects, service providers 
will host their applications on them and provide 
Software as a Service, start-ups will integrate them 
in their offerings without the need to buy resources 
upfront, and setting up new social networks (Web 
2.0 communities) will become very easy.

Cloud-enabling applications will follow simi-
lar strategies as with grid-enabling, as discussed in 
the previous paragraphs. Similarly challenging as 
with grids, though, are the cultural, mental, legal, 
and political aspects in the Cloud context. Build-
ing trust and reputation among the users and the 
providers will help in many scenarios. But it is 
currently difficult to imagine that users may easily 
entrust their corporate core assets and sensitive 
data to Cloud service providers. Today (in Janu-
ary 2011) the status of HPC Clouds seems to be 
similar to the status of Grids in the early 2000s: 
a few standard and well-suited HPC application 
scenarios run on Clouds, but many of the more 
complex and demanding HPC applications in re-
search and enterprises will face barriers on Clouds 
which still have to be removed. For example, 
barriers may arise in the following context:

• The process of retrieving data from one 
cloud and move them into another cloud, 
and back to your desktop system, in a reli-
able and secure way.

• The fulfilment of (e.g. government) re-
quirements for security, privacy, data pro-
tection, and the archiving risks associated 
with the cloud.

• The compliance with existing legal and 
regulatory frameworks and current policies 
(established far before the digital age) that 
impose antiquated (and sometimes even 
conflicting) rules about how to correctly 
deal with information and knowledge.

• The process of setting up a service level 
agreement.

• Migrating your applications from their ex-
isting environments into the cloud.

And for that matter…

• Do we all agree on the same security re-
quirements; do we need a checklist, or do 
we need a federated security framework?

• Do our existing identity, access manage-
ment, audit and monitoring strategies still 
hold for the clouds?

• What cloud deployment model would you 
have to choose: private, public, hybrid, or 
federated cloud?

• How much does the virtualization layer of 
the cloud affect application performance 
(i.e. trade-off between abstraction versus 
control)?

• How will clouds affect performance of 
high-throughput versus high-performance 
computing applications?

• What type of application needs what exe-
cution model to provide useful abstractions 
in the cloud, such as for data partition-
ing, data streaming, and parameter sweep 
algorithms?

• How do we handle large scientific work-
flows for complex applications that may 
be deployed as a set of virtual machines, 
virtual storage and virtual networks to sup-
port different functional components?

• What are common best practices and stan-
dards needed to achieve portability and 
interoperability for cloud applications and 
environments ?

• How can (and will) organizations like 
DMTF and OGF help us with our cloud 
standardization requirements?

• And last but not least, what if your cloud 
service provider fails?
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One example of an early innovative Cloud 
system came from Sun Microsystems when in 
2005 it truly built its SunGrid (Sun 2010) from 
scratch, based on the early vision that the network 
is the computer. As with other early technologies 
in the past, Sun paid a high price for being first 
and doing all the experiments and the evangeliza-
tion. Its successor, Sun Network.com (Sun 2010), 
was popular among its few die-hard clients. This 
is because of an easy-to use technology (Grid 
Engine, Jini, JavaSpaces), but it’s especially 
because of their innovative early users, such as 
CDO2 (2008), a provider of innovative pricing 
and risk technology for organizations trading 
structured credit products.

It is interesting to observe how some of the 
earlier differences between Grids and clouds are 
fading away. While in the beginning of the Grid 
era, many Grid infrastructure prototypes were 
built and disappeared after a while, today we see 
many production Grids providing infrastructure, 
platform, and software services (almost) on de-
mand, similar to the clouds, especially from an 
end-user point of view. One good example is the 
DEISA e-Infrastructure discussed in Chapter 5 
above, with its DECI– DEISA Extreme Computing 
Initiative. Why is DECI currently so successful 
in offering millions of supercomputing cycles to 
the European e-Science community and helping 
scientists gain new scientific insights? Several 
reasons, in my opinion: because DEISA has a 
very targeted focus on specific (long-running) 
supercomputing applications and most of the 
applications just run on one – best-suited - sys-
tem; because of its user-friendly access - through 
technology like DESHL (2008) and UNICORE 
(2008); because of staying away from those more 
ambitious general-purpose Grid efforts aiming 
at providing everything to everybody; because 
of its coordinating function which leaves the 
consortium partners (the 14 largest European 
supercomputer centers) fully independent; and – 
similar to network.com in the past – because of 
ATASKF (DECI, 2010), the application task force, 

consisting of application experts who help the us-
ers with porting their applications to the DEISA 
infrastructure. Because of the benefits of DEISA, 
the PRACE Consortium (PRACE, 2008) decided 
in 2010 to incorporate the DEISA Infrastructure 
into PRACE and provide access to the PRACE 
Petaflops systems via DEISA.

With this sea-change ahead of us, there will 
be a continuous strategic importance for sciences 
and businesses to support the work of the Open 
Grid Forum (OGF, 2008). Because only standards 
– recently also for clouds (OCCI, 2010) – will 
enable building e-infrastructures and grid- and 
cloud-enabled applications easily from different 
technology components and to transition towards 
an agile platform for federated services. Standards, 
developed in OGF, guarantee interoperation of dif-
ferent Grid and cloud components best suited for 
HPC applications, and thus reducing dependency 
from proprietary building blocks and services, 
keeping cost under control, and increasing research 
and business flexibility.

CLOUD CASE STUDIES: HPC 
APPLICATIONS ON AMAZON

Amazon Web Services (AWS) is Amazon’s 
cloud computing platform, with Amazon Elastic 
Compute Cloud (EC2) as its central part, first an-
nounced as beta in August 2006. Users can rent 
Virtual Machines (VMs) on which they run their 
applications. EC2 allows scalable deployment of 
applications by providing a web service through 
which a user can boot an Amazon Machine Image 
(AMI) to create a virtual machine, which Ama-
zon calls an “instance”, containing any software 
desired. A user can create, launch, and terminate 
server instances as needed and paying by the hour 
for active servers. EC2 provides users with control 
over the geographical location of instances which 
allows for latency optimization and high levels 
of redundancy.



29

Porting HPC Applications to Grids and Clouds

NAS Parallel Benchmark 
on Amazon EC2

In order to find out if and how clouds are suit-
able for HPC applications, Ed Walker (Walker 
2008) run an HPC benchmark on Amazon EC2. 
He used several macro and micro benchmarks to 
examine the “delta” between clusters composed 
of state-of-the-art CPUs from Amazon EC2 
versus an HPC cluster at the National Center 
for Supercomputing Applications (NCSA). He 
used the NAS Parallel Benchmarks (NAS 2010) 
to measure the performance of these clusters for 
frequently occurring scientific calculations. Also, 
since the Message-Passing Interface (MPI) library 
is an important programming tool used widely in 
scientific computing, his results demonstrate the 
MPI performance in these clusters by using the 
mpptest micro benchmark. For his benchmark 
study on EC2 he use the high-CPU extra large 
instances provided by the EC2 service.

The NAS Parallel Benchmarks (NPB 2010) 
comprise a widely used set of programs designed 
to evaluate the performance of HPC systems. The 
core benchmark consists of eight programs: five 
parallel kernels and three simulated applications. 
In aggregate, the benchmark suite mimics the criti-
cal computation and data movement involved in 
computational fluid dynamics and other “typical” 
scientific computation.

Research from Ed Walker (2008) about the 
runtimes of each of the NPB programs in the 
benchmark shows a performance degradation of 
approximately 7%–21% for the programs running 
on the EC2 nodes compared to running them on 
the NCSA cluster compute node.

Further results and an in-depth analysis showed 
that message-passing latencies and bandwidth 
are an order of magnitude inferior between EC2 
compute nodes compared to between compute 
nodes on the NCSA cluster. Walker (2008) con-
cluded that substantial improvements could be 
provided to the HPC scientific community if a 

high-performance network provisioning solution 
can be devised for this problem.

LINPACK Benchmark on Amazon 
Cluster Compute Instances

In July 2010, Amazon announced its Cluster Com-
pute Instances (CCI 2010) specifically designed 
to combine high compute performance with high 
performance network capability to meet the needs 
of HPC applications. Unique to Cluster Compute 
instances is the ability to group them into clusters 
of instances for use with HPC applications. This 
is particularly valuable for those applications that 
rely on protocols like Message Passing Interface 
(MPI) for tightly coupled inter-node communi-
cation. Cluster Compute instances function just 
like other Amazon EC2 instances but also offer 
the following features for optimal performance 
with HPC applications:

• When run as a cluster of instances, they 
provide low latency, full bisection 10 Gbps 
bandwidth between instances. Cluster siz-
es up through and above 128 instances are 
supported.

• Cluster Compute instances include the spe-
cific processor architecture in their defini-
tion to allow developers to tune their appli-
cations by compiling applications for that 
specific processor architecture in order to 
achieve optimal performance.

The Cluster Compute instance family cur-
rently contains a single instance type, the Cluster 
Compute Quadruple Extra Large with the follow-
ing specifications: 23 GB of memory, 33.5 EC2 
Compute Units (2 x Intel Xeon X5570, quad-core 
“Nehalem” architecture), 1690 GB of instance 
storage, 64-bit platform, and I/O Performance: 
Very High (10 Gigabit Ethernet).

As has been benchmarked by the Lawrence 
Berkeley Laboratory team ( 2010), some applica-
tions can expect 10x better performance than on 
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standard EC2. For the Linpack benchmark, they 
saw 8.5x compared to similar clusters on standard 
EC2 instances. On an 880-instance CC1 cluster, 
Linpack achieved a performance of 41.82 Tflops, 
bringing EC2 at #146 in the June 2010 Top 500 
rankings.

MATLAB on Amazon Cluster 
Compute Instances

Another recent example for HPC on EC2 CCI 
comes form the MATLAB team at MathWorks 
(MATLAB 2010) which tested performance 
scaling of the backslash (“\”) matrix division 
operator to solve for x in the equation A*x = b. In 
their testing, matrix A occupies far more memory 
(290 GB) than is available in a single high-end 
desktop machine—typically a quad core processor 
with 4-8 GB of RAM, supplying approximately 
20 Gigaflops.

Therefore, they spread the calculation across 
machines. In order to solve linear systems of 
equations they need to be able to access all of the 
elements of the array even when the array is spread 
across multiple machines. This problem requires 
significant amounts of network communication, 
memory access, and CPU power. They scaled up 
to a cluster in EC2, giving them the ability to work 
with larger arrays and to perform calculations at 
up to 1.3 Teraflops, a 60X improvement. They 
were able to do this without making any changes 
to the application code.

Each Cluster Compute instance runs 8 workers 
(one per processor core on 8 cores per instance). 
Each doubling of the worker count corresponds 
to a doubling of the number of Cluster Computer 
instances used (scaling from 1 up to 32 instances). 
They saw near-linear overall throughput (mea-
sured in Gigaflops on the y axis) while increasing 
the matrix size (the x axis) as they successively 
doubled the number of instances.

Cloud User Scenario: Astronomic 
Data Processing on Amazon EC2

The following cloud user scenario has been taken 
from (Ahronovitz 2010): Gaia is a mission of the 
European Space Agency (ESA) that will conduct 
a survey of one billion stars in our galaxy (Gaia 
2010). It will monitor each of its target stars about 
70 times over a five-year period, precisely chart-
ing their positions, distances, movements, and 
changes in brightness. It is expected to discover 
hundreds of thousands of new celestial objects, 
such as extra-solar planets and failed stars called 
brown dwarfs.

This mission will collect a large amount of 
data that must be analyzed. The ESA decided to 
prototype a cloud-based system to analyze the 
data. The goals were to determine the technical 
and financial aspects of using cloud computing to 
process massive datasets. The prototype system 
contains the scientific data and a whiteboard used 
to publish compute jobs. A framework for distrib-
uted computing (developed in house) is used for 
job execution and data processing. The framework 
is configured to run AGIS (Astrometric Global 
Iterative Solution). The process runs a number 
of iterations over the data until it converges. 
For processing, each working node gets a job 
description from the database, retrieves the data, 
processes it and sends the results to intermediate 
servers. The intermediate servers update the data 
for the following iteration.

The prototype evaluated 5 years of data for 
2 million stars, a small fraction of the total data 
that must be processed in the actual project. 
The prototype went through 24 iterations of 100 
minutes each, equivalent to running a Grid of 
20 Virtual Machines (VMs) for 40 hours. For 
the full billion-star project, 100 million primary 
stars will be analyzed along with 6 years of data, 
which will require running the 20 VM cluster 
for 16,200 hours. To evaluate the elasticity of a 
cloud-based solution, the prototype ran a second 
test with 120 high CPU extra large VMs. With 



31

Porting HPC Applications to Grids and Clouds

each VM running 12 threads, there were 1440 
processes working in parallel.

All of the VMs were running standard operating 
systems and none of the software used in the project 
is cloud-specific. The portability concern for this 
application would be the ability to migrate those 
VM images to another provider without having 
to rebuild or reconfigure the images.

The estimated cost for the cloud-based solution 
is less than half the cost of an in-house solution. 
That cost estimate does not include the additional 
electricity or system administration costs of an 
in-house solution, so the actual savings will be 
even greater. Storage of the datasets will be cloud-
based as well.

CONCLUSION: GRIDS VERSUS 
CLOUDS FOR HPC

Time and again, people ask questions like “Will 
HPC codes move to the cloud?” or “Now that cloud 
computing is well accepted, are Grids dead?” or 
even “Should I now build my Grid in the cloud?” 
Despite all the promising developments in the Grid 
and cloud computing space, and the avalanche 
of publications and talks on this subject, many 
people still seem to be confused and hesitant to 
take the next step. A number of issues are driv-
ing this uncertainty, (Gentzsch, 2009), which are 
discussed in the following.

Grids didn’t keep all their promises. Grids 
did not evolve into the next fundamental IT in-
frastructure for mainstream HPC, as had been 
anticipated by some experts. Because of the 
diversity of computing environments different 
middleware stacks (for department, enterprise, 
global, compute, data, sensors, instruments, 
etc.) had to be developed, and had to face differ-
ent usage models with different benefits. HPC 
Grids are providing better resource utilization 
and flexibility, while global Grids are best suited 
for complex R&D application collaboration and 
resource sharing. For enterprise usage, setting up 
and operating Grids was often too complicated. 

For R&D experts this characteristic was seen to 
be a necessary evil: implementing complex HPC 
applications has never been easy.

Grid: the way station to the cloud. After 40 
years of dealing with HPC, Grid computing was 
indeed the next big thing for the grand challenge, 
big-science researcher, while for the enterprise 
CIO, the Grid was a way station on its way to the 
cloud model. For the enterprise today, private and 
public clouds are providing all the missing pieces: 
easy to use, economies of scale, business elasticity 
up and down, and pay-as you go and thus getting 
rid of some capital expenditure (CapEx), but still 
concerned of removing the roadblocks mentioned 
above. And in cases where security matters, there 
is always the private cloud solution. In more 
complex HPC environments, with applications 
running under different policies, private clouds 
can easily connect to public clouds into a hybrid 
cloud infrastructure, to balance security with 
elasticity and efficiency.

Different policies, what does that mean? 
No HPC simulation job is alike. Jobs differ by 
priority, strategic importance, deadline, budget, 
IP and licenses. In addition, the nature of the code 
often necessitates a specific computer architecture, 
operating system, memory, and other resources. 
These important factors influence where and when 
a job is running. For any new type of job, a set of 
specific requirements decide on the set of specific 
policies that have to be defined and programmed 
into the scheduler, such that any of these jobs 
will run according to these policies. Ideally, this 
is guaranteed by a dynamic resource broker that 
controls submission to Grid or cloud resources, 
be they local or global, private or public.

Grids or clouds? One important question is 
still open: how do I find out, and then ‘tell’ the 
resource broker, whether my application should 
run on the Grid or in the cloud? The answer, among 
others, depends on the algorithmic structure of 
the compute-intensive part of the program, which 
might be intolerant of high latency and low band-
width as they are often present in public clouds. 
This has been observed with benchmark results 
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(Walker, 2008). The performance limitations in 
clouds are exhibited mainly by parallel applica-
tions with tightly-coupled, data-intensive inter-
process communication, running on hundreds or 
even thousands of processor cores.

The good news is, however, that many HPC 
applications do not require high bandwidth and 
low latency. Examples are parameter studies 
(sweeps) often seen in science and engineering, 
with one and the same application executed for a 
spectrum of parameters, resulting in many inde-
pendent jobs, such as analyzing the data from a 
particle physics collider, identifying the solution 
parameter in numerical optimization, ensemble 
runs to quantify climate model uncertainties, 
identifying potential drug targets via screening a 
database of ligand structures, studying economic 
model sensitivity to parameters, simulating flow 
around an airplane wing with different angels of 
attach, and analyzing different materials and their 
resistance in crash tests, to name just a few.

HPC needs Grids and clouds. According to 
the DEISA Extreme Computing Initiative (DECI, 
2010), there are plenty of complex grand chal-
lenge science and engineering applications that 
can only run effectively on the largest and most 
expensive supercomputers. Today, nobody would 
build an HPC cloud for these particular big-
science grand-challenge applications. It simply 
isn’t a profitable business: the “HPC market” is 
far too small and thus lacks economy of scale. In 
some specific science application scenarios, with 
complex workflows consisting of different tasks 
(workflow nodes), a hybrid infrastructure might 
make sense: cloud capacity resources combined 
with HPC capability nodes, providing the best 
of both worlds.

However, for a wide range of HPC applica-
tions like the parameter-sweeps mentioned above, 
clouds will be the way to go. We already see more 
and more HPC clouds today like Exa PowerFLOW 
(Exa, 2008), and Cyclone (SGI, 2010) which offers 
cloud services for engineering and scientific ap-
plications like BLAST, Gaussian, STAR-CCM+, 
and LS-DYNA.

CONCLUSIONS: TEN RULES FOR 
BUILDING SUSTAINABLE GRID 
AND CLOUD E-INFRASTRUCTURES 
FOR HPC APPLICATIONS

Grid-enabled applications require sustainable 
Grid infrastructures. It doesn’t make any sense, 
for example, in a three-year funded Grid project, 
to develop or port a complex application to a 
Grid which will shut down after the project ends. 
We have to make sure that we are able to build 
sustainable Grid infrastructures which will last 
for a long time. Therefore, in the following, the 
author offers ‘his’ 10 rules for building a sus-
tainable Grid or cloud infrastructure, originally 
presented in the OGF Thought Leadership Series 
(2008). These rules are derived from mainly four 
sources: research on major Grid projects published 
in a RENCI report (Gentzsch, 2007a), the e-IRG 
Workshop on “A Sustainable Grid Infrastructure 
for Europe” (Gentzsch, 2007b), the 2nd Inter-
national Workshop on Campus and Community 
Grids at OGF20 in Manchester (McGinnis, 2007), 
and personal experience with coordinating the 
German D-Grid Initiative (D-Grid, 2008). The 10 
rules are mainly non-technical, because we believe 
most of the challenges in building and operating 
a Grid are in the form of mental, cultural, legal 
and regulatory barriers. Although these rules have 
been derived originally for successfully building 
a sustainable Grid infrastructure, recent experi-
ence with cloud computing shows that most of 
these rules still hold for introducing, building or 
connecting to a cloud infrastructure.

Rule 1: Identify your specific benefits. Your 
first thought should be about the benefits for your 
users and your organization. What’s in it for them? 
Identify the benefits which fit best: transparent ac-
cess to and better utilization of resources; almost 
infinite compute and storage capacity; flexibility, 
adaptability and automation through dynamic and 
concerted interoperation of networked resources, 
in-house or from a public cloud; cost reduction 
through utility model; shorter time-to-market be-
cause of more simulations at the same time on the 
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Grid or in the cloud. Grid and cloud technologies 
help to adjust an enterprise’s IT architecture to 
real business requirements (and not vice versa). 
For example, global companies will be able to 
decompose their highly complex processes into 
modular components of a workflow which can be 
distributed around the globe such that on-demand 
availability and access to suitable workforce and 
resources are assured, productivity increased, 
and cost reduced. Application of Grid and cloud 
technologies in these processes, guarantees seam-
less integration of and communication among all 
distributed components and provides transparent 
and secure access to sensitive company informa-
tion and other proprietary assets, world-wide. Grid 
and cloud computing is especially of great benefit 
for those research and business groups which 
cannot afford expensive IT resources. It enables 
engineers to remotely access any IT resource as 
a utility, to simulate any process and any product 
(and product life cycle) before it is built, resulting 
in higher quality, increased functionality, and cost 
and risk reduction.

Rule 2: Evangelize your decision makers 
first. They are the ones who give you the money 
and authority for your project. The more they know 
about the project and the more they believe in it 
(and in you) the more money and time you will 
get, and the easier becomes your task to lead and 
motivate your team and to get things done. Pres-
ent a business case (current deficiencies, specific 
benefits of the Grid and/or cloud (see Rule #1), 
how much will it cost and how much will it return, 
etc). They might also have to modify existing 
policies, top down, to make it easier for users (and 
providers) to cope with the challenges of and to 
accept and use these new services. For example, 
why would a researcher (or a department in an 
enterprise) stop buying computers when money 
continues to be allocated for buying it (CapEx)? 
This policy should be changed to support a utility 
model instead of an ownership model (OpEx). If 
you are building a national e-Infrastructure, for 

example, convincing your government to modify 
its research funding model is a tough task.

Rule 3: Don’t re-invent wheels. In the early 
Grid days, many Grid projects tried to develop 
the whole software stack themselves: from the 
middleware layer, to the software tools, to grid-
enabling the applications, to the portal and Web 
layer…and got troubled by the next technology 
change or by experts leaving the team. Today, so 
many Grid technologies, products and projects 
exist already that you first want to start looking 
for similar projects, select your favorite (most 
successful) ones which fit best your users’ needs, 
and ‘copy’ what they have built: and that will 
be your prototype. Consider, however, that all 
Grids are different. For example, research Grids 
are mainly about sharing (e.g. sharing resources, 
knowledge, data) and collaboration, commercial 
enterprise Grids are about reducing cost and in-
creasing productivity and revenue.

Rule 4: Keep It Simple. It took your users 
years to get acquainted with their current working 
environment, tools, and applications. Ideally, you 
won’t change that. Try hard to stick with what 
they have and how they do things. Plan for an 
incremental approach and lots of time listening 
and talking. Social effects dominate in Grids and 
in clouds. Join forces with the system people to 
change/modify mainly the lower layers of the 
architecture. Your users are your customers, they 
are king. Differentiate between two groups of 
users: the end users who are designing and de-
veloping the company’s products (or the research 
results) which account for all the earnings of your 
company (or reputation and therefore funding for 
your research institute), and the system experts 
who are eager to support the end users with the 
best possible services.

Rule 5: Evolution, not revolution. As the 
saying goes: “never change a running system”. We 
all hate changes in our daily lives, except when 
we are sure that things will drastically improve. 
Your users and their applications deeply depend 
on a reliable infrastructure. So, whenever you 
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have to change especially the user layer, only 
change it in small steps and in large time cycles. 
And, start with enhancing existing service mod-
els moderately, and test suitable utility models 
first as pilots. And, very important, part of your 
business plan has to be an excellent training and 
communications strategy.

Rule 6: Establish a governance structure. 
Define clear responsibilities and dependencies for 
specific tasks, duties and people during and after 
the project. An advisory board should include 
all stakeholders (e.g. your representatives of 
your end-users as well as application and system 
experts). In case of more complex projects, e.g. 
consisting of an integration project and several 
application or community projects, an efficient 
management board should lead and steer coor-
dination and collaboration among the projects 
and the working groups. The management board 
(Steering Committee) should consist of leaders of 
the sub-projects. Regular face-to-face meetings 
are very important.

Rule 7: Money, money, money. Don’t have 
unrealistic expectations that Grid and/or cloud 
computing will save you money from the start. 
In their early stage, Grid and cloud projects need 
enough funding to get over the early-adopter 
phase into a mature state with a rock-solid e-
Infrastructure such that other user communities 
can join easily. In research grids, for example, 
we estimate this funding phase currently to be in 
the order of 2-3 years, with more funding in the 
beginning for the Grid infrastructure, and later 
more funding for the application communities. In 
larger (e.g. global) research grids, funding must 
cover Teams or Centers of Excellence, for building, 
managing and operating the e-Infrastructure, and 
for middleware tools, application support, training, 
and dissemination. Also, most of today’s funding 
models in research and education are often project 
based and thus not ready for a utilitarian approach 
where resource usage is based on a pay-as-you-
go approach. Old funding models first have to be 
adjusted accordingly before a utility model can 

be introduced successfully. For example, today’s 
existing government funding models are often 
counter-productive when establishing new and 
efficient forms of utilitarian services (see Rule #2). 
In the long run, Grid and cloud computing will 
save you money through a much more efficient, 
flexible, reliable, and productive infrastructure.

Rule 8: Secure some funding for the post-
project phase. Continuity especially for

Maintenance, support, and dissemination (the 
latter to attract more users) are extremely important 
for the sustainability of your Grid infrastructure. 
Make sure already at the beginning of your project 
that additional funding will be available after the 
end of the project, to guarantee service and support 
and continuous improvement and adjustment of 
the infrastructure.

Rule 9: Try not to grid-enable your applica-
tions in the first place. Adjusting your application 
to changing hardware and software technologies 
costs a lot of effort and money, and takes a lot of 
your precious time. Did you ‘macro-assemble’, 
vectorize, multitask, parallelize, or multithread 
your application yourself in the past? Then, grid-
enabling such a code is relatively easy, as we have 
seen in this article before. But doing this from 
scratch is not what a user should do. Better to 
use the money to buy (lease, rent, subscribe to) 
software as a service or to hire a few experienced 
consultants who grid-enable your application and/
or (even better) help you enable your Grid archi-
tecture to dynamically cope with the application 
and user requirements (instead vice versa). Today, 
in grids, or in Grid workflows, we are looking 
more at chunks of independent jobs, (or chunks 
of transactions). And we let our schedulers and 
brokers decide how to distribute these chunks 
onto the best-suited and least-loaded servers in 
the Grid or in the cloud, or let the servers decide 
themselves in an over-load situation to share the 
chunks with their neighboring servers automati-
cally whenever they become available.

Rule 10: Adopt a ‘human’ business model. 
Don’t invent new business models. This usually 
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increases the risk for failure. Learn from the 
business models we have with our other service 
infrastructures: water, gas, telephony, electricity, 
mass transportation, the Internet, and the World 
Wide Web. Despite this wide variety of areas, 
there is only a handful of successful business 
models: on one end of the spectrum, you pay the 
total price, and the whole thing is yours (CapEx). 
Or you pay only a share of it, but pay the other 
share on a per usage basis. Or you rent every-
thing, and pay chunks back on a regular basis, 
like a subscription fee or leasing. Or you pay just 
for what you use (OpEx). Sometimes, however, 
there are ‘hidden’ or secondary applications. For 
example, electrical power alone doesn’t help. It’s 
only useful if it generates something, e.g. light, or 
heat, or cooling. And this infrastructure is what 
creates a whole new industry of appliances: light 
bulbs, heaters, refrigerators, and so on. Back to 
Grids and clouds: providing the right (transparent) 
infrastructure (services) and the right (simple) 
business model will most likely create a new set 
of services which most probably will improve our 
quality of life in the future.
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INTRODUCTION

The Grid (Foster and Kesselman, 2003) is a 
distributed computing environment in which 
resources from dispersed sites are virtualized 
through specialized services to provide applica-
tions with vast execution capabilities. Just like an 
electrical infrastructure, which spreads over cities 
to convey and deliver electricity, the Grid offers 
a computing infrastructure to which applications 

can be easily “plugged” and efficiently executed 
by leveraging resources of different administra-
tive domains. Precisely, “Grid” comes from an 
analogy with the electrical grid, since applications 
will take advantage of Grid resources as easily as 
electricity is now consumed.

Unfortunately, this analogy does not com-
pletely hold yet since it is difficult to “gridify” 
an application without rewriting or modifying it. 
A major problem is that most Grid toolkits pro-
vide APIs for merely implementing applications 
from scratch (Mateos et al., 2008a). Examples of 
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Grid-Enabling Applications 
with JGRIM

ABSTRACT

The development of massively distributed applications with enormous demands for computing power, 
memory, storage and bandwidth is now possible with the Grid. Despite these advances, building Grid 
applications is still very difficult. We present JGRIM, an approach to easily gridify Java applications by 
separating functional and Grid concerns in the application code, and report evaluations of its benefits 
with respect to related approaches. The results indicate that JGRIM simplifies the process of porting 
applications to the Grid, and the Grid code obtained from this process performs in a very competitive 
way compared to the code resulting from using similar tools.
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such toolkits are JavaSymphony (Fahringer and 
Jugravu, 2005), Java CoG Kit (von Laszewski 
et al., 2003), GSBL (Bazinet et al., 2007), GAT 
(Allen et al., 2005) and MyCoG.NET (Paventhan 
et al., 2006). Hence, the application logic results 
mixed up with code for using Grid services, making 
maintainability, testing and portability to differ-
ent Grid libraries and platforms somewhat hard. 
Furthermore, gridifying existing code requires 
to rewrite significant portions of it to use those 
APIs. These problems are partially addressed by 
tools that take an executable, along with user pa-
rameters (e.g. input arguments, CPU and memory 
requirements, etc.), and wrap the executable with 
a component that isolates the details of the Grid. 
Some tools falling in this category are GEMLCA 
(Delaittre et al., 2005), LGF (Baliś & Wegiel, 
2008) and GridSAM (McGough et al., 2008). 
However, the output of these tools are coarse 
grained applications whose execution cannot be 
configured to make better use of Grid resources 
(e.g. parallelize and/or distribute individual ap-
plication components). Overall, this represents 
a trade-off between ease of gridification versus 
flexibility to configure the runtime aspects of 
gridified applications (Mateos et al., 2008a).

To address these issues, we propose JGRIM, a 
novel method for porting Java applications onto 
service-oriented Grids, this is, based on Web 
Services. JGRIM minimizes the requirement of 
source code modification when gridifying Java 
applications, and provides simple mechanisms to 
effectively tune transformed applications. JGRIM 
follows a two-step gridification methodology, in 
which developers first implement and test the 
logic of their applications, and then Grid-enable 
them by undemandingly and non invasively 
injecting Grid services. Therefore, we conceive 
gridification as shaping the source code of an 
ordinary application according to few coding 
conventions, and then adding Grid concerns to it. 
In a previous paper (Mateos et al., 2008b), we re-
ported preliminary comparisons between JGRIM 
and other approaches for gridifying software in 

terms of source code metrics. In this article we 
also report JGRIM execution performance on an 
Internet-based Grid, measuring execution time 
and network usage of two resource-intensive 
applications. The rest of the article analyzes the 
most relevant related works, describes JGRIM, 
and presents the experimental evaluations.

RELATED WORK

Motivated by the complex and challenging nature 
of porting conventional applications to the Grid 
(Gentzsch, 2009), research in tools and methods 
to easily gridify ordinary software is growing at 
an astonishingly rate. Besides providing APIs 
for developing and executing Grid applications, 
many of these tools actually materialize alterna-
tive approaches to support easy gridification of 
existing applications. For an exhaustive survey 
on technologies to port applications to the Grid, 
see (Mateos et al., 2008a). Below we describe a 
representative subset of such tools.

ProActive (Baduel et al., 2006) is a platform 
for parallel distributed computing that provides 
technical services, a support which allows users 
to address non-functional concerns (e.g. load 
balancing and fault tolerance) by plugging certain 
external configuration to the application code at 
deployment time. ProActive applications com-
prise one or more mobile entities whose creation, 
migration and lookup are performed by explicit 
code provisioning. Likewise, the JPPF (2008) 
framework supports distributed scheduling for 
CPU-intensive tasks on distributed environments. 
In both cases, after porting an application to a 
Grid, the application logic results mixed up with 
Grid-related code. Therefore, gridification as well 
as software maintenance thereafter become dif-
ficult. Furthermore, GridGain (GridGain Systems, 
2008) attempts to minimize this problem by using 
Java annotations to seamlessly exploit distributed 
processors. However, GridGain does not target 
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interoperability, and is not aimed at leveraging 
Grid services provided by other platforms.

JavaSymphony (Fahringer and Jugravu, 2005) 
provides a semi-automatic execution model that 
deals with migration, parallelism and load bal-
ancing of applications. The model also allows 
programmers to explicitly control such aspects 
through API primitives. Similarly, Babylon (van 
Heiningen, 2008) features weak mobility, remote 
object communication and parallelism in an uni-
form programming API. As JavaSymphony and 
Babylon are API-inspired gridification tools, they 
require developers to learn another API as well as 
to perform extensive modifications when gridify-
ing their conventional applications.

Moreover, Ibis (van Nieuwpoort et al., 2005) 
is a Grid platform designed as an uniform and 
extensible communication facility on top of which 
a variety of distributed programming models are 
implemented. An interesting subsystem of Ibis 
is Satin (Wrzesinska et al., 2006), which allows 
developers to straightforwardly execute conven-
tional divide and conquer codes in parallel on 
clusters and Grids. Similar to JPPF, Ibis offers 
limited support for using well-established Grid 
protocols such as WSDL and UDDI (Curbera 
et al., 2002). Consequently, interoperability is 
almost absent when using these tools to build 
Grid applications.

GMarte (Alonso et al., 2006) is a high-level 
API offering an object-oriented view on top of 
Globus (Foster, 2005). Developers can employ the 
API to compose and execute existing binary codes 
by means of a new Java application. GMarte also 
features metascheduling capabilities and fault-
tolerance via custom checkpointing mechanisms. 
However, as GMarte treats these codes as black 
boxes, their structure cannot be altered to make 
better use of Grid resources, for example, parallel-
ize or distribute portions of the codes. In addition, 
XCAT (Gannon et al., 2005) supports distributed 
execution of component-based applications on 
top of existing Grid platforms (mostly Globus). 
Application components can also represent legacy 

binary programs. XCAT provides an API to build 
workflow applications by assembling service 
and legacy components. Though this task can be 
performed with little programming effort, develop-
ers still have to manage component creation and 
linking in their programs. Besides, like GMarte, 
XCAT does not provide support for fine tuning 
components at the application level.

All in all, existing toolkits and frameworks 
for gridifying software can be grouped into two 
major categories (Mateos et al., 2008a): those 
that aim at separating application logic from Grid 
functionality, and those that do not. Our work 
aligns with the proposals in the former category. 
However, we believe that these efforts are some 
way off from being effective tools for gridifying 
applications. On one hand, those efforts that rely on 
an API-oriented approach to gridification require 
modifications to the input applications, which in 
turn requires developers to learn Grid APIs and 
negatively affects maintainability and portability. 
Nevertheless, developers have a deeper control of 
the internal structure of their applications. Con-
versely, tools based on gridifying by wrapping or 
composing existing applications (e.g. GEMLCA, 
GMarte, XCAT, LGF, GridSAM) simplify gridifi-
cation, but prevent the usage of tuning mechanisms 
such as parallelization, mobility and distribution 
of individual application components. This rep-
resents a trade-off between ease of gridification 
versus true flexibility to configure the runtime 
aspects of gridified applications.

In this sense, JGRIM tackles this trade-off by 
avoiding excessive source code modifications 
when porting applications to the Grid, yet offer-
ing means to effectively tune these applications 
at a high level of abstraction once they have been 
transformed. Besides, developers are allowed to 
furnish application component with common Grid 
concerns such as parallelism and distribution at 
several levels of granularity. Moreover, JGRIM 
preserves the integrity of the application logic 
by allowing developers to seamlessly inject Grid 
concerns to their applications. This means that, 
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upon gridification, the ordinary application code 
does not get mixed with Grid-related code. This 
improves maintainability, testability and portabil-
ity of the same source code to different Grid APIs 
and environments. In addition, unlike most of the 
aforementioned tools, the JGRIM API only have 
to be explicitly used when performing application 
tuning and, in such a case, the application logic is 
not affected. Finally, because of the component-
based roots of its programming model, JGRIM is 
similar to using popular component development 
models for Java such as JavaBeans or EJBs. Given 
the widespread adoption of both Java and such 
models, our approach can benefit a large percent-
age of today’s Java applications.

JGRIM

JGRIM is an approach for creating and deploy-
ing conventional applications on service-oriented 
Grids. Its goal is to allow applications to discover 
and efficiently use Grid services without requir-
ing developers to provide code for it. JGRIM 
provides a layer whereby component-based Java 
applications are effortlessly transformed to appli-
cations that are furnished with specialized library 
components (see Figure 1). These components 
glue applications and the underlying Grid infra-

structure by leveraging the services provided by 
existing Grid platforms. Conceptually, JGRIM 
is a software/hardware stack comprising the fol-
lowing layers:

• Resource: represents the physical infra-
structure of the Grid (resources and trans-
port protocols).

• Service: provides sophisticated services 
to applications (e.g. load balancing, bro-
kering, parallelism, security, etc.) by 
means of existing Grid platforms (e.g. Ibis 
(van Nieuwpoort et al., 2005), ProActive 
(Baduel et al., 2006)) and resource man-
agement systems (e.g. Globus (Foster, 
2005), Condor (Thain et al., 2003)). The 
Service layer is often the Grid entry point 
for gridification under most of the existing 
approaches, this is, gridified applications 
directly talk to Grid services.

• Middleware: comprises some metaser-
vices that act as a glue between applica-
tions and the Grid. A metaservice is a 
representative of a set of related concrete 
services. Examples include service dis-
covery, service invocation and application 
tuning.

• Application: contains applications con-
sisting of a number of interacting compo-

Figure 1. A layered view of JGRIM
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nents. During gridification, JGRIM alters 
some of them and their interactions by us-
ing metaservices, thus at runtime some op-
eration requests originated by applications 
at this layer are handled by the Middleware 
layer.

JGRIM assumes that applications are properly 
componentized, which is the case of most Java 
applications. This allows JGRIM to treat an in-
dividual application as a collection of interacting 
components. The idea is to enhance these interac-
tions by using metaservices, for example to add 
remoting, load balancing or security. In addition, 
individual components can be enriched too, for 
example to add parallelism, job scheduling, wrap 
as a Web Service, etc.

Central to JGRIM is the concept of Dependency 
Injection (DI) (Johnson, 2005). With DI, com-
ponents providing services can be transparently 
injected into components that require these ser-
vices. JGRIM exploits DI by allowing developers 
to inject metaservices into ordinary applications. 
Essentially, JGRIM targets the “ease of gridifica-
tion versus flexible tuning” trade-off (Mateos et 
al., 2008a), minimizing the requirement of code 
modification when porting applications to the 
Grid, nonetheless providing useful mechanisms 

to tune Grid applications that give developers 
control over the way their gridified applications 
execute on a Grid.

Injecting Grid Services into 
Conventional Applications

DI achieves higher decoupling in component-
based applications by having components de-
scribed through public interfaces and reducing 
couplings by delegating the responsibility for 
component creation and linking to a DI container 
(Johnson, 2005). Put differently, components only 
know each other’s interfaces, but it is up to the 
DI container to create and set (inject) into a cli-
ent component an instance of another (provider) 
component implementing a required interface 
(center of Figure). A DI container is a runtime 
platform in charge of binding clients components 
to providers components.

Consider an application that includes a book 
catalog (BookService) and a client component 
(Client) accessing it (see Figure 2). The catalog 
may be implemented, for instance, by using 
a relational database (BookDB). Client has to 
setup a BookBD component by providing it with 
initialization parameters, specifically the location 
of the database, drivers, user name and password. 

Figure 2. DI and Grid service injection
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In consequence, though Client is only interested 
in finding and listing books (the operations of the 
BookService interface), it has to know implemen-
tation details of BookDB.

The center of Figure 2 shows the DI version 
of the application. The DI container nows injects 
a concrete implementation of BookService, such 
as our previous BookDB or a Web Service inter-
face to Amazon Books. Consequently, DI removes 
the dependency between the client and the service 
provider, because Client is no longer in charge of 
instantiating an implementation of the book ser-
vice. Besides, as long as different implementations 
of the book catalog realize BookService, any of 
them could be used without modifying the source 
code of Client.

JGRIM takes DI a step further by introduc-
ing an indirection between software components 
to inject Grid metaservices (right of Figure 2). 
After gridification the container no longer injects 
a service implementation into the client but a 
metaservice, which is for example able to find 
the fastest service from several implementations 
residing in the Grid. The client interacts with 
the metaservice, which in turn interacts with 
an implementation of the required service. This 
indirection is transparent to the client: there is no 
need to change its code, since both the service 
implementation and the metaservice realize the 
same interface (BookService). Besides discovery, 
metaservices may add load balancing, fault toler-
ance, distribution, etc.

From an application perspective, after the 
metaservice finds a proper service implementa-
tion S, it becomes a proxy to S. A service such 
as the book catalog, for which many realizations 
may exist and access is mediated by interfaced 
metaservices, is called a functional service (FS). 
FSs are entities that expose their functionality 
through clear interfaces. Within Grids, they are 
often materialized as Web Services (Atkinson et al., 
2005). FSs are categorized as internal or external. 
The former are parts of a complete application 
that, during gridification, are exposed so that other 

applications can use them. The latter are deployed 
Grid applications, external to the application being 
gridified, acting as building blocks. The second 
type of services JGRIM takes advantage of are 
called non-functional services (NFS). NFSs lack 
a clear and standard interface to their capabilities, 
as they represent abstract Grid concerns rather 
than explicitly-interfaced services. Examples of 
NFSs are parallelism, mobility, load balancing, 
security and distribution (Service layer of Figure 
1). An NFS also may have many materializations. 
For instance, load balancing is simultaneously 
featured by Ibis, Globus and ProActive.

Conceptually, injecting FSs sometimes also 
requires the injection of NFSs, but not the other 
way around. For instance, this would be the case 
of using security mechanisms when contacting 
or invoking FSs.

Gridification Process

JGRIM prescribes a semi-automatic gridification 
process that developers have to follow to gridify 
their applications, which consists of the following 
steps (see Figure 3):

1.  Developers identify application components 
and dependencies between components that 
will benefit from the Grid, or the hot-spots 
for gridification within their applications. 
Conceptually, hot-spot are the portions of 
an ordinary application to which one or more 
metaservices are associated.

2.  Modification of the application code to obey 
some simple and standard object-oriented 
coding conventions, ensuring that applica-
tion components defined in the previous 
step are implicitly linked through get/set 
accessors using the JavaBeans style. Any 
reference to a component C within the code 
must be done by calling a fictitious method 
getC(), instead of accessing it directly as 
C.operation(). For example, if an application 
reads data from a file component, it should 
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be accessed as getFile().read(). JGRIM 
modifies the application code to include the 
necessary instance variables and accessors. 
Since this style is commonplace in Java, this 
task often requires little or no effort.

3.  Definition of internal and external interfaces. 
Involves separating what a component does 
from its implementation. Again, for the in-
ternal interfaces this is a common practice in 
Java. For the external interfaces it involves 
specifying the method signatures for either 
using third-party services or exporting ap-
plication components as FSs.

4.  Automatic assembling of the outputs of (2) 
and (3) with metaservices. Basically, the 
DI-enabled application code is injected with 
JGRIM API classes by using the Spring DI 
container (Walls and Breidenbach, 2005). 
The resulting application is a reactive mobile 
Grid service (MGS), a service capable of mi-
grating its execution based on environmental 
conditions (Mateos et al., 2005) such as CPU 
load, storage availability, network latency, 
etc. More details on the JGRIM API and its 
implementation can be found in (Mateos, 
2008).

The next section illustrates these steps through 
the gridification of a concrete application.

Gridifying the k-NN Classifier

The k-NN algorithm (Dasarathy, 1991) is a popular 
supervised learning technique for mining data. 
k-NN is computationally intensive, hence it is a 
suitable application for execution on a Grid. In the 
next paragraphs, we will gridify it with JGRIM.

k-NN classifies instances by placing them at a 
point of a multidimensional feature space. k-NN 
first partitions the space into regions according 
to class labels of several training samples, or 
dataset. Then, it assigns the class C to a point if 
C is the most frequent label among the k nearest 
training samples.

Let us suppose that the existing implementation 
of the k-NN algorithm consists of various helper 
classes plus a KNN class with three operations:

• classifyInstance: computes the label asso-
ciated to an instance.

• classifyInstances: analogous to classifyIn-
stance but operates on a list of instances.

• sameClass: tests whether two instances 
have the same label.

One of the helper classes provides access to 
a file-based dataset, which is accessed by these 
methods. Basically, the structure of the applica-
tion code is:

Figure 3. JGRIM: gridification process
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public class KNN {
   private int k;
   private FileDataset dataset;
   public KNN(int k){
   this.k = k; 

   this.dataset = new 
   FileDataset(); 

   } 

   public double
   classifyInstance(Instance 

   instance) {...} 

   public double[]classifyInstances
   (Instance[] instances) {...} 

    public boolean
   sameClass(Instance instA, 

   Instance instB) {...} 

} 

public class FileDataset {
   public Instance[] readItems(int
   rowStart, int rowEnd) {...}
   public int size() {...}
   public int dimensions() {...}
} 

First, we must determine which classes (KNN) 
and interactions between components (KNN 
needs a data resource - the KNN-FileDataset 
interaction) to gridify. Then, we have to separate 
the implementation of the data resource from its 
interface, and replace all accesses to dataset by 
getDataset(). In the example, the valid operations 
of dataset were defined in DatasetService. Finally, 
we process the code with JGRIM, resulting in:

public interface DatasetService {
 public Instance[] readItems(int
 rowStart, int rowEnd);
 public int size();
 public int dimensions();
} 

public class KNN extends jgrimapi.
MGS { 

 private int k; 
 private DatasetService dataset;

 public KNN(int k) { this.k = k; }
 public void 
setdataset(DatasetService 

injectedDataset) { this.dataset = 

injectedDataset }; 

 public DatasetService getdataset() { 
return dataset; }  

 /** Classification methods */ 

 ... 

} 

Note that JGRIM added proper getter/setters for 
interacting with the dataset. Besides, the resulting 
source code is very clean, since it was not neces-
sary to use any JGRIM API class for gridification 
purposes. Moreover, JGRIM generates an XML 
configuration file:

<beans> 

 <bean id=”knnComponent” class=”KNN”> 

 <property name=”dataset” 

ref=”datasetMetaService”/> 

 </bean> 

 <bean id=”datasetMetaService” 

class=”jgrimapi.JGRIMServiceDiscov-

erer”> 

 <property name=”requiredInterface” 

value=”DatasetService”/> 

 </bean> 

</beans> 

The XML file links application components 
and JGRIM metaservices together through DI. 
Here, KNN is decoupled from the dataset imple-
mentation by linking it --via the dataset property-- 
with a component that provides runtime Web 
Service discovery. Currently, service discovery 
is based on the inspection of UDDI registries 
(Curbera et al., 2002). Consequently, KNN can use 
any external dataset service of the Grid provided 
it implements the DatasetService interface and is 
published to a UDDI registry.

So far we have decoupled the storage mecha-
nism of the dataset from the KNN class. When the 



47

Grid-Enabling Applications with JGRIM

KNN application is executed, JGRIM searches an 
appropriate dataset in the Grid and injects it into 
KNN. Besides, JGRIM mediates between these two 
components, hiding the actual location of the da-
taset and the communication details. Furthermore, 
the application is converted into a Grid service 
capable of transparently migrating its execution. 
Thus, the application becomes a callable entity 
that other applications can discover and use.

Now we will use JGRIM for executing KNN 
in multiple distributed threads to improve its 
performance. The sameClass operation classifies 
two instances and compares the results:

... 

c1 = classifyInstance(instA); 

c2 = classifyInstance(instB); 

return (c1 == c2);

The calls to classifyInstance are independent 
between each other, thus they can be computed 
concurrently. Let us exploit this by injecting par-
allelism into the sameClass operation. We have 
to define an interface for the classifyInstance 
operation:

public interface Classifier {
 public double 

 classifyInstance(Instance instance); 

} 

After processing the code with JGRIM, a new 
component is added to the XML file:

<beans> 

 <bean id=”knnComponent” class=”KNN”> 

 ... 

 <property name=”classifier” 

ref=”spawnerMetaService”/> 

 </bean> 

 ... 

 <bean id=”spawnerMetaService” 

class=”jgrimapi.JGRIMMethodSpawner”> 

 <property name=”spawnableMethods” 

value=”Classifier”/> 

 </bean> 

</beans> 

JGRIMMethodSpawner1 parallelizes the invo-
cations to the methods specified by the Classifier 
interface. Also, the programmer must replace the 
calls to classifyInstance by calls to a fictitious 
getclassifier method. Future uses of c1 and c2 will 
block the execution of sameClass until their values 
are computed by JGRIMMethodSpawner. This 
coordination is supported through Java futures, 
which are available in the java.util.concurrent 
package of the JVM since version 5.0. Behind 
scenes, JGRIM installs classifyInstance in several 
computers of the Grid and dynamically finds idle 
computers to execute one invocation per computer. 
This is, JGRIM not only parallelizes KNN, but also 
distributes its execution. For supporting parallel-
ism on Grids, JGRIM relies on Satin (Wrzesinska 
et al., 2006), a subsystem of Ibis that is designed 
to execute embarrasingly parallel computations on 
distributed environments. Furthermore, a spawner 
based on raw, local threads is also available.

Besides parallelism, JGRIM allows developers 
to tune applications by using code mobility and 
policies based on environmental conditions. To 
briefly illustrate this mechanism, let us suppose 
our MGS is deployed on a Grid of several sites 
each hosting a replica of the dataset. Let us ad-
ditionally assume that bandwidth between sites 
could drastically vary along time.

As KNN works by reading data blocks from 
the dataset and then performing computations on 
them, bandwidth indirectly affects response time. 
Particularly, accessing a replica through a busy 
network channel might decrease performance. 
JGRIM metaservices, unless otherwise indicated, 
assume that the best service instance is always the 
one offering the highest throughput. Through a 
policy, we can redefine what “best” means to an 
application, i.e. the highest transfer capabilities 
in our scenario.



48

Grid-Enabling Applications with JGRIM

To specify a policy for the dataset resource, 
we will attach to DatasetInterface a new class 
that implements four operations:

public class DatasetPolicy extends 
jgrimapi.Policy { 

 private boolean initialized = true;
 public String accessWith(String 
methodA, String methodB){ 

 return jgrimapi.Constants.INVOKE;
 } 

 public String accessFrom(String 
siteA, String siteB){ 

 double trA = jgrimapi.Profiler.
instance().profile(“bandwidth”, 

“localhost”, siteA); 

 double trB = jgrimapi.Profiler.
instance().profile(“bandwidth”, 

“localhost”, siteB); 

 return (trA < trB) ? siteA: siteB;
 } 

 public void before(){
 if (!this.initialized) {
 getOwnerMGS().move(jgrimapi.

Profiler.instance().idlestSite()); 

 this.firstEval = false;
 } 

 }  

 public void after(){...}
} 

For simplicity, we have omitted the XML con-
figuration that is generated by JGRIM to inject this 
policy into the application. The policy mechanism 
works as follows: upon each call to the dataset, 
DatasetPolicy is evaluated, which instructs KNN 
(through accessWith and accessFrom methods) 
to remotely contact the service replica which is 
hosted at the site that offers the best bandwidth (al-
ternatively, the KNN application could be moved 
to that site). Methods before and after are used to 
perform initialization/disposal tasks before/after 
an individual evaluation of the policy takes place. 
For example, the policy causes KNN to migrate 

to the idlest site upon the first evaluation. Like 
any component, policies can maintain state (e.g. 
the initialized variable), and be associated just to 
single interface operations. Overall, by adding a 
simple policy, KNN is able to smartly interact 
with the dataset. Policy coding is not mandatory 
and, even more important to our work, it does not 
affect the application logic.

EVALUATION AND DISCUSSION

To provide empirical evidence about the practi-
cal soundness of our approach, we conducted a 
comparison between JGRIM, ProActive and Satin. 
In short, these tools were separately employed to 
gridify existing implementations of two different 
applications, namely the k-NN explained in past 
paragraphs, and an application for panoramic 
image restoration based on the enhancement al-
gorithm proposed in (Tschumperlé and Deriche, 
2003). After gridification, representative code 
metrics on the Grid-aware applications were taken 
to quantitatively analyze how difficult is to port a 
Java application to a Grid with either of the three 
alternatives. Besides, experiments were conducted 
to evaluate the performance of JGRIM applica-
tions with respect to the other two approaches.

The restoration application was originally im-
plemented as a master component responsible for 
splitting/joining images, plus worker components 
for carrying out the CPU intensive processing, 
this is, running the actual restoration algorithm 
on individual portions of the whole panoramic 
image. Experiments were performed on a Grid 
comprising three Internet-connected clusters (see 
Figure 4). Each cluster hosted a replica of the k-NN 
dataset wrapped with a Web Service. For the sake 
of fairness, all gridified codes used the replicated 
datasets. Both the original codes of k-NN and 
the restoration application were implemented by 
an experienced Java programmer. On the other 
side, gridification was performed by a different 
developer with similar skills in Java programming 
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but minimal background on JGRIM, ProActive 
and Satin. All experiments were performed dur-
ing nighttime (from 11 P.M. to 8 A.M.), when the 
Internet traffic is low and the network latency has 
little variability.

Table 1 details the CPU and memory specifi-
cations of the nodes of the previous Grid setting. 

Machines were equipped with Ubuntu Linux 
(kernel version 2.6.20) and the Sun JDK 1.5.0. 
The reason of using such an heterogeneous hard-
ware was to establish a realistic Grid testbed for 
the experiments.

We assessed the impact of gridification on the 
application code when employing the three tools 

Figure 4. Grid used for the experiments

Table 1. Hardware specifications of the Grid machines 

Cluster name Machine 
name CPU model CPU frequency Memory 

(MB)

A
A.1 AMD Athlon XP 2200+ 1.75 Ghz. 256

A.2 Intel Core2 T5600 1.83 Ghz. (per core) 1.024

B
B.1 AMD Sempron 1.90 Ghz. 512

B.2 AMD Athlon 64 X2 Dual Core 3.600+ 2.00 Ghz. (per core) 1.024

C

C.1 Intel Pentium 4 2.80 Ghz. 512

C.2 Intel Pentium III (Coppermine) 852 Mhz. 256

C.3 Intel Pentium III (Coppermine) 852 Mhz. 256

C.4 Intel Pentium III (Coppermine) 852 Mhz. 384

C.5 Intel Pentium III (Coppermine) 852 Mhz. 384

C.6 Intel Pentium III (Coppermine) 798 Mhz. 256
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by comparing TLOC (Total Lines Of Code) and 
GLOC (Grid Lines Of Code) metrics for the 
original applications and their gridified counter-
parts. Basically, these metrics were computed as 
follows:

• TLOC: Number of non-blank, non-com-
mented code lines including algorithms, 
code for interacting with data, performing 
Grid exception handling, and parallelism. 
Note that this metric is closely related to 
the extra effort necessary to adapt the ordi-
nary version of the applications to execute 
on our Grid.

• GLOC: Number of lines within the code 
of a gridified application that explicitly 
access the underlying Grid platform API. 
Intuitively, the larger the GLOC, the more 
the time a developer spends learning the 
API. In addition, greater GLOC means the 
application is more tied to a specific Grid 
library.

Before measuring, all codes were uniformly 
formatted with the help of the Eclipse SDK. Table 
2 summarizes the obtained values for these met-
rics (lower values are better). Moreover, for the 
JGRIM applications we obtained two variants by 
implementing a caching policy for k-NN, which 
stores dataset accesses to reduce network traffic, 
and a mobility policy for the image application, 
which explicitly moves application components 
to reduce network latency.

From Table 2, it is clear that at least for these 
applications, JGRIM obtained good TLOC and 
GLOC. Satin k-NN resulted in high TLOC since 
the platform does not provide support for using 
Web Services. On the other hand, ProActive sup-
port for Web Services is minimal. This feature, 
however, is crucial to achieve interoperability 
across Grids (Atkinson et al., 2005). Conversely, 
discovery metaservices allowed JGRIM k-NN to 
delegate dataset discovery and access to the un-
derlying platform, discarding the code for using 
a file-based dataset present in the original k-NN 
application. Moreover, achieving parallelism (i.e. 
classify several instances in parallel) with Satin 
and ProActive demanded more API code. Remark-
ably, unlike its competitors, the JGRIM API was 
only used for coding policies, not affecting the 
original codes. These facts suggest that using 
JGRIM may lead to more maintainable and por-
table Grid code, since JGRIM effectively pushes 
most of the code for handling Grid-specific con-
cerns out of the application logic. Besides, the 
lower GLOC values of the JGRIM applications 
indicate that JGRIM is appropriate for users not 
proficient in JGRIM or even Grid technologies, 
as the amount of API functionality that is neces-
sary to learn before using the tool is much less 
compared to employing Satin and ProActive.

To evaluate the performance and resource 
usage of the Grid-enabled codes, each gridified 
version of k-NN was used to classify several list 
of input instances with different sizes (5, 10, 15, 
20 and 25 instances). For the image application 

Table 2. Test applications: code metrics 

k-NN Image restoration

Tool TLOC GLOC Tool TLOC GLOC

Original 192 N/A Original 241 N/A

Satin 1477 10 Satin 227 5

ProActive 404 404 ProActive 299 17

JGRIM 166 4 JGRIM 226 0

JGRIM (with caching policy) 179 6 JGRIM (with mobility policy) 233 1
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we used five pictures of various sizes (0.4 MB, 
0.9 MB, 1.5 MB, 1.8 MB and 2.4 MB). We aver-
aged the execution time (AET) and accumulated 
the network traffic for 10 executions per test 
(deviations were around 5%). Loopback network 
traffic was filtered out, as it does not consume 
bandwidth and it is negligible compared to LAN 
and WAN traffic. To capture network traffic, we 
used the tcpdump2 network monitoring program. 
Figures 5 and 6 show the obtained results. As 
expected, JGRIM behaved similar to the alterna-
tives. Besides, the use of JGRIM policies (caching 
and mobility) greatly improved both performance 
and network usage.

When not using the caching policy, the JGRIM 
variant of k-NN incurred in a performance over-
head of 10-15% compared to its Satin counterpart. 

However, this overhead was associated to perform 
service discovery, a key Grid feature that is not 
present in Satin and ProActive. Besides, caching 
allowed JGRIM to continue using discovery 
-which intuitively translates into overhead- and 
at the same time to stay very competitive. Fur-
thermore, ProActive k-NN performed poorly. 
Roughly, ProActive is strongly oriented towards 
simplifying the deployment of Grid applications, 
which contributes to make application setup 
slower. In principle, these results suggest that 
ProActive is not suitable for applications whose 
execution time is similar than their setup time. 
Moreover, caching significantly reduced network 
traffic, which is a consequence of performing less 
remote dataset accesses. It is worth noting that 
Satin and ProActive k-NN might have benefited 

Figure 5. AET of the k-NN application (left) and the image restoration application (right)

Figure 6. Network traffic of the k-NN application (left) and the image restoration application (right)
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from this caching technique too, but this would 
have required yet more modifications to the 
original application code, and thus it would have 
increased TLOC.

With respect to the image application, the 
plain variant of JGRIM (this is, without using the 
mobility policy) performed better than Satin, even 
when in the experiments JGRIM used Satin for 
performing parallelism. This is because JGRIM 
exploits Satin by extending it so as to avoid the 
standard handshaking process of Satin when coop-
eratively executing applications. Furthermore, the 
ProActive version showed acceptable performance 
levels. In this case, unlike ProActive k-NN, the 
deployment times did not heavily impact in the 
performance, since these times were not significant 
with respect to the total execution times.

Moreover, ProActive generated the least 
amount of WAN traffic. Unlike Satin and there-
fore JGRIM, its job scheduling is not subject to 
random factors. Basically, the Satin platform is 
based on a load balancing algorithm by which 
each machine of the underlying Grid randomly 
asks other nodes for jobs to execute when it 
becomes idle. Nevertheless, injecting mobility 
allowed JGRIM to achieve higher performance 
and reduce this traffic. Again, the policy did not 
affect the original code. Unfortunately, Satin do 
not let developers to explicitly control mobility, 

whereas ProActive only offers weak mobility, 
which requires extensive code modifications to 
manually handle the behavior for saving/restor-
ing the execution state of running computations.

To conclude, Figure 7 shows the speedup 
achieved by the various applications, which were 
computed as AETs/AET, where AETs is the average 
execution time of the original codes on a single 
machine (C.1). Note that, in both graphics, the 
speedup curves of Satin and JGRIM seemed to 
have the same behavior, since JGRIM relies on 
Satin for parallelism. This is, JGRIM inherits the 
job scheduling scheme of Satin. Due to the random 
nature of the Satin scheduler plus the heteroge-
neity of our Grid setting, for some experiments 
regarding the Satin and JGRIM applications, we 
obtained lower speedups for larger experiments. 
For example, note that for k-NN, there was a dip 
in the speedup for 20 instances (Figure 7 (left)). To 
a lesser extent, this effect was also present in the 
restoration application. Furthermore, the ProAc-
tive applications appeared to linearly gain speedup 
as the size of the experiments increased, but this 
trend should be further corroborated. In summary, 
the implications of the speedups are twofold. On 
one hand, the original codes certainly benefited 
from being gridified, thus they were representa-
tive Grid applications to experiment with. On the 
other hand, through the use of policies, JGRIM 

Figure 7. Speedups achieved by the grid-enabled versions of the k-NN application (left) and the image 
restoration application (right)
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achieved very competitive speedups compared 
to both Satin and ProActive, while preserving 
the technical quality of the application code, 
as evidenced by the values for the code metrics 
discussed before.

CONCLUSION AND FUTURE WORK

In this article, we have presented JGRIM, a new 
approach to simplify the gridification of Java 
applications by hiding the complex nature of the 
Grid and its services. We showed the advantages 
of the approach through experimentation with 
two related approaches. A distinctive feature 
JGRIM is that it promotes a convenient model 
for developing Grid applications that is familiar 
to most Java programmers. JGRIM allows for a 
better separation of application logic and Grid 
code (e.g. for performing service discovery and 
invocation), and makes the task of consuming 
Grid services easier. Besides, custom decisions 
for tuning gridified applications can be specified 
separately from their logic through the use of 
policies, thus letting developers to seamlessly 
adapt the same application to different Grids and 
distributed environments. We experimentally 
showed that JGRIM simplifies gridification and 
produces better Grid code without resigning per-
formance for the two aforementioned applications. 
However, we will conduct more experiments to 
further validate JGRIM. This will involve the 
gridification of more applications on larger Grids.

We are extending JGRIM in several directions. 
Since JGRIM applications can travel across differ-
ent administrative domains looking for resources 
and services, security is crucial. A future research 
line is to incorporate security mechanisms into 
JGRIM. Another limitation arises from the as-
sumptions made for gridifying applications, as 
JGRIM only accepts as input component-based 
applications, which does not likely hold for all 
applications. Fortunately, the problem of com-
ponentization of legacy object-oriented code has 

been addressed (Li & Tahvildari, 2006). Therefore, 
a similar approach could be employed to supply 
the JGRIM gridification process with an extra 
code transformation phase to ensure, prior to the 
first step of the current version of the process, that 
input applications are component-based. Similarly, 
it would be interesting to handle the case when 
the source code of ordinary applications is not 
available for gridification. We have implemented 
a tool that builds on the ideas presented in this 
article, but focuses on dynamically modifying Java 
bytecodes to run in parallel on a Grid. Basically, 
the tool takes advantage of the facilities provided 
by the Java Virtual Machine for altering classes at 
runtime to adapt ordinary bytecodes to transpar-
ently run on Satin clusters.

In addition, we are working on metaservices 
to leverage other state-of-the-art mechanisms for 
Grid resource discovery, such as those described 
in (Zhang et al., 2007), and more Grid execution 
services. With regard to the former, we are cur-
rently integrating JGRIM with GMAC (Gotthelf 
et al., 2008), a P2P protocol of our own that is 
designed for exchanging information between the 
hosts of a Grid in a scalable way. Specifically, 
GMAC will serve as a mean to efficiently gather 
information about the Grid resources available 
for executing applications, thus providing ac-
curate metrics through the profiling interface to 
application programmers. With respect to the 
latter, we have already implemented a prototype 
integration with Condor that is based on a Java 
interface to Condor clusters3. Basically, this will 
allow JGRIM to smoothly delegate to Condor the 
execution of component operations representing 
resource-intensive, coarse-grained Grid jobs.

Also, since JGRIM is essentially a technology-
agnostic gridification method, we are exploring 
the viability of materializing JGRIM in other pro-
gramming languages besides Java. For example, 
languages such as C++ or Python are extensively 
employed for developing Grid applications. How-
ever, this will require to carefully study whether 
these new languages provide support for core 
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features of JGRIM such as mobility, dependency 
injection and Web Service integration.

Finally, we are developing an Eclipse plug-
in to supply developers with graphical tools to 
specify dependencies and associate metaservices. 
The plug-in is also expected to offer support for 
deploying, debugging and monitoring the execu-
tion of JGRIM applications. Basically, the goal of 
this line of research is to provide a full-fledged 
IDE for gridifying and running applications with 
JGRIM.

REFERENCES 

Allen, G., Davis, K., Goodale, T., Hutanu, A., 
Kaiser, H., & Kielmann, T. (2005). The Grid 
Application Toolkit: Towards generic and easy 
application programming interfaces for the 
Grid. Proceedings of the IEEE, 93(3), 534–550. 
doi:10.1109/JPROC.2004.842755

Alonso, J., Hernández, V., & Moltó, G. (2006). 
GMarte: Grid middleware to abstract remote task 
execution. Concurrency and Computation, 18(15), 
2021–2036. doi:10.1002/cpe.1052

Atkinson, M., DeRoure, D., Dunlop, A., Fox, G., 
Henderson, P., & Hey, T. (2005). Web Service 
Grids: An evolutionary approach. Concurrency 
and Computation, 17(2-4), 377–389. doi:10.1002/
cpe.936

Baduel, L., Baude, F., Caromel, D., Contes, A., 
Huet, F., Morel, M., & Quilici, R. (2006). Grid 
computing: Software environments and tools. 
In Programming, Composing, Deploying on the 
Grid, (pp. 205-229)., Berlin, Heidelberg, and New 
York: Springer

Bartosz Baliś, M., & Wegiel, M. (2008). LGF: A 
flexible framework for exposing legacy codes as 
services. Future Generation Computer Systems, 
24(7), 711–719. doi:10.1016/j.future.2007.12.001

Bazinet, A., Myers, D., Fuetsch, J., & Cum-
mings, M. (2007). Grid Services Base Library: A 
high-level, procedural application programming 
interface for writing Globus-based Grid services. 
Future Generation Computer Systems, 23(3), 
517–522. doi:10.1016/j.future.2006.07.009

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., 
Mukhi, N., & Weerawarana, S. (2002). Unraveling 
the Web Services Web: An introduction to SOAP, 
WSDL, and UDDI. IEEE Internet Computing, 
6(2), 86–93. doi:10.1109/4236.991449

Dasarathy, B. (1991). Nearest neighbor (NN) 
norms: Nn pattern classification techniques. IEEE 
Computer Society Press Tutorial.

Delaittre, T., Kiss, T., Goyeneche, A., Tersty-
anszky, G., Winter, S., & Kacsuk, P. (2005). 
GEMLCA: Running legacy code applications as 
Grid services. Journal of Grid Computing, 3(1-2), 
75–90. doi:10.1007/s10723-005-9002-8

Fahringer, T., & Jugravu, A. (2005). JavaSym-
phony: A new programming paradigm to control 
and synchronize locality, parallelism and load 
balancing for parallel and distributed comput-
ing. Concurrency and Computation, 17(7-8), 
1005–1025. doi:10.1002/cpe.840

Foster, I. (2005). Globus Toolkit version 4: Soft-
ware for service-oriented systems. In Network 
and Parallel Computing - IFIP International 
Conference, Beijing, China, 3779, 2-13. Springer.

Foster, I., & Kesselman, C. (2003). The Grid 2: 
Blueprint for a new computing infrastructure, 
chapter Concepts and Architecture (pp. 37–63). 
San Francisco, CA, USA: Morgan-Kaufmann 
Publishers Inc.

Gannon, D., Krishnan, S., Fang, L., Kandaswamy, 
G., Simmhan, Y., & Slominski, A. (2005). On 
building parallel and Grid applications: Compo-
nent technology and distributed services. Cluster 
Computing, 8(4), 271–277. doi:10.1007/s10586-
005-4094-2



55

Grid-Enabling Applications with JGRIM

Gentzsch, W. (2009). Porting applications to 
grids and clouds. International Journal of Grid 
and High Performance Computing, 1(1), 55–77. 
doi:10.4018/jghpc.2009010105

Gotthelf, P., Zunino, A., Mateos, C., & Campo, 
M. (2008). GMAC: An overlay multicast network 
for mobile agent platforms. Journal of Parallel 
and Distributed Computing, 68(8), 1081–1096. 
doi:10.1016/j.jpdc.2008.04.002

GridGain Systems. (2008). GridGain. Retrieved 
October 16, 2008, from http://www.gridgain.com.

Johnson, R. (2005). J2EE development frame-
works. Computer, 38(1), 107–110. doi:10.1109/
MC.2005.22

JPPF. (2008). Java Parallel Processing Frame-
work. Retrieved October 16, 2008, from http://
www.jppf.org.

Li, S., & Tahvildari, L. (2006). JComp: A reuse-
driven componentization framework for Java 
applications. In 14th IEEE International Confer-
ence on Program Comprehension (ICPC’06), (pp. 
264-267). IEEE Computer Society.

Mateos, C. (2008). An approach to ease the 
gridification of conventional applications. Doc-
toral dissertation. Universidad del Centro de la 
Provincia de Buenos Aires, Argentina. Retrieved 
October 16, 2008, from http://www.exa.unicen.
edu.ar/~cmateos/files/phdthesis.pdf.

Mateos, C., Zunino, A., & Campo, M. (2005). 
Integrating intelligent mobile agents with Web 
Services. International Journal of Web Ser-
vices Research, 2(2), 85–103. doi:10.4018/
jwsr.2005040105

Mateos, C., Zunino, A., & Campo, M. (2008a). 
A survey on approaches to gridification. Soft-
ware, Practice & Experience, 38(5), 523–556. 
doi:10.1002/spe.847

Mateos, C., Zunino, A., & Campo, M. (2008b). 
JGRIM: An approach for easy gridification of ap-
plications. Future Generation Computer Systems, 
24(2), 99–118. doi:10.1016/j.future.2007.04.011

McGough, S., Lee, W., & Das, S. (2008). A 
standards based approach to enabling legacy 
applications on the Grid. Future Generation 
Computer Systems, 24(7), 731–743. doi:10.1016/j.
future.2008.02.004

Paventhan, A., Takeda, K., Cox, S., & Nicole, 
D. (2007). MyCoG.NET: A multi-language CoG 
toolkit. Concurrency and Computation, 19(14), 
1885–1900. doi:10.1002/cpe.1133

Thain, D., Tannenbaum, T., & Livny, M. (2003). 
Condor and the grid . In Berman, F., Fox, G., & 
Hey, A. (Eds.), Grid computing: Making the global 
infrastructure a reality (pp. 299–335). New York, 
NY, USA: John Wiley & Sons Inc.

Tschumperlé, D., & Deriche, R. (2003). Vector-
valued image regularization with PDE’s: A com-
mon framework for different applications. In 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR ’03), Madison, WI, USA, 1, 
651-656. IEEE Computer Society.

van Heiningen, W., MacDonald, S., & Brecht, 
T. (2008). Babylon: middleware for distributed, 
parallel, and mobile Java applications. Concur-
rency and Computation, 20(10), 1195–1224. 
doi:10.1002/cpe.1264

van Nieuwpoort, R., Maassen, J., Wrzesinska, G., 
Hofman, R., Jacobs, C., Kielmann, T., & Bal, H. 
(2005). Ibis: A flexible and efficient Java based 
Grid programming environment. Concurrency and 
Computation, 17(7-8), 1079–1107. doi:10.1002/
cpe.860

von Laszewski, G., Gawor, J., Lane, P., Rehn, N., 
& Russell, M. (2003). Features of the Java Com-
modity Grid Kit. Concurrency and Computation, 
14(13-15), 1045–1055. doi:10.1002/cpe.674



56

Grid-Enabling Applications with JGRIM

Walls, C., & Breidenbach, R. (2005). Spring in 
action. Greenwich, Connecticut, USA: Manning 
Publications Co.

Wrzesinska, G., van Nieuwport, R., Maassen, J., 
Kielmann, T., & Bal, H. (2006). Fault-tolerant 
scheduling of fine-grained tasks in Grid envi-
ronments. International Journal of High Perfor-
mance Computing Applications, 20(1), 103–114. 
doi:10.1177/1094342006062528

Zhang, X., Freschl, J., & Schopf, J. (2007). Scal-
ability analysis of three monitoring and informa-
tion systems: MDS2, R-GMA, and Hawkeye. 
Journal of Parallel and Distributed Computing, 
67(8), 883–902. doi:10.1016/j.jpdc.2007.03.006

ENDNOTES

1  This is an example of a metaservice repre-
senting an NFS (parallelism)

2  tcpdump: http://www.tcpdump.org
3  Condor Java API: http://staff.aist.go.jp/hide-

nakada/condor_java_api/index.html

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1, 
Issue 3, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 52-72, copyright 2009 by IGI Publishing (an imprint of IGI Global).



Section 2
Scheduling



58

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  4

Kuo-Chan Huang
National Taichung University of Education, Taiwan

Po-Chi Shih
National Tsing Hua University, Taiwan

Yeh-Ching Chung
National Tsing Hua University, Taiwan

Moldable Job Allocation 
for Handling Resource 

Fragmentation in 
Computational Grid

ABSTRACT

In a computational Grid environment, a common practice is to try to allocate an entire parallel job onto 
a single participating site. Sometimes a parallel job, upon its submission, cannot fit in any single site due 
to the occupation of some resources by running jobs. How the job scheduler handles such situations is 
an important issue which has the potential to further improve the utilization of Grid resources, as well 
as the performance of parallel jobs. This paper adopts moldable job allocation policies to deal with such 
situations in a heterogeneous computational Grid environment. The proposed policies are evaluated 
through a series of simulations using real workload traces. The moldable job allocation policies are also 
compared to the multi-site co-allocation policy, which is another approach usually used to deal with 
the resource fragmentation issue. The results indicate that the proposed moldable job allocation poli-
cies can further improve the system performance of a heterogeneous computational Grid significantly.
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INTRODUCTION

Most parallel computing environments running 
scientific applications adopt the space-sharing ap-
proach. In this approach, the processing elements 
of a parallel computer are logically partitioned 
into several groups. Each group is dedicated 
to a single job, which may be serial or parallel. 
Therefore, each job has exclusive use of the group 
of processing elements allocated to it when it is 
running. However, different running jobs may have 
to share the networking and storage resources to 
some degree.

In a computational Grid environment, a com-
mon practice is try to allocate an entire parallel 
job onto a single participating site. However, this 
kind of allocation sometimes runs into a situation 
called resource fragmentation. The following is an 
example. Assume a Grid consisting of 4 computing 
sites each equipped with 32 processors. After a 
sequence of job allocations, at some moment the 
amounts of leftover processors for the four sites 
are 4, 2, 4, 6 in order. At the moment, a new job 
requiring 10 processors is submitted into the Grid. 
Apparently, there is no site being able to accom-
modate the job for immediate execution. It has to 
wait in queue. However, carefully inspecting the 
leftover processors reveals that some combina-
tions among the four sites have a total amount of 
leftover processors larger than the requirement 
of the incoming job. For example, site 3 and site 
4 add up to exactly 10 processors. Site 1, site2, 
and site3 together can make it, too. This is what 
we called resource fragmentation in Grid envi-
ronments. This paper tries to deal with resource 
fragmentation through moldable job allocation.

Most current parallel application programs 
have the moldable property (Dror, Larry, Uwe, 
Kenneth, & Parkson, 1997). It means the programs 
are written in a way so that at runtime they can 
exploit different parallelisms for execution ac-
cording to specific needs or available resource. 
Parallelism here means the number of processors a 
job uses for its execution. The moldable job alloca-

tion policies proposed in this paper take advantage 
of the moldable property of parallel programs to 
improve the overall system performance.

This paper develops moldable job allocation 
policies for both homogeneous parallel computers 
and heterogeneous computational Grid environ-
ments. The proposed policies require users to 
provide estimations of job execution times upon 
job submission. The policies are evaluated through 
a series of simulations using real workload traces. 
The effects of inexact runtime estimations on sys-
tem performance are also investigated. The mold-
able job allocation policies are also compared to 
the multi-site co-allocation policy, which is another 
approach usually used to deal with the resource 
fragmentation issue. The results indicate that the 
proposed moldable job allocation policies are 
effective as well as stable under different system 
configurations and can tolerate a wide range of 
runtime estimation errors.

RELATED WORK

This paper deals with scheduling and allocating 
independent parallel jobs in a heterogeneous 
computational Grid. Without Grid computing lo-
cal users can only run jobs on the local site. The 
owners or administrators of different sites are 
interested in the consequences of participating in 
a computational Grid, whether such participation 
will result in better service for their local users 
by improving the job turnaround time. A common 
load-sharing practice is allocate an entire paral-
lel job to a single site which is selected from all 
sites in the Grid based on some criteria. However, 
sometimes a parallel job, upon its submission, 
cannot fit in any single site due to the occupation 
of some resources by running jobs. How the job 
scheduler handles such situations is an important 
issue which has the potential to further improve 
the utilization of Grid resources as well as the 
performance of parallel jobs.
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Job scheduling for parallel computers has been 
subject to research for a long time. As for Grid 
computing, previous works discussed several 
strategies for a Grid scheduler. One approach 
is the modification of traditional list scheduling 
strategies for usage on Grid (Carsten, Volker, 
Uwe, Ramin, & Achim, 2002; Carsten Ernemann, 
Hamscher, Streit, & Yahyapour, 2002a, 2002b; 
Hamscher, Schwiegelshohn, Streit, & Yahyapour, 
2000). Some economic based methods are also 
being discussed (Buyya, Giddy, & Abramson, 
2000; Carsten, Volker, & Ramin, 2002; Rajkumar 
Buyya, 2002; Yanmin et al., 2005). In this paper we 
explore non economic scheduling and allocation 
policies with support for a speed-heterogeneous 
Grid environment.

England and Weissman in (England & Weiss-
man, 2005) analyzed the costs and benefits of load 
sharing of parallel jobs in the computational Grid. 
Experiments were performed for both homoge-
neous and heterogeneous Grids. However, in their 
works simulations of a heterogeneous Grid only 
captured the differences in capacities and workload 
characteristics. The computing speeds of nodes on 
different sites are assumed to be identical. In this 
paper we deal with load sharing issues regarding 
heterogeneous Grids in which nodes on different 
sites may have different computing speeds.

For load sharing there are several methods 
possible for selecting which site to allocate a 
job. Earlier simulation studies in the literature 
(Hamscher et al., 2000; Huang & Chang, 2006) 
showed the best results for a selection policy called 
best-fit. In this policy a particular site is chosen 
on which a job will leave the least number of free 
processors if it is allocated to that site. However, 
these simulation studies are performed based on 
a computational Grid model in which nodes on 
different sites all run at the same speed. In this 
paper we explore possible site selection policies 
for a heterogeneous computational Grid. In such 
a heterogeneous environment nodes on different 
sites may run at different speeds.

In the literature (Barsanti & Sodan, 2007; 
John, Uwe, Joel, & Philip, 1994; Sabin, Lang, & 
Sadayappan, 2007; Srividya, Vijay, Rajkumar, 
Praveen, & Sadayappan, 2002; Sudha, Savitha, & 
Sadayappan, 2003; Walfredo & Francine, 2000, 
2002) several strategies for scheduling moldable 
jobs have been introduced. Most of the previous 
works either assume the job execution time is a 
known function of the number of processors al-
located to it or require users to provide estimated 
job execution time. In (Huang, 2006) without the 
requirement of known job execution time three 
adaptive processor allocation policies for mold-
able jobs were evaluated and shown to be able to 
improve the overall system performance in terms 
of average job turnaround time. Most of the previ-
ous work deals with scheduling moldable jobs in a 
single parallel computer or in a homogeneous Grid 
environment. In this paper, we explore moldable 
job allocation in a heterogeneous computational 
Grid environment. In addition to moldable job 
allocation, multi-site co-allocation (Sonmez, 
Mohamed, & Epema, 2010) is another approach 
usually used to deal with the resource fragmenta-
tion issue in computational Grid environments. 
We will compare the performance of these two 
approaches in this paper.

COMPUTATIONAL GRID MODEL 
AND EXPERIMENTAL SETTING

In this section, the computational Grid model is 
introduced on which the evaluations of the pro-
posed policies are based. In the model, there are 
several independent computing sites with their 
own local workload and management system. This 
paper examines the impact on performance results 
if the computing sites participate in a computa-
tional Grid with appropriate job scheduling and 
processor allocation policies. The computational 
Grid integrates the sites and shares their incoming 
jobs. Each participating site is a homogeneous 
parallel computer system. The nodes within each 
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site run at the same speed and are linked with a 
fast interconnection network that does not favor 
any specific communication pattern (Feitelson 
& Rudolph, 1995). This means a parallel job can 
be allocated on any subset of nodes in a site. The 
parallel computer system uses space-sharing and 
run the jobs in an exclusive fashion.

The system deals with an on-line scheduling 
problem without any knowledge of future job 
submissions. The jobs under consideration are 
restricted to batch jobs because this job type is 
dominant on most parallel computer systems run-
ning scientific and engineering applications. For 
the sake of simplicity, in this paper we assume 
a global Grid scheduler which handles all job 
scheduling and resource allocation activities. The 
local schedulers are only responsible for starting 
the jobs after their allocation by the global sched-
uler. Theoretically a single central scheduler could 
be a critical limitation concerning efficiency and 
reliability. However, practical distributed imple-
mentations are possible, in which site-autonomy is 
still maintained but the resulting schedule would 
be the same as created by a central scheduler (C. 
Ernemann, Hamscher, & Yahyapour, 2004).

For simplification and efficient load sharing 
all computing nodes in the computational Grid 
are assumed to be binary compatible. The Grid is 
heterogeneous in the sense that nodes on different 
sites may differ in computing speed and differ-
ent sites may have different numbers of nodes. 
When load sharing activities occur a job may 
have to migrate to a remote site for execution. 
In this case the input data for that job have to be 
transferred to the target site before the job execu-
tion while the output data of the job is transferred 
back afterwards. This network communication is 
neglected in our simulation studies as this latency 
can usually be hidden in pre- and post-fetching 
phases without regards to the actual job execution 
phase (C. Ernemann et al., 2004).

In this paper we focus on the area of high 
throughput computing, improving system’s overall 
throughput with appropriate job scheduling and 

allocation methods. Therefore, in our studies the 
requested number of processors for each job is 
bound by the total number of processors on the 
local site from which the job is submitted. The 
local site which a job is submitted from will be 
called the home site of the job henceforward in 
this paper. We assume all jobs have the moldable 
property. It means the programs are written in a 
way so that at runtime they can exploit different 
parallelisms for execution according to specific 
needs or available resource. Parallelism here 
means the number of processors a job uses for 
its execution. In our model we associated each 
job with several attributes. The following five 
attributes are provided before a simulation starts. 
The first four attributes are directly gotten from 
the SDSC SP2’s workload log. The estimated 
runtime attribute is generated by the simulation 
program according to the specified range of esti-
mation errors and their corresponding statistical 
distributions.

• Site number. This indicates the home site 
of a job which it belongs to.

• Number of processors. It is the number of 
processors a job uses according to the data 
recorded in the workload log.

• Submission time. This provides the infor-
mation about when a job is submitted to its 
home site.

• Runtime. It indicates the required execu-
tion time for a job using the specified num-
ber of processors on its home site. This 
information for runtime is required for 
driving the simulation to proceed.

• Estimated runtime. An estimated runtime 
is provided upon job submission by the 
user. The job scheduler uses this informa-
tion to guide the determination process of 
job scheduling and allocation.

The following job attributes are collected and 
calculated during the simulation for performance 
evaluation.



62

Moldable Job Allocation for Handling Resource Fragmentation in Computational Grid

• Waiting time. It is the time between a 
job’s submission and its allocation.

• Actual runtime. When moldable job al-
location is applied, a job’s actual runtime 
may be different from the runtime recorded 
in the workload log. This attribute records 
the actual runtime it takes.

• Actual number of processors. When the 
scheduler applies moldable job allocation, 
the number of processors a job actually 
uses for execution may be different from 
the value recorded in the workload log. 
This attribute records the number of pro-
cessors actually used.

• Execution site. In a computational Grid 
environment, a job may be scheduled to 
run on a site other than its home site. The 
attribute records the actual site that it runs 
on.

• Turnaround time. The simulation pro-
gram calculates each job’s turnaround time 
after its execution and records the value in 
this attribute.

Our simulation studies were based on publicly 
downloadable workload traces (“Parallel Work-
loads Archive,”). We used the SDSC’s SP2 work-
load logs1 on (“Parallel Workloads Archive,”) as 
the input workload in the simulations. The detailed 
workload characteristics are shown in Table 1.

In the SDSC’s SP2 system the jobs in the logs 
are put into different queues and all these queues 
share the same 128 processors. In section 4, this 
original workload is directly used to simulate a 
homogeneous parallel computer with 128 proces-
sors. In section 5 the workload log will be used 
to model the workload on a computational Grid 
consisting of several different sites whose work-
loads correspond to the jobs submitted to the 
different queues respectively. Table 2 shows the 
configuration of the computational Grid accord-
ing to the SDSC’s SP2 workload log. The number 
of processors on each site is determined according 
to the maximum number of required processors 
of the jobs belonged to the corresponding queue 
for that site.

To simulate the speed difference among par-
ticipating sites we define a speed vector, e.g. 
speed=(sp1,sp2,sp3,sp4,sp5), to describe the 

Table 1. Characteristics of the workload log on SDSC’s SP2 

Number of 
jobs

Maximum 
execution time 

(sec.)

Average 
execution time 

(sec.)

Maximum number of 
processors 

          per job

Average number of processors 
          per job

Queue 1 4053 21922 267.13           8           3

Queue 2 6795 64411 6746.27           128           16

Queue 3 26067 118561 5657.81           128           12

Queue 4 19398 64817 5935.92           128           6

Queue 5 177 42262 462.46           50           4

Total 56490

Table 2. Configuration of the computational Grid according to SDSC’s SP2 workload 

total site 1 site 2 site 3 site 4 site 5

Number of processors 442 8 128 128 128 50
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relative computing speeds of all the five sites in 
the Grid, in which the value 1 represents the 
computing speed resulting in the job execution 
time in the original workload log. We also define 
a load vector, e.g. load=(ld1,ld2,ld3,ld4,ld5), 
which is used to derive different loading levels 
from the original workload data by multiplying 
the load value ldi to the execution times of all jobs 
at site i.

MOLDABLE JOB ALLOCATION 
ON HOMOGENEOUS 
PARALLEL COMPUTER

Moldable job allocation takes advantage of the 
moldable property of parallel applications to 
improve the overall system performance. For 
example, an intuitive idea is allowing a job to use 
a less number of processors than originally speci-
fied for immediate execution if at that moment the 
system has not enough free processors; otherwise 
the job has to wait in a queue for an uncertain 
period of time. On the other hand, if the system 
has more free processors than a job’s original 
requirement, the system might let the job to run 
with more processors than originally required to 
shorten its execution time. This is called moldable 
job allocation in this paper. Therefore, the system 
can dynamically determine the runtime parallelism 
of a job before its execution through moldable job 
allocation to improve system utilization or reduce 
the job’s waiting time in queue.

For a specific job, intuitively we know that 
allowing higher parallelism can lead to shorter 
execution time. However, when the overall system 
performance is concerned, the positive effects of 
raising a job’s parallelism can not be so assured 
under the complex system behavior. For example, 
although raising a job’s parallelism can reduce 
its required execution time, it might, however, 
increase other jobs’ probability of having to wait 
in queue for longer time. This would increase 
those jobs’ waiting time and in turn turnaround 

time. Therefore, it is not straightforward to know 
how raising a single job’s parallelism would affect 
the overall system-level performance, e.g. the 
average turnaround time of all jobs. On the other 
hand, reducing a job’s parallelism might shorten 
its waiting time in queue at the cost of enlarged 
execution time. It is not always clear whether the 
combined effects of shortened waiting time and 
enlarged execution time would lead to a reduced 
or increased overall turnaround time. Moreover, 
the reduced parallelism of a job would usually in 
turn result in the decreased waiting time of other 
jobs. This makes it even more complex to analyze 
the overall effects on system performance.

The above examples illustrate that the effects 
of the idea of moldable job allocation on overall 
system performance is complex and require further 
evaluation. In our previous work (Huang, 2006) 
we proposed two possible adaptive processor al-
location policies. In this paper, we improve the two 
policies by requiring users to provide estimated 
job execution time upon job submission, just like 
what is required by the backfilling algorithms. The 
estimated job execution time is used to help the 
system determine whether to dynamically scale 
down a job’s parallelism for immediate execution, 
i.e. shorter waiting time, at the cost of longer 
execution time or to keep it waiting in queue for 
the required amount of processors to become 
available. This section explores and evaluates the 
two improved moldable job allocation policies, 
which take advantage of the moldable property 
of parallel applications, on homogeneous paral-
lel computers. The three allocation policies to be 
evaluated are described in detail in the following.

• No adaptive scaling. This policy allocates 
the number of processors to each parallel 
job exactly according to its specified re-
quirement. The policy is used in this sec-
tion as the performance basis for evaluat-
ing the moldable job allocation policies.

• Adaptive scaling down. If a parallel job 
specifies an amount of processors which 
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at that moment is larger than the number 
of free processors. The system has two 
choices for scheduling the job: scaling its 
parallelism down for immediate execution 
or keeping it waiting in queue. According 
to the estimated execution time of the job, 
the system can compute the job’s enlarged 
execution time once scaling down its par-
allelism. On the other hand, based on the 
estimated execution time of each job run-
ning on the system, it is possible to pre-
dict how long it will take for the system to 
gather enough free processors to fulfill the 
original requirement of the job. Therefore, 
the system can compare the resultant per-
formances of the two choices and choose 
the better one. We use a threshold variable 
to control the selection between the two 
choices. The system chooses to scale down 
the job’s parallelism for immediate execu-
tion only if threshold × To > Tsd, where To 
is the predicted turnaround time if the job 
waits in queue until enough free proces-
sors are available and Tsd is the predicted 
turnaround time if the job run immediately 
with reduced parallelism.

• Conservative scaling up and down. In ad-
dition to the scaling down mechanism de-
scribed in the previous policy, this policy 

automatically scales a parallel job’s paral-
lelism up to use the amount of total free 
processors even if its original requirement 
is not that large. However, to avoid a sin-
gle job from exhausting all free processors, 
resulting in subsequent jobs’ unnecessary 
enlarged waiting time in queue, the policy 
scales a parallel job’s parallelism up only if 
there are no jobs behind it in queue. This is 
why it is called conservative.

Figure 1 shows the performance evaluation of 
various allocation policies where

• no scaling. No adaptive scaling.
• down. Adaptive scaling down without run-

time estimation.
• down_est. Adaptive scaling down with 

runtime estimation.
• up_down. Conservative scaling up and 

down without runtime estimation.
• up_down_est. Conservative scaling up and 

down with runtime estimation.

For the adaptive policies with runtime esti-
mation, we experimented with several possible 
threshold values and chose the best result to present 
in Figure 1. For the adaptive scaling down policy, 
the best threshold value is 2.1 and the conserva-

Figure 1. Performance comparison of moldable job allocation policies
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tive scaling up and down policy delivers the best 
performance when the threshold value is 2. Figure 
1 shows that moldable job allocation in general 
can improve the overall system performance 
several times, compared to the traditional alloca-
tion policy sticking to a job’s original amount of 
processor requirement. Moreover, the improved 
moldable job allocation policies presented in 
this paper can further improve the performance 
significantly with the aid of runtime estimation. 
For the original moldable job allocation policies, 
allowing scaling up parallelism cannot improve 
system performance further in addition to scaling 
down parallelism in terms of average turnaround 
time. However, for the improved moldable alloca-
tion policies, scaling up parallelism does improve 
the system performance delivered by the policy 
which scales down the parallelism only. Overall 
speaking, the conservative scaling up and down 
policy with runtime estimation outperforms the 
other policies.

The studies in Figure 1 assume that users al-
ways provide exact estimations of job execution 
times. However, this is by no means possible in 
real cases. Therefore, we performed additional 
simulation studies to evaluate the stability of 

the moldable job allocation policies when users 
provide only inexact estimations. The results are 
presented in Figure 2. The error range of estima-
tion is relative to a job’s actual execution time. 
Figure 2 shows that sometimes small estimation 
error might even lead to better performance than 
exact estimation such as the case of conservative 
scaling up and down with a 20% error range. In 
general, a larger error range results in degraded 
performance. However, up to 90% error range, the 
improved moldable job allocation policies with 
runtime estimation still outperform the original 
moldable allocation policies, compared to Figure 
1. The results illustrate that the proposed moldable 
job allocation policies are stable and practical.

The simulations for Figure 2 assume the esti-
mation errors conform to the uniform distribution. 
Figure 3 presents another series of simulations 
which evaluate the cases where the estimation 
errors conform to the normal distribution. The 
results again show that sometimes larger error 
ranges lead to better performances. Moreover, 
Figure 3 indicates that the moldable job allocation 
policies perform even more stably under the 
normal distribution of estimation errors, compared 
to Figure 2.

Figure 2. Effects of inexact runtime estimation under uniform distribution
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MOLDABLE JOB ALLOCATION IN 
HETEROGENEOUS GRID

In a computational Grid environment, a common 
practice is try to allocate an entire parallel job onto 
a single participating site. Sometimes a parallel 
job, upon its submission, cannot fit in any single 
site due to the occupation of some processors 
by running jobs. How the job scheduler handles 
such situations is an important issue which has 
the potential to further improve the utilization 
of Grid resources as well as the performance of 
parallel jobs. This section extends the moldable 
job allocation policies proposed in the previous 
sections to deal with the resource fragmentation 
issue in a heterogeneous computational Grid 
environment.

The detailed moldable job allocation procedure 
is illustrated in Figure 4. The major difference 
between the moldable job allocation procedures 
for a homogeneous parallel computer and for 
a heterogeneous Grid environment is the site 
selection process regarding the computation and 
comparison of computing power of different sites. 
A site’s free computing power is defined as the 
number of free processors on it multiplied by the 

computing speed of a single processor. Similarly, 
the required computing power of a job is defined 
as the number of required processors specified in 
the job multiplied by the computing speed of a 
single processor on its home site.

In the following, we compare the perfor-
mances of five different cases. They are indepen-
dent clusters representing a non-Grid architecture, 
moldable job allocation without runtime estima-
tion, moldable job allocation with exact runtime 
estimation, moldable job allocation with uniform 
distribution of runtime-estimation errors, mold-
able job allocation with normal distribution of 
runtime-estimation errors. Figure 5 presents the 
results of simulations for a heterogeneous com-
putational Grid with speed vector (1,3,5,7,9) and 
load vector (10,10,10,10,10), where

• IC. Independent clusters.
• no estimation. Adaptive processor alloca-

tion without runtime estimation.
• exact estimation. Adaptive processor allo-

cation with exact runtime estimation.
• uniform distribution. Adaptive processor 

allocation with uniform distribution of 
runtime-estimation errors.

Figure 3. Effects of inexact runtime estimation under normal distribution
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Figure 4. Moldable job allocation procedure in heterogeneous Grid

Figure 5. Performance evaluation in a heterogeneous computational Grid
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• normal distribution. adaptive processor al-
location with normal distribution of run-
time-estimation errors.

For the last two cases in Figure 5, we present 
their worst-case data within the estimation-error 
range from 10% to 100% with the step of 10%. 
The results in Figure 5 show that Grid computing 
with moldable job allocation can greatly improve 
the system performance compared to the non-Grid 
architecture. Moreover, the improved moldable 
job allocation policies with runtime estimation 
can improve the system performance further 
compared to the original moldable job allocation 
policy. The results also indicate that estimation 
errors lead to little influence on overall system 
performance. Therefore, the proposed moldable 
allocation policies are stable in a heterogeneous 
computational Grid.

Figure 5 represents only one possible speed 
configuration in a heterogeneous computational 
Grid environment. To further investigate the ef-
fectiveness of the proposed policies, we conducted 
a series of 120-case simulations corresponding to 
all possible permutations of the site speed vec-
tor (1,3,5,7,9) under the SDSC’s SP2 workload. 
Figure 6 shows the average turnaround times over 
the 120 cases for the five allocation policies in 
Figure 5, accordingly. The results again confirm 
that the proposed moldable job allocation policies 

are stable and can significantly improve system 
performance. For the details, among all the 120 
cases, the proposed moldable allocation policies 
with runtime estimation outperform the original 
moldable policy in 108 cases.

COMPARISON WITH MULTI-SITE 
CO-ALLOCATION

Multi-site co-allocation (Sonmez, Mohamed, & 
Epema, 2010) is another approach usually used 
to deal with the resource fragmentation issue in 
computational Grid environments. It allows a 
parallel job to run across site boundary, simultane-
ously using processors from more than one sites. 
Figure 7 compares multi-site co-allocation and 
moldable job allocation under the SDSC’s SP2 
workload. In our job model, each job is associ-
ated with an attribute, slowdown, which indicates 
how long its runtime would be extended to when 
running with multi-site co-allocation in the Grid. 
In the simulations, the slowdown values for these 
jobs are generated according to specified statis-
tical distributions and upper limits. The upper 
limits are denoted by p in Figure 5. Two types 
of statistical distributions, uniform and normal 
distributions, are evaluated in the simulations. 
Results in Figure 5 show that the performance of 
multi-site co-allocation is greatly affected by the 

Figure 6. Average performance over 120 different speed configurations
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slowdown value which is determined by both the 
parallel program characteristics and underlying 
interconnection speed. On the other hand, perfor-
mance of moldable job allocation is irrelative to 
the slowdown values and the results also indicate 
that moldable job allocation outperforms multi-
site co-allocation in the simulations.

CONCLUSION

In the real world, a Grid environment is usually 
heterogeneous at least for the different comput-
ing speeds at different participating sites. The 
heterogeneity presents a challenge for effectively 
arranging load sharing activities in a computational 
Grid. This paper develops moldable job allocation 
policies based on the moldable property of paral-
lel applications for heterogeneous computational 
Grids. The proposed policies can be used when a 
parallel job, during the scheduling activities, can-
not fit in any single site in the Grid. The proposed 
policies require users to provide estimations of 
job execution times upon job submission. The 
policies are evaluated through a series of simu-
lations using real workload traces. The results 
indicate that the moldable job allocation policies 
can further improve the system performance of a 
heterogeneous computational Grid significantly 

when parallel jobs have the moldable property. 
The effects of inexact runtime estimations on 
system performance are also investigated. The 
results indicate that the proposed moldable job 
allocation policies are effective as well as stable 
under different system configurations and can 
tolerate a wide range of estimation errors.
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INTRODUCTION

Resource management is one of the major tasks 
of Grid middleware. Resources include avail-
able computing power (i.e. CPUs), memory and 
secondary storage. The strategies implemented 
by the middleware fundamentally determine how 
early a job can finish its execution and provide 
the desired computing results. For data intensive 
parameter sweep applications the placement of 
data onto Storage Elements (SEs) and the selection 
of Computing Elements (CEs) have substantial 
impact on their completion time, therefore the 
combined efficiency of resource management and 
scheduling strategies significantly determine the 
performance of the Grid.

The resource management and scheduling 
algorithms may take into account the current state 
of the Grid, or statistics collected on the perfor-
mance of the Grid components and applications. 
Some of the resource management strategies make 
use of sophisticated economy-based decision 
algorithms (Bell, Cameron, Carvajal-Schiaffino, 
Millar, Stockinger, & Zini, 2003), others focus 
chiefly on data replication, and present replica 
management Grid middleware (Laure, Stockinger, 
& Stockinger, 2005). Scheduling algorithms may 
apply statistical prediction methods (Gao, Rong, 
& Huang, 2005)(Nabrizyski, Schopf, & Weglarz, 
2003), which can be used to rank the CEs by the 
estimated job completion time and select the 
optimal target CE.

Our resource management and scheduling ap-
proach is based on the realization that the comple-
tion time of a job on a CE can be determined 
exactly only after the given job has terminated. 
Furthermore, we could make perfect scheduling 
decisions if we were able to run the job on all pos-
sible CEs of the Grid one by one within the same 
circumstances, register the finishing times and run 
the job on the “best” CE. Obviously, such perfect 
decisions are not possible to be made, and we can 
only mimic the process of the selection of the best 
CE (Lőrincz, Kozsik, Ulbert, & Horváth, 2005).

In order to predict the completion time of the job 
the proposed scheduling strategies need to know 
the state of the Grid, the characteristics of the CEs 
and the expected resource access patterns of the 
job. For each job, the proposed Grid middleware 
services will (1) monitor the execution of the 
job and gather resource access information, (2) 
generate a compact description of the behaviour 
of the job, (3) use the job behaviour description 
to calculate the expected completion time of the 
job and schedule the job accordingly, and (4) re-
fine the already existing behaviour description 
using the behaviour description reflecting its 
latest execution.

Our proposed scheduling strategies also take 
into consideration the effects of data replication 
and provide replication commands harmonising 
with the actual scheduling decision. For example, 
if the job accesses large chunks of data, it is most 
likely a good idea to schedule it to the Computing 
Element (or to a location in its neighbourhood) 
where the input files are available. However, if the 
job had to wait too long before it could be started on 
the chosen Computing Element, it would be worth 
copying the input files to another Grid component 
where the job can be executed earlier. In the case 
of jobs that are less data intensive (use less and 
smaller input files), the nearness of the files is 
not so important since the cost of the replication 
is very low. Furthermore, knowing the resource 
access patterns of the job the files can be replicated 
parallel to the execution of the job by fetching the 
necessary file fragments “just-in-time”.

RELATED WORK

Our approach focuses on the resource access of 
jobs; the scheduling decisions are made based 
on the finishing time estimations exploiting the 
knowledge of the behaviour of jobs.

Nabrizyski et al. (Nabrizyski, Schopf, & 
Weglarz, 2003) gives an excellent overview of 
Grid resource management. Besides presenting 
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a number of scheduling strategies (Ranganathan 
& Foster, 2003), in Chapter 16 W. Smith intro-
duces new statistical prediction techniques for 
the execution times for applications. The first 
technique uses historical information of previous 
similar runs to form predictions. The similarity 
of runs are determined by categorising discrete 
characteristics of the submitted jobs. The second 
technique uses instance-based learning: a database 
of experiences is maintained and used to make 
predictions. Each experience consists of input 
and output features. The input feature is a simple 
job description (user name, job name, number of 
CPUs requested, requested operating system, etc.).

Similar to our approach, Y. Gao et al. (Gao, 
Rong, & Huang, 2005) introduces models for 
estimating the completion time of jobs in a service 
Grid and proposes scheduling algorithms minimis-
ing the average completion time of all jobs. The 
prediction of the completion time of an impend-
ing job is based on the number of jobs running 
on the Grid nodes and historical execution data 
of already completed jobs. In order to schedule a 
single job arriving at the node that shall take up 
the shortest time to execute the job an adaptive 
system-level job scheduling algorithm is used. 
To schedule multiple simultaneously arriving 
jobs genetic algorithms areapplied to minimise 
the completion time of all jobs.

In the context of workflow management 
systems Chervenak et al. (Chervenak, et al., Sep-
tember 2007) proposes improved data placement 
strategies based on the knowledge of applications 
and of expected data access patterns. Their research 
concentrates on the interplay between data place-
ment services and workflow management systems. 
In order to improve performance pre-staging – 
using replication service and asynchronous data 
placement – is proposed; while the data placement 
operations are performed as the data sets become 
available – independently of the actions of the 
workflow management system.

The Data Intensive and Network Aware (DI-
ANA) meta-scheduling approach (McClatchey, 

Anjum, Stockinger, Ali, Willers, & Thomas, March 
2007) concentrates on the characteristics and 
state of the hardware environment when making 
scheduling decisions. Such characteristics are the 
data location and size, processing power and net-
work bandwidth. The scheduler provides a global 
ranking of the computing resources based on their 
(changing) state and characteristics. Thereafter, the 
scheduling decision is made based on the global 
ranking and execution cost.

ARCHITECTURE OVERVIEW

Our scheduling solution has four keystone com-
ponents. These are the job behaviour description, 
the description repository service, the description 
generator, and the scheduler. The relation of the 
components is depicted by Figure 1.

Each job may have a behaviour description 
document, which characterises the resource al-
location and consumption strategy implemented 
and executed by the given job. A job may have at 
most one descriptor document. The job descrip-
tions are stored and accessed through the descrip-
tion repository service. Besides storing the job 
descriptors the service is also capable of re-fining 
the descriptor of a job after it has been termi-
nated using the descriptor relating to the latest 
execution. The job description generator monitors 
the execution of a job and creates the job descrip-
tion document relating to the actual job execution 
by analysing its resource access log. When a job 
is submitted to the Grid the scheduler queries its 
description document using the description re-
pository service and selects the node on which 
the job must be executed.

Figure 2 depicts a proposed deployment 
scenario for the components. The scheduler is 
deployed on the entry-point of the Grid, which, in 
our case is the P-Grade portal (P-GRADE portal). 
The description repository service should be de-
ployed in the vicinity of the scheduler, although it 
may be practical to use a different server machine. 
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Figure 1. Main components of the system

Figure 2. Deployment of the main system components
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The description generator must be installed on 
each computer a job can run on. A later section 
discusses the realities of the deployment in details.

JOB BEHAVIOUR DESCRIPTION

According to our job model the jobs are data 
intensive applications which process huge files. 
The behaviour description (XML) document 
of a job contains relevant information for the 
scheduler about the characteristics of the resource 
consumption of the job. The relevant operations 
influencing the length of job execution are the 
file accesses and computing. Therefore the job 
description characterises the file processing al-
gorithm implemented by the job.

After each execution of a job a “simple” de-
scription can be generated, which relates to a single 
path in the control flow graph (CFG) of the job. 
Therefore, in order to give a detailed description 
of the job behaviour, the whole graph has to be 
explored, which is equivalent to the exploration 
of all possible paths in the CFG. The “complex” 
job description reflects the complex structure of 
the job: the already explored CFG.

Simple Description

The “simple” description format is presented 
through an example in Algorithm 1.

The description comprises different file-bound 
data access patterns of the job. Each data access 
pattern is marked by the file XML element which 
contains the following attributes and sub-elements:

• attributes:
type: Type of the file: in for input files, out 

for output files.
name: File name.
access_ratio: The used portion of the file 

(∈[0,1]).
intersection_ratio: The file usage redun-

dancy (∈[0,1]).

• sub-elements: A data access pattern de-
scription contains at least one sub-element. 
A sub-element specifies the file access 
method of the job bound to a given seg-
ment of the file. The file access method 
can be sequential or random marked by 
the corresponding sub-element. Each sub-
element contains a data-block and a timing 
sub-element:
 ◦ datablock: Characterises the file 

segment that is processed sequen-
tially. It specifies the starting and 
ending positions defining the current 
segment in bytes and relative to the 
file-size (∈[0,1]): min_pos_absolute, 
max_pos_absolute, min_pos_rela-
tive, max_pos_relative. It also speci-
fies the distance between starting 
positions of two successive data ac-
cess operations in bytes (step) and the 
number of bytes read/written by a file 
operation (size).

 ◦ area: Characterises the file segment 
that is processed randomly. It speci-
fies the lower and upper bounds of 
the segment processed in bytes and 
relative to the file-size (∈[0,1]): low-
er_bound_absolute, upper_bound_
absolute, lower_bound_relative, up-
per_bound_relative. It also specifies 
how many times a byte of the cur-
rent file segment has been accessed 
(access_ratio), the average level of 
intersection of blocks read/written 
by subsequent file operations (inter-
secion_ratio ∈[0,1]), and the average 
number of bytes read/written by a file 
operation (avg_size).

 ◦ timing: Specifies the frequency of 
the data access operations. In the case 
of the random method it contains the 
avg_op_time and avg_op_mips at-
tributes: the average system time (in 
milliseconds) and CPU time (in mips) 
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between two consecutive operations. 
In the case of the sequential access 
method the timing specification also 
contains the minimum system and 
CPU time. The latter has significance 
in the case of dynamic scheduling 
and replication.

The job description example of Algorithm 1 
depicts the data access pattern generated for an 
application that reads file “test1”: in the first part 
the application reads sequentially blocks of 1000 

bytes (skipping the following 1000 bytes); in the 
second part the application reads sequentially 
blocks of 2000 bytes; in the third part the applica-
tion reads the blocks randomly.

Complex Description

A complex job description is a set of simple de-
scriptions relating to the same job (see below). 
Each member description has a weight attribute, 
which specifies how many times the given member 
description reflected the actual job behaviour.

Algorithm 1. Example job behaviour description

<file type=”in” name=”test1” access_ratio=”1.47218” intersection_ratio=”0.18”> 

  <sequential> 

    <datablock  

      min_pos_absolute=”0” max_pos_absolute=”24000” 

      min_pos_relative=”0” max_pos_relative=”0.24”  

      step=”2000” size=”1000” /> 

    <timing  

      op_time=”1” op_mips=”4.341”  

      avg_op_time=”8” avg_op_mips=”34.728” /> 

  </sequential> 

  <sequential> 

    <datablock  

      min_pos_absolute=”25000” max_pos_absolute=”49000” 

      min_pos_relative=”0.25”  max_pos_relative=”0.49”  

      step=”2000” size=”2000” /> 

    <timing  

      op_time=”1” op_mips=”4.341”  

      avg_op_time=”15” avg_op_mips=”65.115” /> 

  </sequential> 

  <random> 

    <area  

      lower_bound_absolute=”50000” upper_bound_absolute=”100000”  

      lower_bound_relative=”0.5”   upper_bound_relative=”1”  

      access_ratio=”2.19436” intersection_ratio=”0.36”  

      avg_size=”3300” /> 

    <timing avg_op_time=”39” avg_op_mips=”169.299” /> 

  </random> 

</file>
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Structure of complex job behavior descriptions

   <simple_description weight=”...”> 

     ... 

   </simple_description>

GENERATING JOB DESCRIPTIONS

Simple job descriptions are generated by the de-
scription generator deployed on the computers the 
jobs will run on, the complex job descriptions are 
maintained by the description repository service. 
In the following the algorithms implemented by 
these components are introduced.

Generating Simple Job Descriptions

The “simple” description is generated during the 
job run. The generator monitors the activity of 
the job and re-fines the simple description when-
ever the job accesses a ”relevant” resource. Such 
monitored activity is the computing (CPU usage) 
and file I/O (usage of secondary storage).

The analyser generates simple job descrip-
tions by continuously processing the resource 
access information obtained by monitoring. For 
each file accessed by the job the analyser builds 
a file access description, which consists of one 
or more file area access description(s). A file 
area access description presents the file access 
strategy used by the job when accessing a specific 
part of a file. Throughout the job execution, the 
analyser continuously keeps track of the file area 
access strategies applied by the job. The analyser 
recognises two kinds of file area access methods: 
random and sequential. The latter can be both 
increasing and decreasing.

Each of these methods is characterised by the 
following behaviour parameters:

• the average size of the blocks accessed by 
the individual file operations,

• the average time elapsed between two 
subsequent file operations working on the 
given file,

• the minimum and maximum file positions 
accessed by the job, and the number of 
times the job changes these positions.

When the analyser is called with a new activity, 
it refines the corresponding file access descrip-
tion by either refining the latest file area access 
description of the file access description or by 
adding a new file area access description. The 
changes in the applied file access methods are 
detected through the recalculation of the behaviour 
parameters and the comparison of the new values 
with the previous ones. If a parameter change is 
larger than a specified threshold value, the actual 
file area access description will be closed and a 
new one will be added to the file access descrip-
tion. For example, if the maximum file position 
would be needed to be updated in the case of a 
decreasing sequential method, the analyser will 
decide that the job stopped using the decreasing 
sequential method and it will try to determine 
the new method.

The detection of the behaviour changes is based 
on the access log which the analyser maintains 
for each file accessed by the job. An access log 
entry holds the position and size of the datablock 
accessed by the job and the time elapsed since the 
last file access. The size of the access logs is limited 
allowing the analyser to detect and determine the 
file access method changes in O(1) time.

In order to determine the new file access 
method, the analyser resets all behaviour charac-
terisation parameters and the access log. At this 
point, the file access method is undetermined. 
After the analyser has processed enough file ac-
cess operations and has filled the access log, it 
determines the new method. Please note that the 
analyser actually detects changes of file access 
behaviour. This means that the new method is 
not necessarily a different kind of strategy but 
a file access method having different behaviour 
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parameters. For example, if the job processes a 
file sequentially but from a certain point it will 
take much more (or less) time to process a data 
block and the analyser will decide that the strategy 
has been changed, the new method will be still 
increasing sequential but with different timing 
characteristics.

The file access method is determined in the 
following way:

• The method is increasing sequential if 
the maximum position has changed more 
times than a threshold value (e.g. if the ac-
cess log size is 10, and the threshold is 7, 
the maximum position has to be updated 
8 times after processing 10 file operations 
related to the given file).

• The method is decreasing sequential if the 
minimum position has changed more times 
than a threshold value.

• Otherwise the method is random.

After the method has been determined, when-
ever a new file operation is processed, the analy-
ser updates the access log and the characteristic 
parameters and checks if the actual file access 
method has changed.

The analyser algorithm has several parameters, 
which determine how detailed the resulting file 
access description will be:

• access log size: Specifies how deeply the 
analyser can look into the past. The larger 
this parameter the less detailed the descrip-
tion is.

• progress detection threshold: Specifies 
how many times the maximum (minimum) 
position has to be changed in order to de-
tect the increasing (decreasing) sequential 
access.

• behaviour parameter variation: Determines 
the scale by which the behaviour param-
eters can change.

• datablock log size: Determines how pre-
cise the access and intersection ratio will 
be. The access and intersection ratios are 
calculated by registering (per-file) the past 
few datablocks accessed by the job.

Generating Complex 
Job Descriptions

The generation of complex job descriptions is 
based on two different approaches. These will 
be presented in the following subsections along 
with the algorithm implemented by the descrip-
tion repository service, which combines them.

Single Generalized Description

The algorithm used by the analyser sub-component 
can be generalized to provide a refined description 
that conforms to all previous executions of the 
given job. According to the technique of the single 
generalized description, the job description cannot 
exclude an already completed sequence of opera-
tions. Therefore, the refinement of the description 
mostly will lead to the relaxation of the behaviour 
description. For example, if sometimes the job 
processes a file sequentially and other times the 
job processes it randomly, then the job description 
cannot state that the file is processed sequentially, 
because that would exclude the executions with 
random file processing. Therefore the description 
must state that the file access strategy is random. 
However, the parameters of the random behaviour 
description must not contradict with the parameters 
of the sequential behaviour (e.g. block size).

The algorithm of refining a ”simple” job 
description is as follows. Let us presume that we 
have a job description that conforms to all previous 
job descriptions and reflects the job behaviour as 
close as possible. Let us also presume that after 
running the job again, the generator provides a 
new description that differs from the current one. 
The following derivation rules define the basic 
elements of job description refining:



80

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

1.  If the new description contains parts ref-
erencing new files, add the corresponding 
description parts to the current description.

2.  Skip those parts that exist in both the new 
and the current description and describe the 
same behaviour.

3.  Modify those parts of the current description 
that exist in the new description, but describe 
different behaviours.
a.  If two sections of the part intersect 

according to the relative file positions, 
make a new section, which describes 
the intersection of the two sections.

b.  If the two intersecting sections are ran-
dom, the new section will be random.

c.  If the two sections are sequential with 
the same directions, the new section 
will also be sequential.

d.  If the two sections are sequential with 
opposite directions, the new section 
will be random.

e.  If one of the sections is sequential 
and the other one is random, then the 
derived section will be random.

The attributes of the derived sections will 
comply with those of the originator sections. For 
example, if the originator sections are random, 
then the access_ratio of the derived section is 
the average of the access_ratio of the originator 
random sections.

This technique results in job descriptions that 
reflect the already visited control paths of a given 
job. However, the resulting description is globally 
less precise, as it is not able to give close descrip-
tions of the individual control paths.

Multiple Descriptions

Instead of using the latest individual job descrip-
tion, according to the multiple descriptions ap-
proach, a complex and detailed job description 
is created by collecting simple job descriptions 
relating to different paths in the job’s CFG. Besides 

this, the execution frequencies (weights) of the 
paths are also registered giving the probability of 
their execution.

The new complex job description must provide 
a more precise (compared to the simple job descrip-
tion) however non-redundant representation of the 
CFG of the job. In our case, redundancy means 
that the member job descriptions of the composed 
job description have to give significantly different 
completion time estimates. In order to generate 
the desired precise non-redundant composed job 
description:

1.  the new job description is inserted into the 
old composed description, or

2.  a similar job description is replaced by the 
new job description, or

3.  the old composed job description is used.

The similarity of the new job description and 
the members of the old complex description de-
termine which method is used to create the new 
job description. The similarity measure of the 
member job descriptions must be higher than a 
certain threshold value (i.e. the composed descrip-
tion cannot contain similar member descriptions).

After calculating the similarity of the newly 
generated individual job description (reflecting the 
behaviour of the job during its latest execution) 
and the member job descriptions, the complex 
job description is updated in the following way:

1.  If the distances between the individual job 
description and the member job descriptions 
are greater than the threshold then the new 
description is inserted into the composed 
description. The absolute weight of the new 
member description will be 1.

2.  If there is a member job description, which 
is closer to the new individual description 
than the similarity threshold value, but the 
diversity of the member descriptions would 
increase with the insertion of the new descrip-
tion, then the new description replaces the 
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“closest” member description. The absolute 
weight of the newly inserted member de-
scription will be the absolute weight of the 
description that was just replaced plus 1.

3.  If at least one of the complex description 
members is closer to the new job description 
than the threshold and the diversity of the 
composed description would not increase 
with the insertion of the new individual de-
scription, than the old composed description 
is used, and the absolute weight of the “clos-
est” member job description is increased by 
1.

Many different similarity measures and thresh-
old values can be defined. The similarity measure 
we have defined is based on the predicted execu-
tion time of jobs. The predicted job execution 
time is defined by the description of the job and 
the characterization of the Grid.

The Grid is characterised by its clusters, for-
mally grid profile g={c1,c2,…,cn}, where ci is a 
cluster profile. Cluster profile ci=(mips,disk,net,k) 
describes the “typical” resource characteristics of 
a member cluster:

• mips: speed of a typical CPU in the cluster,
• disk: I/O bandwidth (CPU ⟷ HDD 

communication),
• net: network bandwidth,
• κ∈(0,1]: weight of the given cluster in the 

Grid calculated as the number of hosts in 
the cluster divided by the total number of 
hosts in the Grid. Note that 

c g c∈
∑ = 1 .

The composed job description d is described 
as the collection of its di member job descriptions: 
d={d1,d2,…,dm}. The (d,i) weight of a di member 
job description is defined as the absolute weight 
of di divided by the sum of all absolute weights 

of description d. Note that 
i
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Let C(c,di) denote the estimated execution 
time of the job running on cluster c behaving ac-
cording to description di. Note that C(c,di) can be 
easily calculated using cluster profile c, and the 
avg_op_*, datablock, area specifications of the 
job description. The similarity measure of two 
individual job descriptions di and dj is defined by 
the following sum.
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The diversity of the job description is defined 
as the cumulative similarity of its member de-
scriptions.
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We have defined the similarity threshold as 
the half of the minimum distance of the member 
descriptions (the initial threshold is 0).
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Compared to the usage of individual job 
descriptions the complex job description gives a 
more precise characterization of the behavior of 
the job. The complex job description offers there-
fore better job completion time estimates, which 
eventually result in better scheduling decisions.

Complex Descriptions with Mutation

According to the multiple descriptions approach, 
if the newly generated individual description is 
closer to an already existing description than a 
certain threshold, but adding the new description 
would increase the diversity, then the new descrip-
tion would replace the other one. However, this 
method unwillingly indicates that the new descrip-
tion is ”better” than the description it replaces.
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The complex job descriptions are generated 
with the multiple descriptions with mutation al-
gorithm. The algorithm differs from the multiple 
descriptions approach, in that it considers, that in 
such cases if the sections of the new and the “to-
be-replaced” description are the same and only 
their attributes differ, they presumably reflect the 
execution of the same sequence of operations. 
The different attributes indicate that the actual 
parameters were slightly different, however it 
cannot be said that either the new or the old 
description is closer to reality. Therefore, the to-
be-replaced description should not be replaced but 
only mutated: the attributes of the sections have 
to be recalculated using the new attribute values 
(e.g. their average can be used) as determined by 
the algorithm presented by the single generalized 
description approach. The mutation operation 
is defined by the single generalized description 
approach.

After the execution of a given job the complex 
job description is updated as follows:

1.  If the distance between the newly generated 
individual job description and the member 
job descriptions is greater than a threshold, 
the new individual description is inserted 
into the composed description. The absolute 
weight of the new member description will 
be 1.

2.  If there is a member job description which 
is closer to the new individual description 
than the threshold value, and the diversity 
of the member descriptions would increase 
with the insertion of the new description, 
then the closest member job description is 
mutated using the algorithm presented in 
section Generating complex job descriptions. 
The absolute weight of the mutated member 
description is increased by 1.

3.  If at least one of the complex description 
members is closer to the new job description 
than the threshold, and the diversity of the 
composed description would not increase 
with the insertion of the new individual de-

scription, then the old composed description 
is used, and the absolute weight of the ”clos-
est” member job description is increased by 
1.

If the number of member job descriptions is 
limited, then mutation can be used to keep the 
number of member descriptions under the limit, 
and also to preserve the knowledge carried by the 
new individual job description. The algorithm 
resulting in complex job description with limited 
siye is as follows,

1.  If the number of member job descriptions is 
less than the limit, the previously presented 
algorithm is used.

2.  If the number of member job descriptions 
already reached the limit, this approach will 
mutate (using the algorithm presented in sec-
tion Generating complex job descriptions) 
the member job description which is the 
closest to the new individual job description 
according to the similarity measure. The 
absolute weight of the mutated member job 
description is increased by 1.

SCHEDULING STRATEGIES

This section will present the proposed schedul-
ing strategies that exploit the information stored 
by the job descriptions. The major difference 
between the scheduling strategies is that while 
the first, static data feeder, strategy prepares the 
input files before the job would be executed, the 
second, dynamic data feeder, strategy delivers 
the necessary files parallel to the execution of 
the job, in a just-in-time manner. The process of 
job scheduling and execution comprises of the 
following major steps.

1.  The user submits the job and its description.
2.  The system looks up the corresponding job 

behaviour description using the description 
repository service.
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3.  The scheduler applies the proposed schedul-
ing algorithm, which – using the behaviour 
description and the information available on 
the current state of the Grid – calculates the 
estimated job finishing time for each Grid 
component, and schedules the job to the 
component where the job would be finished 
the earliest.

4.  The job is executed on a computer belonging 
to the chosen Grid component. The resource 
consumption of the job is monitored, and 
after the job is terminated, the collected 
information is used by the description re-
pository service to update the description 
repository with a refined description.

5.  The output of the job (and the behaviour 
description of the job) is copied to the speci-
fied target node.

Static Data Feeder Strategy

The static data feeder strategy ranks each Comput-
ing Element (CE) by estimating the termination 
time of the submitted job on the given component. 
After the ranking of CEs the scheduler runs the job 
on the CE with the highest rank, i.e. the earliest 
completion time. The estimated job completion 
time depends on the job description and on the 
information collected from the GIS and the Replica 

Manager. The simplified code-snippet in Algo-
rithm 2 presents the static data feeder algorithm.

The estimated execution time of a job described 
by d on cluster c is calculated as follows.
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The actual state of cluster c is obtained from 
the GIS. The estimate(c,d) estimated termination 
time of the given job on cluster c is the sum of the 
estimated job execution time C(c,d), the ”length” 
(measured by) of the job queue on that cluster 
(Q(c)), and the time necessary for preparing the 
input files (before running the job) and delivering 
result/output files (after the job is terminated):

estimate(c,d) = C(c,d) + Q(c) + 
fileTransferTime(c,d)

Please note that before running the job on the 
chosen cluster the necessary files are replicated 
by the Replica Manager (The DataGrid Project).

Dynamic Data Feeder Strategy

The basic idea behind the dynamic data feeder 
strategy is to download relevant parts of the input 
files (those parts that the job will presumably 
access) and to upload the output of the job to the 

Algorithm 2.

void schedule(Job j, JobDescription d) { 

    Map<CE, Long> m = new HashMap<CE, Long>(); 

    for (ClusterProfile c: g) {  

        if (c.canRun(descr)) { 

            m.put(c, estimate(c, d)); // calculate the est. finish time 

        } 

    } 

    CE c = getOptimalCE(m); // get the optimal CE 

    executeJob(j, c); // run job j on c  

}
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specified destinations during runtime. Therefore, 
instead of dividing the execution of the jobs into 
three separate phases (download, run, upload), 
the execution of all steps is attempted at the same 
time: the input data is provided parallel to the 
running of the job.

The algorithm of the dynamic data feeder 
scheduler is similar to the algorithm of the static 
data feeder scheduler with two differences:

1.  The estimated job execution time takes 
into account that the relevant parts of the 
necessary files may be delivered after the 
job is started (but before the job would 
access them). Therefore the calculation 
fileTransferTime(c,d) includes only the pre-
run and post-run file transfer times, it does 
not include the transfer time of file segments 
that are copied parallel to the running of the 
job.

2.  Replication commands are generated that 
allow the relevant file segments being copied 
parallel to the running of the job.

Please note that compared to the static data 
feeder strategy, the estimated completion time of 
a given job will be lower in most cases.

IMPLEMENTATION

The proposed architecture cannot be deployed 
completely in existing “production” Grid en-
vironments. Lack of administrative/authoritive 
credentials and missing services are among the 
most important reasons. We have chosen to extend 
the P-GRADE portal (P-GRADE portal) with our 
proposed components as it allowed us to imple-
ment an adopted version of the static scheduler. 
P-GRADE is a parallel application development 
system for Grid, which (among others) implements 
job scheduling, migration and checkpointing. P-
GRADE supports the Globus (Globus Toolkit) 
and Condor(Condor Project) Grid environments.

Scheduler

The Portal runs a Java applet in the user’s browser 
which communicates with the server layer. In order 
to implement the proposed components we needed 
to extend both the rich client and the server layer.

On the extended Portal interface the user can 
specify which scheduler algorithm should be used 
by the system. If our scheduler is selected the user 
also has to provide the job behaviour description.

Because the P-GRADE portal does not al-
low querying the size of input files directly, the 
implemented scheduler cannot consider it when 
estimating the finishing time of a job on a CE. 
Instead, the absolute file sizes contained by the 
job behaviour description are used. Moreover, 
the scheduler does not know the length of the 
wait queues of the CEs, therefore the maximum 
job running time estimates are used, which are 
specified by the job submitters.

Description Generator

The Description generator is implemented by a 
shared library, which monitors the resource access 
activity of jobs and prepares the job descriptions 
by analysing the pattern of activities.

File access monitoring is based on the intercep-
tion of standard file handling operations defined 
in the stdio.h, fcntl.h and unistd.h libraries. In 
general, for a given file operation, the name of the 
operation, the file or stream descriptor, the name 
of the file, the opening mode flags, the amount 
of data read or written, or the new position in the 
stream are considered.

CPU usage information is collected between 
two consecutive file access operations. The /
proc - process information pseudo-filesystem 
(LinuxForum: Linux Filesystem Hierarchy, 1.10. 
/proc) - is used to access the kernel data struc-
tures containing the necessary CPU consumption 
information.

Because the component (for administrative 
reasons) cannot be deployed to all computers of 



85

Speculative Scheduling of Parameter Sweep Applications Using Job Behaviour Descriptions

all CEs, it has to be sneaked in the target machine 
along with the job. The Condor classAD is pre-
pared in this respect so that a simple shell script 
setting the LD_PREALOAD environment vari-
able and running the job will be executed by the 
work node. The job and the shared object of the 
Description generator are transferred as input files 
of the job runner executable. The classAD frag-
ment in Algorithm 3 demonstrates the technique.

Description Repository Service

For similar reasons which do not allow the perma-
nent deployment of the Description generator, the 
Description repository service cannot be deployed 
inside the Grid either. Therefore, we have not 
implemented it in the current Grid environment 
supported by P-GRADE.

SIMULATION RESULTS

Simulations were conducted by using OptorSim 
v2.0 (Simulating data access optimization algo-
rithms - OptorSim), which was extended with 
the proposed static data feeder and dynamic data 
feeder scheduler implementations. The extended 
OptorSim was configured to use the EDG topology 
specified by the configuration file shipped with 
the simulator. The CEs of the configuration were 
extended with MIPS values. One of the group of 
jobs submitted to the Grid (approx. 1/3 of the total 
jobs) was changed to simulate the single source 

shortest path searching algorithm in a graph. The 
job first parses the graph description loaded from 
a 300 MB input file then it starts to calculate the 
shortest path from the given parameter node to 
every other node in the graph. The jobs provided 
by OptorSim are using input files of 10 GB each. 
The number of jobs was also raised to 500 and 
1000, to provide us with sufficient job queue sizes 
on the CEs. Before the simulation was performed 
OptorSim was supplied with the necessary com-
plex job descriptions.

Due to the lack of support for querying some 
file related information from the current P-Grade 
portal, we have simulated mainly solutions that 
do not use such information during the schedul-
ing process (the default schedulers in this scope 
in OptorSim are the Random and Queue Length 
strategies). The static data feeder strategy has been 
simulated both using and not using file informa-
tion, while the dynamic data feeder strategy was 
simulated only with file information present. The 
benefits can be clearly seen. The static data feeder 
algorithm performs significantly better when the 
correct size of the files used by the jobs is known 
(Static DF) compared to the scheduling when 
information about expected file transfer times is 
absent (Static DF no FS info).

According to the simulation results (see Figure 
3 for the mean job completion time values pro-
vided by OptorSim), using the static data feeder 
scheduler (Static DF no FS info) the mean job 
completion time of all jobs on Grid is about 3-4% 
lower than in the case of the schedulers which do 

Algorithm 3.

universe        = vanilla 

executable      = runjob 

output          = stdout.log 

error           = stderr.log 

log             = job.log 

transfer_input_files = <executable>,descrgen.so 

...
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not use any file related information (Rnd, QL). 
As soon as file sizes are also considered (Static 
DF) the mean job time of all jobs on the Grid is 
about 40-60% lower than in the previous case.

Due to the more sophisticated file transferring 
approach, using the dynamic data feeder sched-
uler leads to even better (about 5-20% lower) 
mean job times. Besides, compared to the QL 
scheduler, the jobs scheduled by the dynamic 
strategy are finished 40-70% sooner. However 
the difference can further increase as CE queues 
would enlarge.

Another set of simulations was carried out for 
the Static Data Feeder strategy mainly for under-
lining the importance of refined job descriptions 
(see Figure 4). These measurements had been 
configured in such a way that the jobs monitored 
were consuming 10 times more CPU for the second 
execution than during their first run.

Four cases were compared: in the case of 
Static DF 1 the real execution of our jobs took 10 
times longer than the values the scheduler was 
using during its calculations. There is an up to 
4-5% speedup with the Static DF 2 strategy, which 
uses the real (multiplied) running times of the 
jobs during the scheduling process. Static DF 3 
uses also the shorter execution time estimates 
during scheduling, while the real running times 
of the jobs were normal for about 50% of the jobs, 
and 10 times more for the other half of the jobs. 
Using a merged description (currently a 1-1 
weighted average) from the two executions men-
tioned above (Static DF 4 strategy) will also reduce 
the mean job times with about 10% compared to 
the previous strategy.

Refining further these job descriptions with 
the execution of the monitored jobs can increase 
the credibility of the scheduling strategy, resulting 

Figure 3. Simulation results – mean job completion time
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in more realistic assumptions, and lower execu-
tion times.

SUMMARY AND CONCLUSION

In this paper we have presented scheduling algo-
rithms for parameter sweep applications in Grid. 
The scheduling algorithms estimate the job finish-
ing times and select the target CE accordingly.

The key for the job completion time estimation 
is the description of the behaviour of the job. We 
have defined the job behaviour description so that 
it characterises the resource access of the job: the 
CPU consumption and secondary storage access. 
However, the description of a job alone is not 
enough to estimate its completion time; informa-
tion about the characteristics and state of each CE 
is also required. Such information is the length of 
the job wait queue of the CE, the performance of 

the CPUs of the CE and the size and location of 
the files the given job would process.

We proposed algorithms for generating the 
job behaviour descriptions automatically after 
monitoring its resource access. The job behaviour 
descriptions generated after subsequent executions 
can be composed into a complex description. 
By using the complex description the proposed 
scheduling algorithms take into account that jobs 
can act in different ways when they process dif-
ferent files.

The scheduling of the job, the creation of 
its behaviour description, the refinement of the 
description and the maintenance of the complex 
description are supported by our proposed ar-
chitecture. However, for various non-technical 
reasons, it is hard to implement the architecture 
in the proposed form in existing production Grid 
systems. Therefore, we could implement the com-
ponents of the presented solution only partially. 

Figure 4. Performance of Static Data Feeder scheduler implementations
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The potential benefits of the proposed algorithms 
are demonstrated by performing simulations.

The simulations showed that the more the 
scheduler knows about the Grid environment 
and the behaviour of the job the better schedul-
ing decisions can be made and the earlier the job 
completes.

FUTURE WORK

The proposed scheduling algorithms disregard the 
overall Grid performance and solely optimize for 
the finishing time of the current job. However, the 
network characteristics should also be considered, 
otherwise the network capacity can become a 
major bottleneck which may lead to performance 
degradation. Therefore we are planning to improve 
the scheduling strategies to consider the global 
performance of the Grid.

According to our model the job is a single 
process application running on a single processor. 
We would like to relax this limitation and extend 
the job behaviour description by including com-
munication patterns for applications composed 
of parallel processes (e.g. PVM and MPI tasks). 
Accordingly we also intend to alter the scheduling 
(and estimation) algorithms to take the commu-
nication patterns into account.

The primary focus of our current work is data 
intensive applications and data Grids. We would 
like to generalize our approach and enable the 
scheduler to make efficient decisions in such cases 
when file access does not determine the execu-
tion time of the job significantly. The generalized 
approach should identify those operations which 
substantially influence the performance of the 
job. The job behaviour description and scheduling 
strategies should also be generalized to include 
and consider the relevant operations.
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Chapter  6

INTRODUCTION

The grid, introduced in 1998, is an emerging field 
for compute-intensive tasks (Foster, Kesselman, 
Tsudik and Tuecke, 1998; Foster, Kesselman and 

Tuecke, 2001). A computational grid is a collec-
tion of geographically dispersed heterogeneous 
computing resources, providing a large virtual 
computing system to users. Idle computers across 
the globe can be utilized for such computations. 
Such an arrangement ultimately produces the 
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power of expensive supercomputers which oth-
erwise would have been impossible.

There are four factors behind the growing 
interest in grid computing: the evolution of key 
standards such as TCP/IP and Ethernet in network-
ing; the ever-increasing bandwidth on networks 
reaching into the gigabit range; the increasing 
availability of idle megaflops on networked PCs, 
workstations and servers; and the emergence of 
Web services as a logical and open choice of 
software computing tasks (Prabhakar, Ribbens 
and Bora, 2002; Naedela, 2003). Grid scheduling 
software considers a job composed of tasks; finds 
suitable processors and other critical resources 
on the network; distributes the tasks; monitors 
their progress and reschedules any tasks that fail. 
Finally, the grid scheduler aggregates the results 
of the tasks so that the job is completed.

Grid computing has extensively supported col-
laborated science projects on the internet. Most 
of these projects have stringent security require-
ments. To a certain extent, the security may be 
provided by the application itself, but more usually 
it should be ensured and supported by the grid 
environment. The dynamic and multi-institutional 
nature of these environments introduces challeng-
ing security issues that demand new technical 
approaches for solutions. Scheduling algorithms 
play an important role in any distributed system. 
In an environment where security is of concern, 
responsibility is delegated to the scheduler to 
schedule the task on the resource that can meet the 
security requirement of the task. Such a scheduler 
is referred as the security aware scheduler (Jones, 
2003; Tonelloto and Yahyapour, 2006). The goal of 
a security aware scheduler is to meet the desired 
security requirements as well as providing a high 
level of performance metric e.g. site utilization 
and makespan.

The most common public key authentication 
protocol used in the grid today is the Transport 
Layer Security (TLS) (Dierks and Allen, 2007; 
Apostolopoulos, Peris and Debanjan, 1999) pro-
tocol that was derived from the Secure Sockets 

Layer (SSL) (Freier, Karlton and Kocher, 1996). 
Different versions of SSL/TLS provide differ-
ent level of security. Different version supports 
various cipher suites (security algorithms) for 
different security services like authentication, 
encryption and integrity. Thus it is the job of 
scheduler to allocate the tasks on the resources 
which supports the required security version and 
even supports required algorithm on a particular 
version to satisfy the demand.

Various grid scheduling models (algorithms) 
have been proposed in the past, but addressing 
little about security-aware scheduling. In this 
article, the thrust is security-aware scheduling 
model to optimize performance characteristics 
such as makespan (completion time of the entire 
job set) and site utilization along with the security 
demand of the task. The model is to consider the 
constraints exerted by both the job and the grid 
environment. In the proposed model, security 
prioritization is incorporated in MinMin schedul-
ing strategy, resulting in renaming the model as 
Security Prioritized MinMin (SPMinMin).

The next section discusses the related work 
done in this field. Section 3 explains the proposed 
grid scheduling SPMinMin model. Section 4 
shows some experiments and the observations over 
the results. Finally, section 5 concludes the work.

RELATED WORK

Often, grids are formed with resources owned by 
many organizations and thus are not dedicated to 
specific users. There are many important issues 
that a job scheduler should address for such a 
heterogeneous environment with multiple users. 
The grid resources have different security capabil-
ity and computational power. The assignment of 
a task to a machine on which the task executes 
can significantly affect the overall performance. 
Resource contention should also be considered 
while scheduling tasks on grid resources with 
multiple users. Further, grid, being a non-dedicated 
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networked system, has its own local jobs; i.e. it 
cannot provide exclusive services to remote jobs. 
Hence, scheduling algorithms need to address the 
performance measures of the jobs on non-dedi-
cated network in the presence of multiple users.

Due to security heterogeneity, jobs that are 
dispatched to a remote site can possibly experi-
ence security and reliability problems. Scheduled 
grid tasks may have its security demand (SD) and 
the grid site offers a certain security level (SL). 
If security demand of the job (multiple tasks) is 
not met by the resource on which it is made to 
execute, the job may fail and is to be rescheduled 
on some other resources.

A security-aware scheduling algorithm need 
to satisfy the security constraints and at the same 
time has to optimize the performance parameters 
like site utilization (percentage of total task run-
ning time out of total available time on a given 
site), makespan (completion time of the entire job 
set), average response time (average value of all 
tasks’ response time), average slowdown ratio 
(ratio of the task’s response time to its service 
time).Therefore, multi-objective criteria have to 
be met. Some of the grids scheduling algorithms 
are discussed below. All these algorithms need 
prediction information on processor speed and 
the task length.

• DFPLTF: (Dynamic Fastest Processor to 
Largest Task First) gives the highest pri-
ority to the largest task but is not a secu-
rity aware algorithm (Paranhos, Cirne and 
Brasileiro; 2003).

• Suffer: (Casonova, Legrand, Zagorodnov 
and Berman; 2000) allocates the processor 
to the task that would suffer the most if that 
processor is not assigned to it.

• Round Robin: (RR) proposed by Noriyuki 
Fujimoto and Kenichi Hagihara (2003) grid 
scheduling algorithm for parameter sweep 
applications which does not require predic-
tion information regarding task length and 

processor speed. However RR does not 
consider security requirements.

• MinMin: gives highest priority to the task 
that can be completed first. In this, for each 
task the grid site that offers the earliest 
completion time is tagged and the task that 
has the minimum earliest completion time 
is allocated to the respective node. MinMin 
executes shorter task in parallel whereas 
longer task follows the shorter one (Freund 
et al., 1998).

• MaxMin: here the grid site that offers ear-
liest completion time is tagged. Highest 
priority is given to the task with maximum 
earliest completion time. The idea behind 
max-min is overlapping long running task 
with short running ones. MaxMin executes 
many shorter tasks in parallel with the lon-
ger one (Freund et al., 1998).

MinMin and MaxMin are used in real world 
distributed resource management systems such as 
SmartNet (Freund et al., 1998). Both have time 
complexities of (mn2) where m is the number of 
machines at the site and n is the number of tasks 
to schedule. They are suitable when the tasks to 
schedule are independent and compute intensive.

• SATS, suggested by Xie and Qin (2007), 
takes into account heterogeneities in secu-
rity and computation. It provides a means 
of measuring overhead incurred by secu-
rity services and quantitatively measuring 
quality of service (QoS) but it does not 
assure the desired security rather try to 
improve security and minimize computa-
tional overhead.

• MinMin (Secure, Risky) (Song, Kwok 
and Hwang; 2005), are secured version 
of MinMin. Secure mode allocates task to 
those sites that can definitely satisfy the 
security requirements. Risky mode allo-
cates tasks to any available grid site and 
thus takes all possible risks at the resource 
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site. Merely imposing security demand 
in the MinMin degrades its performance 
which is discussed through cases in the 
later sections.

PROPOSED MODEL

This work proposes a guaranteed security aware 
scheduling model as Security Prioritized MinMin 
[SPMinMin]. It is a security aware scheduling 
model and assures security requirement of the 
job (multiple tasks) unlike algorithms like Suffer, 
DFPLTF, MinMin, MaxMin etc. MinMin gives 
highest priority to the task that can be completed 
first. Song et al. (2005) secured the MinMin by 
merely imposing security restrictions on it. It 
degrades the performance as security requirement 
act as the limiting factor rather than guiding fac-
tor. This work modified the Min-Min algorithm 
where the security demand of the task is the 
major guiding factor for scheduling decisions. 
SPMinMin allocates highest security demanding 
tasks first on faster resources. Tasks having same 
security requirement are then scheduled according 
to MinMin. Thus it never compromises with the 
benefits of MinMin but simply modifies it to work 
efficiently in a secured environment. Extensive 
experiments have been conducted over simulated 
grid environments for both MinMin and the SP-
MinMin. The experimental test bed is divided on 
the basis of possible heterogeneous scenario that 
may exist in a real grid environment. The results 
obtained clearly indicates that the proposed model 
performs better and at the same time proves that 
in non-grid environment MinMin can outperform 
SPMinMin The results also reveal significant 
performance gain and better site utilization of 
SPMinMin over MinMin.

Terminologies Used

Grid is considered to be composed of number of 
non dedicated processing nodes and the node in 

turn can be a single processor or a group of het-
erogeneous or homogeneous processors. A grid 
job is comprised of “n” independent tasks. The 
aim is to find an optimum schedule for assigning 
the grid job (all the tasks) to the processing nodes 
that satisfies the security constraint. Following is 
the list of terminologies, used in this article.

Tcomplete is the list of all the task of the given 
job that is to be scheduled.

Thigh is the list of all the tasks with highest 
security requirement.

A task is characterized as Ti = {Li, SDi} where, 
Li is the length (size) of the task (number of 
instructions in the task), and SDi is the security 
level demand of the task.

A processing node is characterized as Nj = (SPj, 
SLj, BTj) where, SPj is the execution speed of the 
processing node, SLj is the maximum security 
level offered by the processing node, and BTj is 
the begin time of the node (time to execute the 
tasks already assigned to the node).

Nqualified,i is the list of processing nodes on which 
the ith task can be executed i.e. list of the nodes 
meeting the security demand of the ith task.

A schedule of the job is a set of n triplets <Pj, 
Ti, CTij> where, Pj is jth processing node, Ti is 
ith task, CTij is completion time of ith task on jth 
processing node.

CTij = ETij + BTj where, ETij is execution time 
of ith task on jth processing node, and BTj is the 
begin time of jth processor.

Earliest Completion Time (ECT) of a task is 
the minimum time amongst all the selected nodes 
taken to complete the task.

SPMinMin

In a Grid, tasks with different levels of security 
requests compete for the resources. It is assumed 
that a task with low security requirement can be 
executed on both types of resources; the one of-
fering high security as well as the one offering 
low security. Thus, a task with a desired security 
level service can be executed only on a resource 
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providing required or higher than the required 
security level.

As mentioned in section 2, MinMin is one 
of the most popular scheduling algorithms and 
is used in real world distributed resource man-
agement systems such as SmartNet (Freund et 
al., 1998). The original MinMin is not security 
aware and attempts have been made by Song et 
al. (2005) to make it secure. MinMin (secured) 
works as follows:

• Compute the completion time of all the 
tasks on all the nodes.

• Grid node that offers the minimum com-
pletion time while meeting the security de-
mand is tagged for each grid task.

• Among all such task- node pair, the task 
which has the minimum completion time 
is allocated to the respective node.

MinMin was not designed to incorporate secu-
rity as a scheduling parameter. The only guiding 
parameters for MinMin are size of the task and 
speed of the processor. Introducing security made 
it behave inefficiently especially under certain 
situations. Shorter tasks are scheduled on faster 
nodes at priority according to MinMin. In a typi-
cal situation where highly secured machines are 
the fastest and there are many shorter tasks with 
lower security requirements the performance of 
MinMin degrades significantly. The reason is, in 
the beginning shorter tasks even with low security 
requirement are unnecessarily assigned to the fast-
est node (highly secured) and at the end longer task 
also run on overloaded highly secured machines, 
as they cannot run on any other machines.

To overcome this shortcoming, we have 
modified the Min-Min algorithm to consider 
the security requirement as a guiding factor for 
the scheduling decisions. The modified Security 
Prioritized MinMin (SPMinMin) allocates highest 
security demanding tasks first on faster resources. 
Its working is as follows:

• Create a list of the tasks with highest secu-
rity requirement (Thigh) from the complete 
set of tasks (TComplete).

• For each task of Thigh, find the list of the 
nodes (Nqualified) which satisfies the security 
demand of the task.

• Compute the completion time for each task 
of Thigh on its entire node list (Nqualified).

• For each task, tag the node(s) from the 
Nqualified that offers minimum completion 
time.

• Among all such task-node pair, allocate the 
task which has the minimum completion 
time to the respective node.

• Remove the task from the Thigh and TComplete 
list.

• Modify the begin time (BT) of the resource.
• Repeat the entire process till Thigh list is 

empty. After all the tasks from Thigh are al-
located new Thigh is generated and the en-
tire process begins for the new Thigh.

The Algorithm

The algorithm for the SPMinMin is given in Box 1.

EXPERIMENTAL EVALUATION

To validate and evaluate the performance, simu-
lation experiments have been carried out. The 
experimental study considers the complete het-
erogeneous environment e.g. Security requirement 
of the tasks; security offered by the nodes, speed 
of the nodes and size of the task. Altogether, fol-
lowing possibility for the experimentation exists:

1.  High speed nodes are more secured and 
heavy tasks require more security.

2.  High speed nodes are more secured and 
heavy tasks require less security.

3.  High speed nodes are more secured no depen-
dency between length of task and security.
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4.  High speed nodes are less secured and heavy 
tasks require more security.

5.  High speed nodes are less secured and heavy 
tasks require less security.

6.  High speed nodes are less secured and no 
dependency between length of task and 
security.

7.  No dependency between speed of nodes and 
security and no dependency between length 
of task and their security requirement.

The parameters needed for the simulation to 
work in a secured grid environment are mentioned 
in Table 1.

Figure 1a to 1g shows the simulation results 
for the mentioned seven grid environments for 
MinMin and SPMinMin when the number of 
processing nodes for a grid environment is fixed 
to 16 and the number of task to be scheduled on 

them varies from 8 to 100. The aim is to study 
the performance of the two algorithms for differ-
ent job sizes (number of tasks) when the grid size 
is kept constant. Figure 2a to 2g shows the simu-
lation results when the tasks to be scheduled on 
a grid environment are fixed to 40 and the number 
of nodes varies from 4 to 24. This is to study the 
performance of the two algorithms for different 
grid size keeping job size fixed.

Also, the experiment was conducted to observe 
the time taken by both the algorithms under 
similar environment. Conspicuous is the fact that 
apart from offering better makespan the SPMin-
Min is better in terms of its own execution in 
comparison to MinMin. Figure 3 shows the com-
parison over the speed of the two algorithms. It 
has been observed that with the increase in the 
number of tasks the execution time of the algorithm 
improves exponentially.

Box 1. The SPMinMin scheduling algorithm

do until (T
Complete

 != NULL)     //there are more tasks

 {  

  Create T
high

 from T
Complete

     // the tasks demanding high security

  do until (T
high

, != NULL)     // there are tasks in T
high

   { 

     for each task i from T
high

       { 

       Create N
qualified,i

 

       for each node j from node list N
qualified,i

          compute CT
ij
 = ET

ij
 + BT

j

       find the ECT(Earliest Completion Time) 

       for each task and its corresponding node.  

       Generate matrix ECT
task(i),node.

       } 

     from the matrix ECT, find the task with 

     minimum ECT =( ECT
k,m
)  ) // tth task on mth  node 

     Schedule task t on node m,  

     Delete task t from T
high

 and T
complete

     Modify BT
m
 = BT

m
 + CT

km
 // begin time for  the node m is

     modified 

     } 

}
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OBSERVATIONS AND CONCLUSION

The present work proposes a security aware 
scheduling model for computational grid as an 
extension of MinMin model. It also compares the 
widely used MinMin algorithm with the proposed 
SPMinMin for performance metrics like makes-
pan and site utilization. SPMinMin is a modified 
MinMin and it shows remarkable improvement 
where security demanded by the task cannot be 
compromised. According to MinMin, shortest 
task will be scheduled at priority on fastest node. 
This makes lighter and low security demanding 
tasks to be unnecessarily scheduled on faster high 
security nodes. This affects negatively on the site 
utilization and the entire jobs’ (multiple tasks) 
makespan. To overcome this shortcoming, the 
Min-Min (secured) algorithm has been modified 
with the security demand of the task as a guiding 
factor to scheduling decisions. The modified Se-
curity Prioritized MinMin (SPMinMin) allocates 
highest security demanding tasks first on the faster 
resources. The highest security requiring tasks 
are then scheduled according to MinMin. Thus 
it never compromises the benefits of MinMin 
but very simply modifies it to work efficiently 
in a secured environment. Experimental results 
confirm our study.

The article has elaborated various possible 
situations in a grid environment based on the 

computational and security heterogeneity of 
grid resources and grid tasks. Experiments are 
conducted on simulated grid environments in 
two sets. In the first set, the number of nodes is 
fixed to 16 and the number of tasks varies from 
8 to 100. In the second set number of tasks are 
fixed to 100 and number of nodes varies from 4 
to 24. For all possible situations, experimental 
data is generated and the behavior of MinMin and 
SPMinMin for makespan and site utilization are 
studied and compared. The following observations 
are derived from the experiments:

Whenever heavy tasks demanded more security 
the proposed model always behaved much better 
than MinMin as shown in Figure 1a, 1d and 2a, 
2d. The more the percentage of such tasks the 
more will be the improvement in performance 
of SPMinMin over MinMin. When there is no 
dependency between length of tasks and the se-
curity, even then SPMinMin outperforms MinMin 
as depicted from plots 3c, 3f and 4c, 4f. Similar 
results are obtained for both the sets; varying job 
size or varying grid size. Thus for any grid size or 
job size SPMinMin outperforms MinMin when-
ever heavy tasks are more security demanding.

In a grid situation when heavy tasks require 
more security and higher speed nodes are more 
secured, there is a significant improvement in the 
performance of SPMinMin over MinMin and this 
comes out to be the most favorable situation for 

Table 1. Parameters for simulations 

Parameter Value Range 

No of nodes fixed to 16 // fig. 1a to 1g

No of tasks 8 to 100 // fig. 1a to 1g

No of tasks fixed to 40 // fig. 2a to 2g

No of nodes 4 to 24 // fig. 2a to 2g

Speed of the processing nodes (SP) 1, 2, 5, 10 (MIPS)

Security level of the processing node (SL) 4 / 6 / 9

No. of tasks Up to 100

Size of tasks 10 to 100 (MB)

Security level demand of the grid task (SD) 4 / 6 / 9
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SPMinMin. Under this grid environment, if we 
keep on increasing the tasks while keeping grid 
size constant, makespan of SPMinMin improves as 
shown in Figure 1a. For the same grid environment 
performance of SPMinMin is much better than 
MinMin for smaller grid as shown in Figure 2a.

In a situation when heavy task demand less 
security but high speed nodes are more secured, 
the two behaves similar for larger grid as shown in 
Figure 1b. For the same situation, it is also observed 
that for fewer grid nodes, SPMinMin behaves bet-
ter than MinMin as depicted in Figure 2b.

Figure 1. Makespan comparison for different grid environments when number of processing nodes is 
fixed to 16 and number of task varies from 8 to 100
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It has also been observed that whenever heavy 
tasks demands less security and high speed nodes 
are less secured, SPMinMin and MinMin behave 
identically as can be gleaned from Figure 1e and 
Figure 2e.

There are no dependencies between speed of 
nodes and security and between length of task and 
security demand. This is the most realistic grid situ-

ation and under most of the situation SPMinMin 
will perform better than MinMin giving a better 
makespan and site utilization as shown with the 
sample data above. Graph 3g and 4g confirm this.

Finally, it is concluded that under all possible 
situations where security of the task needs to be 
fulfilled, SPMinMin either outperforms MinMin 
or in the worst case behaves similar to MinMin. It 

Figure 2. Makespan comparison for different grid environments when number of tasks is fixed to 40 and 
the number of processing nodes varies from 4 to 24
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is also observed that SPMinMin is a faster algo-
rithm than MinMin. Thus, SPMinMin is a prime 
candidate to be considered as a security aware 
scheduler on a computational grid.
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ABSTRACT

Grid is a parallel and distributed computing network system comprising of heterogeneous computing 
resources spread over multiple administrative domains that offers high throughput computing. Since 
the Grid operates at a large scale, there is always a possibility of failure ranging from hardware to 
software. The penalty paid of these failures may be on a very large scale. System needs to be tolerant 
to various possible failures which, in spite of many precautions, are bound to happen. Replication is a 
strategy often used to introduce fault tolerance in the system to ensure successful execution of the job, 
even when some of the computational resources fail. Though replication incurs a heavy cost, a selective 
degree of replication can offer a good compromise between the performance and the cost. This chapter 
proposes a co-scheduler that can be integrated with main scheduler for the execution of the jobs submit-
ted to computational Grid. The main scheduler may have any performance optimization criteria; the 
integration of co-scheduler will be an added advantage towards fault tolerance. The chapter evaluates 
the performance of the co-scheduler with the main scheduler designed to minimize the turnaround time 
of a modular job by introducing module replication to counter the effects of node failures in a Grid. 
Simulation study reveals that the model works well under various conditions resulting in a graceful 
degradation of the scheduler’s performance with improving the overall reliability offered to the job.
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INTRODUCTION

Computational resources being scarce requires an 
efficient use of these resources. Resources may 
vary from specialized computational machines, 
storage machines to heterogeneous applications. 
Grid is the aggregation of the resources across the 
world seamlessly and enabling their use as, when 
and wherever desired rather than individual group 
investing heavily for high performance computa-
tional resources. In the era of high performance 
and high throughput computing, grid has emerged 
as an efficient means of connecting distributed 
computers or resources scattered all over the 
world for the purpose of collaborative computing 
thus essentially unifying various heterogeneous 
resources on a common platform while dimin-
ishing the administrative boundaries to provide 
a transparent access to a user. Essentially being 
a part of the grid means an infinite capability to 
execute and compute any kind of job anywhere 
by simply becoming its part. Therefore, even if 
the appropriate computational capabilities are not 
available with the user, the grid helps the job to 
be executed on the right resources thereby being 
efficient as well as cost effective.

Depending on the use grids can be classi-
fied as Computational grid, Data grid, Sensor 
grid, Biological grid etc. A computational grid 
emphasizes on the computing aspect thus sched-
uling the job to the grid resources by exploring 
the computational requirements of the job and 
effectively load balancing it. Scheduling can 
be based on various objectives like maximizing 
the reliability of job execution, minimizing the 
make span or maximizing the Quality of Service 
(QoS) for the job execution (Grid Computing 
Info centre, 2008; Baker, Buyya, & Laforenza, 
2002; Tarricone & Esposito, 2005; Ernemann, 
Hamscher, & Yahyapour, 2002; Casanova, 2002; 
Vidyarthi, Sarker, Tripathi & Yang, 2009; Raza 
& Vidyarthi, 2008, 2009).

Execution of a job on the complex and dynamic 
grid poses number of challenges. One of these 

challenges is to ensure a reliable environment to 
the job so that it can cope with any kind of failure. 
Since the grid resources are heterogeneous in be-
havior and administrative control, introduction of 
fault tolerance in the system is very difficult. In 
addition, the jobs demanding execution on the grid 
themselves may be very complex and may take 
a long time to execute making them vulnerable 
to failures. Further, the resources are under the 
user control so even accidental damages or even 
a forced shutdown may fail the execution. Similar 
is true for the network failure also. These failures 
may range from hardware to software and to the 
network failures. The fault tolerant techniques can 
thus vary from proactive to reactive approaches 
to counter failure at any level (Dai, Xie, & Poh, 
2002; Huda, Schmidt & Peake, 2005; Mujumdar, 
Bheevgade, Malik & Patrikar, 2008). In spite of 
these measures, the chances of failures cannot be 
overruled. The desired objective is to accept these 
failures and minimize their effect by gracefully 
degrading the system with continued job execution 
at the cost of a compromised overall performance. 
One of the popular mechanisms to handle failures 
is to introduce replication. This could be in the 
hardware form or the software form in which same 
application is executed or stored at more than one 
resources. Therefore, with the slight increase in 
the execution cost, replication increases the prob-
ability of the successful execution of the job, thus 
being fault tolerant.

Replication incurs a heavy cost but this cost can 
be minimized by adopting selective replication. 
The selection of nodes or job modules depends 
on certain parameters that can be decided by the 
system as per the scheduling requirements. The 
RBS works on the basis of replicating some of the 
modules allocated on a node with high failure rate 
on to those nodes with lesser failure rate. There-
fore, it increases the fault tolerance of the system 
without severely affecting the performance.

This paper has six sections. Next section dis-
cusses the related work reported in the literature 
with the similar objective followed by a section 
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elaborating the need and integration of RBS with 
a main scheduler. Working of the model using a 
suitable example is illustrated next along with the 
details of the results obtained from the simulation 
study. The chapter finally concludes detailing the 
achievements and drawbacks of the work.

RELATED MODELS

The grid being an aggregation of geographically 
distributed heterogeneous resources; the degree 
of unreliable behavior extends from the compu-
tational resources to the applications running to 
the network media. A reliable and fault tolerant 
scheduling has gained enough attention from the 
researchers and many models have been reported 
in the literature addressing these issues. A few 
models have been proposed to counter the effect 
of these failures by adopting proactive to reactive 
solutions. A reliability analysis of grid computing 
systems has been done in (Dai, Xie, & Poh, 2002). 
An agent oriented fault tolerant framework has 
been proposed in (Huda, Schmidt & Peake, 2005) 
to use agents to monitor the system and in case 
of any threat appropriate measures may be taken 
beforehand to prevent failures. A checkpoint-based 
mechanism has been adopted for recovery from 
failures from the last saved state as a reactive mea-
sure (Mujumdar, Bheevgade, Malik & Patrikar, 
2008). Introduction of redundancy is a popular 
means to safeguard the application, as reported 
in many models in the literature. A study of the 
tradeoff between performance and availability 
has been carried out suggesting a file replication 
strategy (Zhang & Honeyman, 2008). The use of 
replication by determining the number of replicas 
required and then suggesting a scheduling strat-
egy for the tasks submitted is reported in (Li & 
Mascagni, 2003). Another fault tolerant strategy 
using replication is proposed in (Liu, Wu, Ma, & 
Cai, 2008) whereas a model using database centric 
approach for static workload for data grid has been 
proposed in (Desprez & Vernois, 2007; Sathya, 

Kuppuswam & Ragupathi, 2006). Many more 
similar models are also available in the literature.

THE REPLICA BASED CO-
SCHEDULER (RBS)

Replication can be applied in many ways for grid 
constituents to induce fault tolerance in the system. 
Depending on the requirements and availability it 
could be used at hardware or the software level. 
These techniques do well irrespective of the al-
location strategy used by the scheduler but with 
the increased cost of execution both in terms of 
computational power and money. The degree and 
type of replication introduced, thus depends on 
the acceptable amount of failures the system can 
digest. Since grid is a heterogeneous environ-
ment, the failures may occur at many levels viz. 
the job may fail during the time of submission, 
the computational resource may fail while job is 
being scheduled or even after being scheduled, 
the network links may fail while the job is inter-
acting with the user or within itself. Among all 
these failures, those accounting to failed resources 
or application before scheduling does not have 
a serious effect as they can be taken up again 
for scheduling. The problem is serious when 
the resources fail while executing the jobs. The 
most disastrous failure could be the node failure 
on which the job is getting executed. Robustness 
towards application failure and network failures 
is difficult to attain but the node failure can be 
handled a bit more easily if we have the informa-
tion about the allocation of various modules (jobs) 
allocated on that node.

The proposed Replica Based Co-Scheduler 
(RBS) helps in the reliable execution of the modu-
lar job by replicating the modules allocated to the 
nodes with high failure rates (sick nodes) to the 
ones with a lower failure rates (healthy nodes). 
The reallocation is done only once for a module 
based on the random selection of nodes out of all 
the healthy nodes. This results in having duplicate 
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copies of the modules on more than one node. 
In case of a node failure, the duplicate copies of 
the modules continues for the job execution. The 
duplicate copies are used only when a node fails 
otherwise the job is executed as per the originally 
scheduled allocation. The job of the RBS starts 
when the job of the main scheduler in allocating 
the job modules to various nodes has finished. 
It is then that the RBS takes control to provide 
robustness and fault tolerance to the cluster con-
taining the computational resources. The RBS can 
be used along with any scheduler available in the 
grid middleware. The inclusion of RBS enables 
the grid to respond graciously to the node failures 
with the cost of compromising the performance of 
the grid, which is unavoidable since the replicated 
modules have an altered sequence of execution as 
compared to the original schedule. RBS strategy 
provides an important backup in absence of which 
the job needs to be scheduled afresh again result-
ing in consumption of computational energy that 
proves very costly for the high traffic environment 
such as grid. For the real time jobs the problem 
becomes much more severe as the failures may 
impact he grid performance thus hitting the fi-
nancial prospects of the grid.

INTEGRATION OF RBS WITH TSM

To analyze the performance of the co-scheduler 
RBS it is essential to have a scheduler, which 
schedules the job submitted to the grid on ap-
propriate resources based on certain optimiza-
tion parameter. These parameters may vary e.g. 
turnaround time, reliability, security, Quality of 
Service (QoS) etc. Minimizing the turnaround time 
for the job submitted is often a desired parameter 
and has been addressed in the Turnaround Based 
Scheduling Model (TSM) for computational grids 
using Genetic Algorithm (GA) in [8]. The TSM 
model uses GA to schedule a modular job on a 
cluster based grid to suggest an allocation pattern 
in such a way that the turnaround time of the job is 

minimized. In the present work, the performance 
of the RBS has been analyzed by integrating it 
with a TSM scheduler.

The TSM model considers the grid as collec-
tion of many clusters, each with a specialization, 
consisting of a number of nodes for job execution. 
This is a multipoint entry grid in which the job can 
be fired at any node of the constituent clusters. 
The main scheduler (TSM) searches for the ap-
propriate cluster matching the job’s requirements 
and offering the minimum turnaround time to the 
job, on which the job is eventually scheduled. The 
job is submitted for execution along with its Job 
Precedence and Dependence Graph (JPDG) in 
which the position of each module of the job indi-
cates its order of execution. It also depicts degree 
of parallelism and the interaction dependence of 
that module with the preceding modules in terms 
of the communication requirements.

The allocation status of the various jobs is 
maintained with each cluster in a data structure 
known as the Cluster Table (CT), which is updated 
periodically to reflect updated allocations. The CT 
consists of the following attributes

Cn (Sn, Pk, fk, λlt, Mij, Tprkn)

Where Cn refers to the cluster under consider-
ation with specialization Sn, number of nodes Pk, 
the clock frequency of each node fk, failure rate 
of each node λlt, modules assigned on the nodes 
Mij and the time to finish existing modules Tprkn 
on the nodes. As obvious, the CT provides the 
information regarding the cluster constituents 
e.g. the specialization of the cluster nodes to help 
allocating the jobs to appropriate resources as 
per its requirements and specifications, number 
of nodes in the cluster, their clock frequency, the 
failure rate of nodes, present allocation, and the 
time taken to finish the existing modules already 
allocated on the nodes. The main scheduler in this 
case is TSM but it can be any scheduler proposing 
a scheduling strategy for the modular job. Since the 
objective of the TSM is to minimize the turnaround 
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time of the job, the resultant allocation pattern 
corresponds to a chromosome suggesting the al-
location of job modules on the appropriate nodes 
[8]. This information is helpful as it is eventually 
used by the RBS. Taking this allocation of the job 
modules as suggested by TSM as the prerequisite, 
RBS replicates the modules of the sick nodes to 
the healthy nodes as a precautionary measure to 
overcome the loss due to possible node failures 
thus increasing the fault tolerance of the system.

For the job submitted for execution, TSM 
generates a population of chromosomes populated 
randomly. This is done by dynamic generation of 
the chromosomes of size (number of genes) equal 
to the number of modules of the job such that 
each gene represents the allocation of a module 
to a node. Starting from the left hand side, the 
first gene corresponds to the node allocation for 
the first module, the second gene referring to the 
node allocation for the second module and so on 
till the last gene corresponding to the last module 
as shown in Table 1.

Table 2 presents an example of a job with five 
modules on a cluster with six nodes. The gene 
positions here can be read as module 1 being al-
located to node 6, module 2 on node 2, module 3 
on node 6, module 4 on node 1 and module 5 on 
node 5.

For the population, TSM uses GA to evolve 
towards a chromosome offering the minimum 

turnaround time using operators selection, cross-
over and mutation. This chromosome gives us the 
allocation pattern using which the job can be 
scheduled to minimize the turnaround time of the 
job. This process is done for all the clusters match-
ing the specialization of the job resulting in a 
chromosome generated for each cluster offering 
the minimum turnaround time to the job. These 
costs are compared to select the cluster offering 
the least turnaround time corresponding to some 
allocation pattern responsible for it [8].

For any cluster of the grid, the allocation of 
modules to the individual nodes depends on three 
factors viz. processing speed of the node, time to 
finish execution of already allocated modules to a 
node and the communication cost in terms of the 
bytes exchange required between the modules. 
This cost becomes the fitness function for the 
allocation of a job with M modules and can be 
represented as

NEC = E w B D x x Tkin ijk ihj kln ijk hjl

h=1

i-1

prknijkn.x  + . . +( )
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∑
 i=1
  

M  
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Here Eijkn represents the processing time of the 
node Pk under consideration calculated for node Pk 
for module mi of size Ii of job Jj on cluster Cn as

Table 1. Chromosome Structure 

Node No. for Module1 Node No. for Module2 Node No. for Module3 Node No. 
for 

Module 4

Node No. for Module5

Table 2. A Sample Allocation of Nodes to the Modules 

6 2 6 1 5
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Eijkn = Ii * (1/fk) + n * α  (ii)

xijk is the vector indicating the assignment of 
module mi of job Jj on node Pk. It assumes a bi-
nary value. It is 1 if the module is allocated to the 
node and is 0 otherwise. Tprkn is the time to finish 
execution of the present modules on the node Pk. 

The factor w B D x xihj k ijk hjl

h

i

. .ln( )
=

−

∑
1

1

 represents the 

communication cost between a module mh with 
the previous modules mi as per the JPDG, Bihj 
being the number of bytes that need to be ex-
changed between modules mi and mh and Dkl is 
the hamming distance between nodes Pk and Pl 
involved in data exchange. w is the scaling factor 

to scale the term B D x xihj k ijk hjl

h

i

. .ln( )
=

−

∑
1

1

 into time 

unit.
The reliability offered by the cluster of the grid, 

ClusReljn, as per the allocation pattern suggested by 
the chromosome can be written as shown in Box 
1, where ModRelik is the reliability offered by the 
grid when module mi has been assigned on node 
Pk. Introduction of replicated modules increases 
the reliability of the job execution. At any time, 
the reliability offered to the job with replication, 
ClusRelRepjn, can be written as

ClusRelRep =  ClusRel  C  * ClusReljn jn
K

I jn+
(v)

Here, ClusReljn as stated in eq. (iii) is the reli-
ability offered to the job Jj without node failure 
and KCI accounts for the failure of ‘I’ nodes out 
of the available ‘K’ nodes on which original al-
location has been made.

RBS Algorithm

The TSM essentially schedules the job on the clus-
ter offering the minimum turnaround from a group 
of clusters with matching specialization of the job. 
Once the cluster is selected for job allocation, its 
Cluster Table (CT) is updated to accommodate 
the new job. The job of the RBS begins where the 
job of TSM finishes. For the cluster selected, the 
RBS evaluates the vulnerability of the nodes on 
which an allocation has been done by comparing 
their failure rates λlt with some threshold failure 
rate λth which depends on the domain knowledge 
of the cluster along with the acceptance level of 
the failures. Accordingly the nodes are judged as 
healthy and sick nodes. For the sick nodes, CT is 
referred to check for any allocations made. These 
modules are then duplicated on some healthy node, 
selected randomly. The algorithm for the same is 
shown in the box.

Now if a failure is detected the system does 
not fail completely as copies of the modules on 
the failed node are still available on some other 
nodes. The execution of the job still follows the 
JPG with the penalty of increase in the turnaround 
time. It is due to some nodes waiting for the pre-

ClusRel = ModRel  jn ik

i=1

M

Õ  (iii)

ClusRel  =
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Box 1.
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vious modules reallocated on other nodes to get 
executed. The RBS thus works as a supplement 
to the main scheduling algorithm by increasing 
the clusters fault appetite.

ILLUSTRATIVE EXAMPLE

To elaborate the working of the RBS an example 
has been illustrated using one of the results of 
the simulation study with other job as detailed 
in Table 3 and Table 4. The parameters taken 
are scaled down for the purpose of illustration. 
All the data values are generated randomly and 
conform to the similar studies. Table 5 and Table 
6 represents the CT and the hamming distance 
between nodes respectively for cluster C0, which 
is the selected cluster on which the job has been 
finally allocated by the TSM scheduler. Table 7 
represents the processing time matrix for cluster 

Algorithm 1.

Replica (Job) 

{  

On the selected cluster C
n
, for the submitted job J

j
  

 do 

    Set the threshold failure rate λ
th.

   Get the failure rates λ
lt
 of each node on which allocation  has been made

   For each node, if  λ
lt
  > λ

th

    do       

      { 

        Get all modules M
ij
 allocated on node P

k

          

   For each module  

        do 

         { 

          Randomly allocate it to any processor with λ
lt
 > λ

th

         }

Table 3. Job J0

Module 
(mij)

Job Specialization 
(Jj)

Number of Instructions 
(Ii)

m00 J0 150

m10 J0 200

m20 J0 175

m30 J0 100

m40 J0 200

Table 4. Matrix Bih0 for Job J0

m00 m10 m20 m30 m40

m00 0 3 3 0 0

m10 3 0 0 2 3

m20 3 0 0 0 2

m30 0 2 0 0 0

m40 0 3 2 0 0



108

A Replica Based Co-Scheduler (RBS) for Fault Tolerant Computational Grid

C0 for the given job. Final allocation of the job 
to the cluster selected considering allocation of 
individual modules by TSM is shown in Table 8.

Here, BECik should be read as the Best Execu-
tion Cost for mi module offered by node Pk and 
interpreted as the best turnaround time offered by 
a node to a module being considered for alloca-
tion. This becomes the best turnaround time offered 
by any node and results in allocation of the mod-
ule to this node, which can then execute it in the 
minimum possible time.

The turnaround time for the above allocation 
is found to be

Turnaround Time

= max (NECikn) for ‘k’ on which allocation has 
been made

= max (38, 29.75, 24, 13, 29.5) = 38

Therefore, the final allocation of the modules 
for cluster C0 is represented in Table 9.

As can be seen from Table 5, the failure rates 
of the nodes are determined and the sick (S) and 
healthy nodes (H) are marked accordingly by 
comparing it with the threshold failure rate λth 

Table 5. Cluster table for C0

Node Number 
(Pk)

Clock Frequency 
(fk in MHz)

Specialization 
(Sn)

Time to finish 
(Tprkn in μS)

Modules allocated 
(Mij)

Node Failure 
rate (λlt)

P0 10 J0 10 00 0.001

P1 20 J0 12 10 0.002

P2 10 J0 10 31 0.003

P3 10 J0 13 33 0.008

P4 20 J0 12 43 0.007

Table 6. Matrix Dkl for Cluster C0

P0 P1 P2 P3 P4

P0 0 1 2 3 2

P1 1 0 3 2 3

P2 2 3 0 1 2

P3 3 2 1 0 1

P4 2 3 2 1 0

Table 7. Ei0k0 on cluster C0 for Job J0

m00 m10 m20 m30 m40

P0 15 20 17.5 10 20

P1 7.5 10 8.75 5 10

P2 15 20 17.5 10 20

P3 15 20 17.5 10 20

P4 7.5 10 8.75 5 10
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which is 0.005 in this case. This is shown in Table 
10 along with the random replacements for the 
modules on the sick nodes.

So the new allocation becomes as shown in 
Table 11.

The node numbers shown in the brackets are 
the duplicate copies of the modules lying on the 

sick nodes, which becomes active as soon as the 
corresponding node fails. Assuming all the sick 
nodes fail, the new allocation becomes Table 12.

For the new allocation, now, the turnaround 
time can be calculated in the same way as shown 
in Table 8 as per equation (i). The new turnaround 
time calculation is shown in Table 13 for thresh-

Table 8. Allocation of modules for Cluster C0

m00

P0 P1 P2 P3 P4

Eijkn 15 7.5 15 15 7.5

Tprkn 10 12 10 13 12

∑ (Bihj* Dkl) 0 0 0 0 0

NECikn 25 19.5 25 28 19.5 (BEC04)

m10

P0 P1 P2 P3 P4

Eijkn 20 10 20 20 10

Tprkn 10 12 10 13 19.5

∑ (Bihj* Dkl) 6 9 6 3 0

NECikn 36 31 36 36 29.5
(BEC14)

m20

P0 P1 P2 P3 P4

Eijkn 17.5 8.75 17.5 17.5 8.75

Tprkn 10 12 10 13 29.5

∑ (Bihj* Dkl) 6 9 6 3 0

NECikn 33.5 29.75
(BEC21)

33.5 33.5 38.25

m30

P0 P1 P2 P3 P4

Eijkn 10 5 10 10 5

Tprkn 10 29.75 10 13 29.5

∑ (Bihj* Dkl) 4 6 4 2 0

NECikn 24 40.75 24(BEC32) 25 34.5

m40

P0 P1 P2 P3 P4

Eijkn 20 10 20 20 10

Tprkn 10 29.75 24 13 29.5

∑ (Bihj* Dkl) 8 9 12 7 6

NECikn
38

(BEC40)
48.75 56 40 45.5
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old failure rate as λth =0.005. Since node P3 and 
P4 has been marked as a sick nodes these will not 
be considered for future allocation. Since the new 
allocation has suggested the allocation of modules 

in the order P2, P0, P1, P2 and P0 for the modules 
m00, m10, m20, m30 and m40, the turnaround time 
offered for various modules by the corresponding 
nodes is as shown in Table 13.

The total turnaround time for the new alloca-
tion can thus be calculated as

Turnaround Time

= max (NECikn) for ‘k’ on which allocation has 
been made

= max (58, 12, 65.5) = 65.5

As evident from Table 13, with node failures 
the turnaround time has increased from 38 to 65.5 
but still the program overcomes the glitches of 
the node failures to finish the current execution 
and the job execution is guaranteed. Later these 
failed nodes can be eliminated from the CT of the 
respective clusters, which is C0 in this case and will 
not be used for future allocation unless repaired.

Table 9. Final allocation of the job to the nodes 

Node on which allocation has been made

m00 P4

m10 P4

m20 P1

m30 P2

m40 P0

Table 10. Detection of sick and healthy nodes 

Node on which allocation has been made Replacement Node

m00 P4(S) P2

m10 P4(S) P0

m20 P1(H) P1

m30 P2(H) P2

m40 P0(H) P0

Table 11. New allocation of the job to the nodes 

Node on which allocation has been 
made

m00 P4(P2)

m10 P4(P0)

m20 P1

m30 P2

m40 P0

Table 12. Modified allocation after node failure 

Node on which allocation has been made

m00 P2

m10 P0

m20 P1

m30 P2

m40 P0
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EXPERIMENTAL STUDY

Simulation experiments were carried out to ob-
serve the behavior of the model. Using equation 
(i), the turnaround time of the job is observed 
corresponding to the different number of failing 
nodes. For each allocation pattern, reliability with 
which the job can be executed is also calculated 

using equation (iii). The effect of the number of 
failed nodes on the turnaround time for varying 
number of modules of the job and cluster architec-
ture is presented in Figure 1. For the same job and 
cluster architecture, effect on the reliability of the 
job execution is shown in Figure 2. Result of the 
experiment with 15 number of modules resulted in 
reliability values as low as 0.021. Since the value 

Table 13. Turnaround time for the modified allocation for Cluster C0

m00

P0 P1 P2 P3 (×) P4 (×)

Eijkn 15

Tprkn 10 12 10

∑ (Bihj* Dkl) 0

NECikn 25

m10

P0 P1 P2 P3 (×) P4 (×)

Eijkn 20

Tprkn 10 12 25

∑ (Bihj* Dkl) 6

NECikn 36

m20

P0 P1 P2 P3 (×) P4 (×)

Eijkn 8.75

Tprkn 36 12 25

∑ (Bihj* Dkl) 9

NECikn 29.75

m30

P0 P1 P2 P3 (×) P4 (×)

Eijkn 10

Tprkn 36 29.75 25

∑ (Bihj* Dkl) 4

NECikn 39

m40

P0 P1 P2 P3 (×) P4 (×)

Eijkn 20

Tprkn 36 29.75 39

∑ (Bihj* Dkl) 2

NECikn 58
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is too low, the result could not be accommodated 
along with other results shown in Figure 2. Figure 
1 and Figure 2 corresponds to the experimental 
results without using any replication.

It is observed that the turnaround time keeps 
on increasing with increase in the number of fail-
ing nodes. In addition, replication of modules 
increases the reliability of job execution. This 
reliability is minimum when maximum number 
of nodes has failed and increases with reducing 
number of failing nodes. Thus, in spite of the node 
failures jobs gets executed with an increased 
turnaround time adhering to the purpose of the 
RBS.

Figure 3 and Figure 4 present the effect on 
grid reliability due to replication. It presents a 
comparison of the turnaround time and reliabil-
ity obtained with and without node replication 
keeping the same grid environment and jobs. 
The experiments were set to have no node failure 
when no replication is there. The turnaround time 
and reliability values are observed. Also, experi-
ment incorporated node failure feature along with 
module replication and the experiments were run 
again in the same grid environment for the same 
job. The turnaround time and reliability values 

with replication incorporated as reported here 
correspond to the ones with minimum nodes failed 
in each experiment.

It is evident from Figure 3 that the turnaround 
time increases with the introduction of replication 
owing to the cost of node failures resulting in 
execution of the job from the replicas. Thus the 
job gets executed though with some inflated 
turnaround time. Since, the job is getting execut-
ed due to the presence of replicas; it results in an 
increased reliability for the job as conspicuous in 
Figure 4. Thus the presence of replica ensures an 
increased reliability for the job execution. Same 
pattern, as reported in Figure 1 to Figure 4 is 
noticed in many more experiments validating the 
performance of the model.

CONCLUSION

The proposed Replica Based co-scheduler (RBS) 
helps in the reliable execution of the modular job 
by replicating the modules allocated to the nodes 
with high failure rates (sick nodes) to the ones with 
a lower failure rates (healthy nodes). In place of 
having full redundancy, partial redundancy has 

Figure 1. Turnaround Time v/s Number of Failed Nodes
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been introduced resulting in better fault tolerance 
on moderate cost. So a better cost-performance 
ratio is achieved.

The job of the RBS begins when the job of the 
main scheduler, responsible for selection of the 
cluster for job execution, finishes. Performance 
of RBS is analyzed by considering its integration 
with the TSM, which is a GA based scheduler 

proposing an allocation for the job modules which 
results in the minimum turnaround time offered to 
the job. For the cluster, selected by the TSM, the 
RBS evaluates the vulnerability of the nodes on 
which an allocation has been made by comparing 
their failure rates λlt with some threshold failure 
rate λth. Selection of the thresholds depends on the 
domain knowledge of the cluster along with the 

Figure 2. Reliability v/s Number of Sick Nodes Failing

Figure 3. Turnaround Time With and Without Node Replication
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acceptance level of the failures. Accordingly, the 
nodes are judged as healthy or sick nodes. For the 
sick nodes, information from the cluster database 
is used to check if any allocations for the job has 
been made on them. if it is then the allocated 
modules are replicated on the healthy nodes. The 
reallocation is done based on a random selection 
of nodes out of all the healthy nodes. This results 
in duplicate copies of the modules on more than 
one node. In case of failure of any sick node, the 
duplicate copies of the modules allocated to that 
node can be found on the other healthy nodes 
for the continuation of the job execution. This 
operation results in allocation of modules on the 
nodes as per the original schedule and as well 
the duplicate copies of the modules lying on the 
failure prone nodes. Now if no failure occurs the 
job gets executed as planned but if node failures 
are detected, the system does not succumb to 
these failures rather it gracefully recovers with 
some additional computational cost. The model 
doesn’t replicate all the modules of all the nodes 
rather only the modules on susceptible nodes. 

Thus, saving the overall cost of execution which 
would have been there with, full replication.

The RBS can therefore be used along with any 
scheduler available with the grid middleware as a 
co-scheduler to increase the fault tolerance. The 
inclusion of RBS enables the grid to respond gra-
ciously to the node failures with a little increase in 
cost and a little compromise in the performance of 
the grid. This is unavoidable since the replicated 
modules have an altered sequence of execution 
as compared with the original schedule.

Use of such a co-scheduler is an added advan-
tage for the grid system as without this the job 
needs to be scheduled afresh upon encountering 
failures. This results in consumption and wastage 
of computational energy which may prove very 
costly for the high traffic environment like grid. 
For the real time jobs the problem becomes much 
more severe as the failures may impact the grid 
performance and thus hitting the financial pros-
pects of the grid. The use of RBS does not affect 
the objective of the main scheduler allocating 
the job. Instead it helps it by providing necessary 
support towards failures. Experimental study 

Figure 4. Reliability With and Without Replication
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reveals that the proposed RBS model works well 
under various conditions resulting in a graceful 
degradation of the grid performance.
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A Policy-Based Security 
Framework for Privacy-

Enhancing Data Access and 
Usage Control in Grids

ABSTRACT

IT service providers are obliged to prevent the misuse of their customers’ and users’ personally identifi-
able information. However, the preservation of user privacy is a challenging key issue in the management 
of IT services, especially when organizational borders are crossed. This challenge also exists in Grids, 
where so far, only few of the advantages in research areas such as privacy enhancing technologies and 
federated identity management have been adopted.

In this chapter, we first summarize an analysis of the differences between Grids and the previously 
dominant model of inter-organizational collaboration. Based on requirements derived thereof, we 
specify a security framework that demonstrates how well-established policy-based privacy management 
architectures can be extended to provide the required Grid-specific functionality. We also discuss the 
necessary steps for integration into existing service provider and service access point infrastructures. 
Special emphasis is put on privacy policies that can be configured by users themselves, and distinguishing 
between the initial data access phase and the later data usage control phase. We also discuss the chal-
lenges of practically applying the required changes to real-world infrastructures, including delegated 
administration, monitoring, and auditing.
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INTRODUCTION

Using compute and storage services starts with 
selecting an appropriate IT service provider (SP). 
Within their terms of use and privacy statements, 
SPs define which information about a customer 
(and, if the customer is an organization, its users) 
they require in order to provide the selected ser-
vice. It also must be specified for which purposes 
the collected data will be used, and how long it 
will be retained. Typically, customer and user 
information is required for accounting and billing 
purposes as well as for service personalization. 
Generally, it thus includes personally identifiable 
information (PII), i.e., data that can be used to 
uniquely identify a single person.

In order to prevent any misuse of such sensitive 
data, e.g., selling email addresses to marketing 
agencies, legislative regulations exist; they restrict 
how PII may be used on an organizational level 
and must be mapped to technical solutions, which 
often have been neglected in the past, resulting 
in potential vulnerabilities. Although privacy and 
data protection laws differ between countries and 
dedicated regulations exist for industrial sectors 
such as finance and healthcare, one classic and 
common principle is that data must only be used 
for purposes which the user has been informed 
about and agreed to.

As intra-organizational solutions so-called 
privacy management systems have successfully 
been implemented and deployed over the past 
few years. They are tightly coupled with the IT 
services used by the customers as well as with 
other management systems, such as billing and 
invoice management tools. Whenever a user’s or 
customer’s data is about to be accessed, rule sets 
are evaluated to determine whether the current 
access attempt is in accordance with the privacy 
policy the user has agreed to. Basically, such sys-
tems can be viewed as an extension of traditional 
access management systems in order to enforce the 
purpose limitation principle: They also take into 
consideration for which specific purpose someone 

is trying to access the data; formally specifying 
such policies requires extensive modeling of the 
involved roles, the acceptable purposes, and the 
available PII itself.

In inter-organizational service usage scenarios, 
such as Grid computing, privacy protection be-
comes an even more complicated issue, because 
multiple organizations – typically also located in 
different countries – are involved and SPs need 
to retrieve the required user data from the user’s 
home organization in an automated manner.

Instead of a single organization’s privacy 
policy, multiple heterogeneous demands must now 
be fulfilled regarding PII handling. For example, 
there usually will be Grid-wide privacy policies, 
such as those specified by a virtual organization 
(VO); they must often be adequately combined 
with SP-specific or user home organization spe-
cific policies, as well as policies eventually speci-
fied by the users themselves. Combining policies 
requires the handling of conflicting policy parts 
in a transparent manner.

In general, privacy management – intention-
ally with a strong focus on the user – becomes a 
two-tiered process: First, users must decide which 
of their data may be submitted to an SP at all, and 
second they must be able to monitor and control 
how their data is being used later on.

In the research areas of privacy enhancing 
technologies (PET) and federated identity manage-
ment (FIM), various solutions to these issues have 
been suggested, with many of them already being 
used in production environments by commercial 
as well as academic SPs; a short overview will 
be given in the next section.

However, these solutions were originally 
not suitable for certain characteristics of Grid 
environments, such as the concept of VOs, and 
cover only the PII of the users themselves; thus, 
they neglect sensitive data submitted along with 
Grid jobs, such as medical records used as input 
data for those programs. In this article, we first 
discuss these differences of Grid environments and 
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point out the relevant shortcomings of previous 
approaches regarding Grid-specific requirements.

Furthermore, we advocate that existing policy-
based privacy management approaches can be 
adapted to provide the additional functionality 
required in Grids. Then, the architecture of our 
specifically privacy-aware security framework, 
which is based on the policy language XACML and 
intended to be applied by Grid architects and SPs’ 
IT-security personnel, is presented. Afterwards, 
the integration of the discussed privacy manage-
ment components into existing infrastructures 
along with its challenges in real-world projects 
are discussed. An outlook to our future research 
concludes the article.

PRIVACY MANAGEMENT IN LARGE-
SCALE DISTRIBUTED SYSTEMS

The privacy management issues sketched above 
are, even on an inter-organizational level, neither 
a new nor a Grid-specific research issue. For this 
reason, we confine the following discussion of 
the state of the art to those approaches that are 
appropriate to build the base of a Grid-specific 
solution. To put the related work discussed below 
into the big picture, we simplify by stating that 
FIM provides an inter-organizational framework 
for the exchange of user data, while PET focus on 
the user-centric view of privacy management op-
tions; this means that PET puts the user in control 
of how her personal data is used by the involved 
organizations, which in turn use FIM protocols to 
actually exchange this data technically. In practice, 
FIM and PET must always go hand-in-hand due 
to regulatory requirements w.r.t. IT compliance.

From this legislative perspective, regulations 
regarding privacy and data protection become 
relevant as soon as personal data is being acquired 
by an organization, i.e., before the data is actually 
being used, e.g., for the personalization of the IT 
service ordered by the user. For distributed col-
laborative environments spanning several orga-

nizations, this implies that as a first step it must 
be decided which user PII is made available to 
which of the multiple involved organizations at 
all. Obviously, users must express their consent 
to such a distribution of their data adequately, i.e., 
either explicitly on a per-organization basis, or 
implicitly, e.g., based on a framework agreement 
or service contract. As an example, the acceptable 
use policies (AUP), which many Grid projects 
require their users to sign, typically include such 
consent. Privacy requirements have also been 
gathered for specific application domains, such as 
the use of Grids in medical research (see Manion, 
Robbins, Weems, & Crowley, 2009).

Once an organization has gained access to 
a user’s data, there must be technical means to 
control and influence how the data may – or may 
not – be used in order to prevent the misuse of PII; 
this so-called usage control phase, which is typi-
cally parameterized with specific usage purposes 
along with the initial transmission of the data, 
ends with the deletion of the acquired data, e.g., 
after service usage as well as the accounting and 
billing processes have finished. These two phases 
will be discussed in the following subsections.

Managing Initial Data Access

All major federated identity management tech-
nologies, such as the Security Assertion Markup 
Language (SAML) (see Hughes & Maler, 2005), 
the Liberty Alliance (also known as the Kantara 
Initiative) specifications (see Wason, 2004), and 
the Web Services Federation Language (WS-
Federation) (see Kaler & Nadalin, 2003), as 
well as several of the Grid middleware imple-
mentations that are currently in operation, use 
request-response-based protocols for the retrieval 
of information about the current user. As a con-
sequence, decisions about which user data an SP 
is allowed to retrieve are often treated similarly 
to classic access control issues, and thus access 
control languages and suitable management tools 
for them are the most widely deployed solutions. 
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As shown in Figure 1, the user’s home organization 
has the role of a FIM identity provider (IDP). All 
user data is stored in a local identity repository; this 
repository is usually realized as an LDAP-based 
enterprise directory, but for smaller deployments 
also relational database management systems 
(RDBMS) are being used in practice. A policy 
decision point (PDP) is used to determine which 
user attributes, such as name or email address, 
may be released to which service provider; this 
workflow has coined the terms attribute release 
policies (ARPs) and attribute release filtering 
(ARF).

Common to most current research approaches 
in this area is, in fact, the use of policy-based 
management. Thus, the technical architectures 
are quite similar and involve, among other com-
ponents, policy repositories, policy decision 
points, and policy enforcement points (PEP). They 
differ, however, in the policy language that is 

actually being used: On the one hand, the lan-
guage’s expressiveness is relevant, e.g., whether 
and which usage purposes and obligations, for 
example concerning data retention limits, can be 
specified. On the other hand, arithmetical proper-
ties, such as efficiently calculating policy set 
intersections, are of major concern. Well-known 
approaches include Tschantz and Krishnamurthi 
(2006) and Spantzel, Squicciarini, and Bertino 
(2005), which put an emphasis on efficient nego-
tiation handling and policy evaluation. A more 
detailed overview can be found in our previous 
work (Hommel, 2005a).

However, these approaches require the a 
priori definition of policies, which may be too 
complicated for many users. Thus, interactive 
solutions have been proposed by both research 
(e.g., Pfitzmann, 2002; Pettersson et al., 2005) and 
industry, e.g., the Liberty Alliance interaction ser-
vice (Aarts, 2004). To enhance these approaches, 

Figure 1. Managing data access at the home site / identity provider
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research focuses on usability issues, such as how 
to avoid that users grow tired of repeatedly giving 
their interactive consent to the transmission of 
their personal data to various service providers. 
Those usability aspects can be compared to how 
web browser users are asked about previously 
unknown server certificates for HTTPS access 
to web servers: The users must be made aware 
of security and privacy issues without harassing 
them when asking for their informed consent.

Controlling Data Usage

Complementary to the privacy management com-
ponents on the IDP side, which have been described 
in the previous section, the SP, which retrieves 
the user data, also needs a privacy management 
infrastructure to ensure that such personal data is 
only used for the purposes agreed to by the user. 
Enhanced solutions additionally provide interfaces 
to the users, so that they can look up how their PII 

has been used. However, because an SP may not 
log all data access or eventually even lie about 
how the PII has been used, it is hard to reliably 
verify whether all privacy preferences have really 
been met from the user’s perspective, which often 
remains a weak spot of technical implementations.

Privacy management systems, such as EPAL 
(Powers & Schunter, 2003), are typically also 
policy-based. Access to user data by any appli-
cation is handled by a privacy PEP as shown in 
Figure 2. A PDP decides whether the application 
and its operator are allowed to access a particular 
user attribute for a given purpose. Thus, the key 
difference to traditional access control is the ad-
ditional consideration of the purpose behind the 
data access. For example, an employee in the 
billing department may retrieve the user’s postal 
address to send an invoice, while the marketing 
department must not access the address in order 
to avoid unsolicited advertisements.

Figure 2. Controlling data usage at the service provider
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Furthermore, so-called obligation monitors 
can be used to trigger the fulfillment of obligations 
which are part of privacy policies. Obligations 
can, among other goals, be used to restrict the PII 
data retention, so, e.g., all user data has to be 
deleted 90 days after the service usage has finished 
and all invoices have been settled. Some imple-
mentations also allow the users to specify obliga-
tions, e.g., to be notified by email whenever one’s 
credit card is being charged by the SP, i.e., when 
the credit card detail attributes are being accessed 
for a purpose such as billing.

As an organization’s privacy policies may 
change over time, it is vital for the privacy man-
agement system to keep track of which version 
of the policy was in use when a user signed up 
for a service. The sticky policy paradigm (Mont, 
Pearson, & Bramhall, 2003) glues the relevant 
policies to the user data so they cannot be sepa-
rated anymore.

Protocols and log files of data access and us-
age are kept to support the organization’s internal 
auditing processes, which are a mandatory part of 
legislative IT governance, risk management, and 
compliance regulations. Parts of this information 
can be made available to the user to prove that her 
data has only been used for the intended purposes. 
However, unless additional measures are taken, the 
usefulness and reliability of this information for 
the user is very limited, because malicious service 
providers could arbitrarily falsify the presented 
data. Thus, all recent approaches are based on 
certified software running on trusted computing 
platforms in order to guarantee the genuineness 
of the information given to the users (see Mont 
(2004)) as well as Bramhall and Mont (2005)). 
However, the complexity and costs of such solu-
tions have so far impeded their wide-spread use. 
In Grids, trusted computing has already been ap-
plied to user management from the SP perspective 
(see Mao, Martin, Jin, & Zhang, 2009), but not 
yet vice versa to rate the SP trustworthiness from 
the users’ perspective. Thus, having to trust SPs 

regarding their claims about what they use (or do 
not use) the PII for still remains a major challenge 
in research and in practice. For this reason, man-
aging the initial data access phase and avoiding 
to transfer user data to untrusted SPs a priori is 
of high importance.

GRIDS AND THEIR REQUIREMENTS 
FOR PRIVACY MANAGEMENT

On the technical level, Grid computing is based 
on a Grid middleware which provides the required 
transparency layers and tools for submitting Grid 
jobs. Various Grid middleware implementations, 
such as the Globus Toolkit (Sotomayor & Childers, 
2006), exist and are in practical use. In the first 
decade of Grid computing, the development of 
Grid middleware has focused on the core function-
ality. However, with increasing use in production 
environments and based on the goal of creating 
an environment that is also attractive to industry, 
the security and privacy properties finally get the 
required attention (see also Demchenko, de Laat, 
Koeroo, & Groep, 2008).

Because most of the organizations involved 
in Grid projects have identity management sys-
tems deployed nowadays, there is an increasing 
real-world demand to leverage the existing local 
infrastructure when participating in Grid projects. 
Concerning privacy management, however, this 
is not just a programming interface and imple-
mentation effort issue regarding the middleware. 
Grids have several characteristics and thus specific 
requirements which were not yet met by the ap-
proaches discussed in the previous section; we 
will discuss them next.

Starting with the technical aspects, which are 
– unlike the organizational issues discussed be-
low – applicable to all Grids in general, it must be 
considered that using a Grid infrastructure differs 
from using other distributed systems and services 
in the concept of Grid jobs. When submitting a 
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Grid job, the user cannot only provide input data to 
a pre-defined service provided by an SP. Instead, 
the user lets own program code make use of the 
CPU and storage capacities provided by the SPs 
that are involved in the Grid.

This immediately leads to the consequence 
for privacy and data protection in Grids that any 
data related to a user’s Grid job must be treated 
similarly to the user’s PII:

• The Grid job’s code, independent of wheth-
er it is being distributed in source or binary 
format, should be considered intellectual 
property of the Grid user. Especially in 
commercial Grid environments it must ob-
viously be avoided that program code sub-
mitted by one user is redistributed by the 
service provider or made available to other 
users. However, this also affects whether 
an SP may modify the program code, e.g., 
in order to optimize it for the local comput-
ing architecture.

• Input data for the Grid job may contain 
sensitive data, e.g., when Grid-based data 
mining is performed on large sets of medi-
cal data. In this case, both the Grid user 
and the SP share a couple of responsibili-
ties. On the one hand, the Grid user must 
have the permission to submit the data to 
the SP; this is a non-trivial organizational 
task because the utilized Grid service pro-
viders are, in general, unknown at the point 
in time when the input data is being col-
lected. On the other hand, the SP to which 
a Grid job has been submitted is typically 
not allowed to make any use of the input 
data other than feeding it into the Grid 
job’s code. Thus, similarly to the handling 
of PII, the user and the SP must agree on a 
set of purposes for which the data may be 
used. Obviously, there must be technical 
means to enforce this binding.

• On the SP side, the considerations for the 
input data must also be applied to the Grid 
job’s output data. Depending on the Grid 
job, the output data may be even more 
sensitive than the input data. As an ex-
ample, consider data mining on medical 
data which derives a set of potentially ter-
minally ill patients. Thus, there must be an 
agreement about how the output data must 
be treated, both while the Grid job is run-
ning and after it has finished. This affects, 
for example, whether the output data has 
to be deleted from the service provider’s 
systems after the user has retrieved it, or 
whether it should be kept, e.g., as input 
data for a subsequently submitted follow-
up Grid job.

Additional aspects, such as whether the SP is 
allowed to backup or even archive these Grid job 
components, must also be taken into consideration. 
As an obvious resulting requirement, services 
which are shared by multiple or all organizations in 
the Grid, such as globally distributed file systems, 
must provide sufficient access control mechanisms 
to prevent organizations, which are not involved in 
a particular Grid job, from accessing its code, input 
data, and output data to achieve confidentiality 
and a separation of concerns on an organizational 
level (see also Cunsolo, Distefano, Puliafito, and 
Scarpa (2010)). In this context, it should be noted 
that encryption of input and output data would 
hardly increase security, as long as a potentially 
malicious SP runs the Grid job and thus gains 
access to the data in clear text.

Privacy and data protection settings may also 
vary with each Grid job, independent of the us-
ers’ preferences regarding their own PII. As a 
consequence, the logical separation between PII 
and Grid job privacy management must be ac-
counted for. This is not only relevant for Grid job 
execution engines, but also, e.g., for the design 
of (graphical) user interfaces.
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Because the use of Grid middleware does 
not depend on the existence of an appropriate 
inter-organizational contractual framework, it is 
impossible to fully automate all privacy relevant 
decisions on the technical level. If the organiza-
tions involved in a Grid project decide to form 
a VO that becomes a legal entity, managing 
privacy preferences can be greatly simplified 
by treating the resulting Grid environment like 
a single organization. However, the technical 
approaches discussed in the previous section do 
not fully support the concept of VOs; a solution 
is discussed below.

Unless privacy-related contractual agreements 
can be arranged for all organizations participating 
in a Grid project, such as in VO scenarios, the vi-
sion of a Grid middleware offering total location 
transparency to the user is actually contradictory to 
the privacy management goal that users get to know 
exactly by whom their data is being processed. 
Thus, the traditional approach that users can define 
privacy preferences on a per-organization basis 
must be complemented by means to define what 
we call property-based privacy policies (PBPP). 
As an example, certain PII such as the user’s 
email address should only be distributed to SPs 
which guarantee to only use it for contacting the 
users in case of technical problems, but not for 
other purposes such as sending marketing emails. 
Hence, this allows modeling the situation that it 
would not matter to the user which SP will actu-
ally execute the Grid job, as long as it is assured 
that all of the user’s privacy preferences are met. 
In this regard, PBPPs can be seen as a contribu-
tion for attribute-based access control applied to 
organizations (cp. (Kuhn, Coyne, & Weil, 2010)).

We will discuss how previously established 
policy-based privacy management approaches 
need to be extended and enhanced to fulfill these 
new requirements in the next section.

ARCHITECTURE OF A POLICY-
BASED SECURITY FRAMEWORK 
FOR PRIVACY-ENHANCING 
DATA ACCESS AND USAGE 
CONTROL IN GRIDS

The primary motivation for using a policy-based 
privacy management approach in Grids is to 
leverage existing identity and privacy manage-
ment infrastructure components, which in turn 
is motivated by the goal to reduce the IT service 
management overhead and costs of solutions 
specific to the Grid domain. The basic suitabil-
ity and applicability of policy-based approaches 
for privacy and data protection management has 
been pointed out by the previous work referred 
to above and is not discussed here, because the 
discussed Grid-specific requirements are by no 
means fundamental challenges to the policy-based 
management paradigm.

In this section, we motivate how policy-based 
privacy management can be used in Grids and 
demonstrate how the existing approaches can be 
extended and enhanced to fulfill the discussed 
Grid-specific requirements in a general manner, 
with the overall goal of protecting privacy relevant 
data from being misused by the SPs. The concrete 
application of this methodology to a selected 
privacy management architecture is discussed 
afterwards. As a first step, we need to consider 
that for any transmission of sensitive data, more 
than one policy may be relevant; in practice, there 
typically are four layers of policies:

1.  Users can specify their personal privacy 
preferences, i.e., the conditions and obliga-
tions under which they are willing to share 
their data with an SP. This is also an effective 
way to delegate the management of dynamic 
policies to the users in order to reduce the 
overhead for home site and SP administra-
tors. However, it also requires adequate, 
user-friendly management front-ends for 
policy creation, testing, and maintenance; 
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furthermore, trainings or introductory 
courses should be provided.

2.  The user’s home site (IDP) has privacy 
policies in place which typically provide 
default settings for all of its users. These 
defaults must be crafted carefully and are 
primarily intended to protect the privacy 
of the lesser privacy concerned users (see 
Berendt, Günther, and Spiekermann (2005) 
for an analysis of privacy-related user clas-
sifications). In general, these policies can 
be re-used for several Grid projects, VO 
memberships, and other external services.

3.  Also each SP has its own privacy policies, 
which are not necessarily Grid-specific. For 
example, many academic supercomputing 
centers restrict access to their computing 
resources to users from selected countries. 
Thus, they can offer their service only to 
users whose nationality is revealed. If a 
user is unwilling to share her nationality, 
she will not be allowed to use the service. 
Similar to the home site policies, these SP 
policies can be re-used for external users 
from different Grid projects, VOs, or other 
inter-organizational collaborations.

4.  Grid projects and VOs may have privacy 
policies which must be honored by all par-
ticipating organizations and applied to all 
users (Schiffers et al., 2007), i.e., the imple-
mentation and management is delegated to 
the organizations participating in the project 
or VO.

In most approaches and implementations, the 
number of layers may vary with scenario-specific 
requirements, such as additional service-specific 
policies on top of SP-wide policies. There can be 
multiple policies in each layer, and it needs to be 
determined for each individual data request which 
policies are relevant. There may be conflicting 
policies, e.g., if an SP’s privacy policy requires 
a user attribute such as the nationality when the 
user’s personal privacy preference prohibits its 

release. In practice, sufficiently disjoint policies 
are ensured only on the same layer, usually by 
user-friendly management front-ends; thus, for 
example, administrators on the SP side are forced 
to formulate consistent SP policies. However, 
conflict resolution across the layers is often subject 
to a scenario-specific configuration, i.e., it can-
not be defined in general whether, for example, 
user-specified policies override VO-wide policies 
or vice versa. Once such priorities have been 
defined, however, policy conflict resolution can 
be automated using PDP engines.

As discussed above, we must distinguish be-
tween privacy policies for PII and for Grid jobs 
on the user layer:

• The user’s personal privacy preferences 
will usually stay the same over a certain 
period of time and are independent of the 
submitted Grid jobs to a certain (usually 
high) degree.

• While it must be possible to configure pri-
vacy policies for individual Grid jobs, there 
often is the situation that multiple Grid jobs 
belong to the same research project or are 
otherwise closely related. Thus, to reduce 
the management overhead, privacy poli-
cies must be applicable to groups of Grid 
jobs, which may arbitrarily be submitted 
sequentially or in parallel. Furthermore, 
if multiple Grid users are involved in the 
same research project, an additional Grid 
project policy layer contributes to simpli-
fying the sharing of policies among all us-
ers submitting related Grid jobs.

However, the inter-organizational sharing of 
policies adds yet another layer of complexity and 
thus can often only be realized in later project 
stages. Enabling users to specify their privacy 
preferences locally at their home site usually is a 
good starting point.

Figure 3 shows the resulting modular privacy 
management architecture for the user’s Grid 
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home site. Although each technical component 
is only shown once, high availability require-
ments can be fulfilled, e.g., based on hardware 
redundancy and clustering. Compared to previ-
ously used architectures as depicted in Figure 1, 
a logically separated management user interface 
is provided as part of the self services, which al-
lows to configure project- and Grid-job-specific 
privacy policies. Furthermore, not only Grid-wide 
applicable policies must be exchanged between 
the involved organizations, but also the policies 
of those research projects whose users are spread 
among multiple organizations. The same policy 
distribution mechanisms are used for both use 
cases. However, it must be ensured that they 
provide metadata support to restrict a) to which 
organizations the policies are transferred to and b) 
which other users may access and modify them.

The components used in the architecture usu-
ally have multi-tenancy capabilities, i.e., they can 
be used for an arbitrary number of other services, 

Grid projects, VO memberships, and users, with-
out requiring additional instances. They also often 
provide code hooks for site-specific extensions, 
so additional workflows can be triggered, e.g., in 
the policy evaluation process. At each home site, 
the Grid-specific components also can be com-
bined with other security and privacy measures 
that are deployed locally.

The expressiveness of the used policy language 
is, in general, sufficient to handle the additional 
Grid job policies and groups thereof, so no in-
depth modifications of PDPs and PEPs or other 
Grid-specific technology adaption are required. 
However, the syntactical basis for identifying 
and naming objects, often referred to as policy 
namespace, must be extended as follows:

• Instead of targeting a policy to a single SP, 
it must be possible to specify policies for 
arbitrary groups of organizations, up to a 
Grid environment such as a VO as a whole.

Figure 3. Privacy management architecture for the user’s Grid home site
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• Additional identifiers for projects, Grid 
jobs, and their components, such as code, 
input data, and output data are required. 
Similarly to user modeling, i.e., the defi-
nition of which information can be stored 
and retrieved about users, it is impractical 
to stick to a predetermined set of elements; 
instead, the involved organizations must 
agree on the granularity of the policies 
and on a common vocabulary to be used in 
these policies.

• New conditions and obligations are re-
quired, for example to state that a Grid 
job’s code may be modified by the SP for 
optimization purposes. Also, obligations 
such as data retention limits will typically 
differ between personal data and Grid job 
data: For example, a Grid job’s input data 
often shall be deleted after the job has fin-
ished, while the user’s billing address can 
only be deleted after the invoice has been 
settled. Again, the complete definition of 
the necessary vocabulary is a task that is 
specific to each Grid environment, and 
standardization is required to provide a 
common subset of the vocabulary.

On the service provider side, no extensions 
to the privacy management architecture are re-
quired, with exception of support for any newly 
defined obligations. However, in practice so far 
only a limited number Grid SPs supports privacy 
management at all; the challenge of integrating 
the described privacy management components 
into Grid-specific workflows is discussed below.

APPLICATION OF THE 
SECURITY FRAMEWORK TO 
A XACML-BASED PRIVACY 
MANAGEMENT ARCHITECTURE

In order to show the feasibility of the presented 
approach, we have applied the extensions and 

adaptations described in the previous section to 
a privacy management framework which was 
designed for use in real-world FIM scenarios (see 
Hommel, 2005b; Boursas & Hommel, 2006). It is 
based upon the eXtensible Access Control Markup 
Language (XACML) (Moses, 2005) and uses a 
URI-style namespace for SP and user attribute 
specification. It has been implemented for the 
Shibboleth FIM software and thus is also suitable 
for use in Grid middleware projects such as Grid-
Shib (Welch, Barton, Keahey, & Siebenlist, 2005).

Like most modern policy languages, XACML 
supports scenario-specific vocabulary, e.g., for the 
specification of obligations, without the necessity 
to extend the internal PDP workflows; thus, any 
standard compliant XACML PDP can be used 
also for our Grid job policies. We have extended 
the previously used namespace in order to support

• the definition of and referring to arbitrary 
groups of service providers as well as VO 
identifiers (for VO management approach-
es, see Kirchler, Schiffers, & Kranzlmüller, 
2009).

• the specification of Grid projects as groups 
of Grid jobs, the Grid jobs themselves, and 
their components; the granularity chosen 
for the components is code, input, and out-
put. This granularity is a trade-off between 
very fine grained control and the imple-
mentation effort required at each involved 
SP.

• new conditions, such as (allow/disallow) 
optimization (of code) and (allow/disal-
low) backup (of code, input, or output), as 
well as new obligations, e.g., delete-after-
execution (of input or code).

Figure 4 shows an example of a Grid job policy, 
which allows all Grid service providers to modify 
the code for the purpose of optimizations w.r.t. 
the local computer architecture. Note that XML 
namespaces have been omitted in the example 
to improve the readability of the XML fragment.
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Such a policy must be complemented by 
other policies for restricting the selection of suit-
able SPs and excluding other usage purposes in 
practice, which usually is a home site administra-
tor task to be performed for all local users as a 
whole. Whether only few but complex, or many 
simple policies are used, depends on the manage-
ment user interface; in real-world application, 
intuitive usability and the re-use of modular 
policies have so far proven to be of higher relevance 
than performance issues: Given the overall low 
number of policies and the average run-time of 
Grid jobs, evaluating the described policies does 
not cause any latency which the user would notice, 
and thus performance optimizations are cur-
rently not a priority, because more than sufficient 
scalability is already achieved.

INTEGRATION OF THE SECURITY 
FRAMEWORK’S PRIVACY 
MANAGEMENT COMPONENTS ON 
THE SERVICE PROVIDER SIDE

While the integration of privacy management 
components into the user’s home site is straight-
forward, especially if an privacy-enhancing 
identity management system is already in use, the 
adaptation of Grid SPs is a challenging task. It also 
must be kept in mind that especially in scientific 
Grids, such as the European DEISA consortium 
(Niederberger & Alessandrini, 2004), often all 
involved organizations are both, home site and SP.

The use of FIM protocols, which are also typi-
cally being used for other aspects of user man-
agement, e.g., authentication and authorization, 
ensures that personal and Grid job data is only 
distributed to Grid SPs that are suitable from the 
privacy management perspective. Thus, privacy 
management on the SP side primarily pursues 
three goals:

Figure 4. Example XACML Grid job policy to allow code optimization
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1.  All personal and Grid job data may only be 
used in accordance with the privacy poli-
cies specified by the SP; it is safe to assume 
that these policies match the user’s privacy 
preferences if all required data has been 
received via FIM protocols.

2.  All user and Grid job specific obligations 
must be fulfilled. This necessitates the use 
of an obligation monitoring component.

3.  It shall be possible for the user to verify 
whether the obligations have been fulfilled 
and that the user’s PII has not been used for 
any other than the agreed purposes.

Figure 5 shows the resulting modular privacy 
management architecture with the required inter-

faces between the technical components and the 
Grid middleware. Clearly, protecting any personal 
and Grid job data from direct access by channel-
izing all data read, update, and delete attempts 
through the privacy PEP requires adequate hooks 
in the middleware on the data persistence layer, 
as well as additional error handling for privacy 
violation exceptions. Similarly to the home site 
architecture, the component’s high availability can 
be achieved, e.g., through hardware redundancy.

For many supercomputing SPs, this also neces-
sitates that the existing batch scheduling systems, 
which queue Grid as well as regular jobs to be 
run on the machines according to a local job 
execution policy, also contact the privacy PDP 
and honor the decision about whether the data 

Figure 5. Privacy management architecture for the Grid service provider
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may be accessed. Because many scheduling sys-
tems are proprietary or not available as open 
source, usually simple wrapping mechanisms have 
to be implemented; they can also be used to trig-
ger obligation handling actions after the execution 
of a Grid job. To this extent, it is important to 
distinguish between the successful execution of 
a Grid job and errors (e.g., machine or job crash). 
The same mechanism can be used to extend the 
available components with site-specific addi-
tional workflows.

For the fulfillment of Grid-specific obliga-
tions, additional functionality is required within 
the local obligation monitor (OM). So far, the 
OMs in place have mostly been used to purge 
outdated user records from relational database 
management systems or enterprise directories, 
and to send emails to users or administrators to 
notify them about the status of their obligations. 
With privacy relevant data no longer stored only 
in databases and enterprise directories, additional 
workflow mechanisms are required to delete 
Grid job components from the involved compute 
platforms, including local as well as global or 
Grid-wide file systems. As this obligation handling 
typically requires site-specific implementation 
efforts, it is a good starting point to accept Grid 
jobs only without obligations first, and then add 
obligation support later on.

While the overall framework clearly has a 
preventive character, i.e., privacy policy violations 
shall be averted before they actually happen, there 
is also a demand for detecting irregularities and 
appropriately reacting to them. However, granting 
the users reliable insight into how their data has 
been used by the SP as a first step is still challeng-
ing: Grid users presently typically have terminal 
access via GridSSH or can manage their job files 
through Grid web portals. Both ways provide a 
suitable feedback channel, which can be used to 
make, for example, SP log file excerpts available 
to the user. However, there still is no guarantee 
that the logged information is sound and complete. 
The complexity to technically ensure that all data 

access is being logged and to prevent even admin-
istrators from tampering with the logs is incom-
parably higher than for single-SP services. Thus, 
until secure and trusted operating systems are 
used for Grid resources, the user’s informational 
self-determination can already be supported, but 
the guaranteed enforcement of privacy policies 
cannot be verified in an absolute objective manner. 
Besides such information requests performed by 
the users themselves, there also must be an internal 
auditing and reporting process that checks the SP 
infrastructure for privacy policy violations on a 
regular basis in a pro-active manner. This process 
can often be supported and automated to a large 
degree with the available PMS, logfile correlation 
engines, or security information and event manage-
ment systems. Reports should include, e.g., the 
number of successfully fulfilled privacy policies, 
detected policy conflicts, unfulfilled obligations, 
etc. The resulting figures are important feedback 
for different enterprise roles, such as privacy 
officers, policy writers, and service administra-
tors. In general, selected events, such as policy 
violations, should also be used to trigger real-time 
alerting mechanisms. Policy violations and other 
undesired behavior should also be considered to 
serve as key performance indicators (KPIs) and, 
e.g., their maximum number per reporting period 
may become a service level parameter in contracts 
between home sites and SPs. They also should be 
used as a basis to identify and plan further security 
and privacy measures as a part of a continuous 
improvement process.

Given the number of additional components 
required at both the home sites and the SPs, suitable 
measures for ensuring the infrastructure availabil-
ity and reliability must be taken. Because standard 
components are used on both sides, integration 
into existing monitoring systems is a tedious, but 
straight-forward task. For a better overview of the 
Grid-wide status, Grid Information Systems based 
monitoring solutions can be adopted as suggested 
by (Baur et al., 2009).
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SUMMARY AND OUTLOOK

In this article, we have first motivated the necessity 
of privacy management in Grids. After sketching 
the state of the art, based on current research in 
the areas of federated identity management and 
privacy-enhancing technologies, we analyzed the 
characteristics of Grids, derived their specific 
requirements, and demonstrated that previous 
approaches fell short of fulfilling these require-
ments. We then presented in a security framework 
how policy-based privacy management can be 
adapted to Grid environments, and applied this 
methodology to a XACML-based management 
architecture. Finally, we discussed that the real-
ization of a policy-based privacy management 
approach is a straight-forward task for Grid home 
sites, but very complex and challenging for Grid 
service providers.

Our ongoing work focuses on challenges with 
the practical application of the presented security 
framework, especially concerning its process-
driven adaption to arbitrary SP infrastructures 
and long-term operational aspects, such as a 
tighter integration with the IT service management 
processes and an operational cost analysis. The 
research questions presented are also highly rel-
evant for Cloud Computing infrastructures, which 
require an adaption of the solution components to 
Cloud technology, because they usually are not 
based on Grid middleware and target, e.g., virtual 
machines instead of high performance computing 
resources.
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INSTRUCTION

Volunteer computing (Anderson, 2004) uses 
Internet-connected individual computers to solve 
computing problems. The pioneering research 
projects, including GIMPS (The Great Internet 

Mersenne Prime Search, http://www.mersenne.
org), SETI@home (Anderson, 2004) and Distrib-
uted.net (http://www.distributed.net) are rather 
successful. GIMPS has already found a total of 9 
Mersenne primes, each of which was the largest 
known prime number at the time of discovery. 
SETI@home has identified several candidate 
spots for extraterrestrial intelligence. Distributed.

Hong Wang
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ABSTRACT

On the volunteer computing platforms, inter-task dependency leads to serious performance degradation 
for failed task re-execution because of volatile peers. This paper discusses a performance-oriented task 
dispatch policy based on the failure probability estimation. The tasks with the highest failure probabili-
ties are selected for dispatch when multiple task enquiries come to the dispatcher. The estimated failure 
probability is used to find the optimized task assignment that minimizes the overall failure probability of 
these tasks. This performance-oriented task dispatch policy is evaluated with two real world trace data 
sets on a simulator. Evaluation results demonstrate the effectiveness of this policy.
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net has successfully provides the solutions of the 
DES, RC5-32/12/7 (“RC5-56”), and RC5-32/12/8 
(“RC5-64”) of the RSA secret-key challenge.

Nowadays, there are several well-known 
volunteer computing platforms such as Fold-
ing@home (http://folding.stanford.edu), BOINC 
(Berkeley Open Infrastructure for Network 
Computing, http://boinc.berkeley.edu), Xtrem-
Web (Cappello, 2005), Entropia (Chien, 2003), 
Alchemi (Luther, 2005), and JNGI (Verbeke, 
2005) to name a few. The volunteer computing 
platforms are providing more computing power 
than any supercomputers, clusters, or grid, and 
the disparity will grow over time. It is because 
of a large number of Internet-connected personal 
computers and latest generation game consoles. 
By November 2010, the most powerful volunteer 
computing platform - Folding@home achieved 
about 4 Petaflops computing power by connect-
ing more than 5,700,000 CPUs (http:////fah-web.
stanford.edu/cgi-bin/main.py?qtype=osstats). In 
contrast, the fastest supercomputer, Tianhe-1A 
achieves 2.566 Petaflops for the high-performance 
LINPACK benchmark (http://www.top500.org).

Despite the massive computing power offered 
by the existing volunteer computing platforms, 
they are lacking support for inter-task depen-
dency. Our previous work solved this issue with 
a workflow management mechanism (Wang, 
2007). However, inter-task dependency results in 
a status that none of the un-dispatched tasks can 
be dispatched, because these un-dispatched tasks 
require the results of one or several of the tasks 
that are being executed. This status may lead to 
serious performance degradation, because of the 
frequent task failures of volatile peers in volunteer 
computing platforms. Therefore, a redundant task 
dispatch policy (Wang, 2007) has been proposed 
to mitigate the performance degradation. Although 
the redundant task dispatch policy shown a sig-
nificant performance improvement compared to 
the non-redundant one, it has a major limitation: 
the average failure rate model is not the best fit 
for the volunteer peers in the real world. Thus, 

this paper extends the policy so as to address the 
limitation.

This paper discusses a performance-oriented 
task dispatch policy for volunteer computing 
platforms. A heuristics-based mechanism for 
failure probability estimation is proposed based 
on a life cycle model of volunteer peers and the 
statistical data. The tasks with the highest failure 
probabilities are dispatched when multiple task 
enquiries come to the dispatcher. The estimated 
failure probability is used to find the optimized 
task assignment that minimizes the overall failure 
probability of these tasks. Once the optimized 
assignment is found, the dispatched tasks are 
sent to the workers. At the same time, the failure 
probabilities and other runtime information of the 
tasks are updated. While multiple types of workers 
exist in the real world, their different availability 
characteristics have to be considered. Thus, this 
work also studies the performance impact of 
identifying multiple worker types.

The rest of the paper is organized as follows. 
Section 2 reviews related work. Section 3 proposes 
a heuristics-based failure probability estimation 
method. Section 4 introduces the design of the 
least failure probability dispatch policy. Section 
5 evaluates the proposed policy using a simula-
tor, in terms of the total process time. Section 6 
concludes and summarizes this paper.

RELATED WORK

The failure probability is estimated based on the 
analysis of peer availability data. The resource 
availability problem has been studied a lot for 
clusters, servers, PCs in a corporate network, grid, 
and volunteer computing systems.
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Statistical Resource 
Availability Characterizing

There have been a large number of works on the 
problem of statistically characterizing resource 
availability.

Root Cause Analysis of Failures

Root cause analysis of failures has been stud-
ied in (Gray, 1990; Kalyanakrishnam, 1999; 
Oppenheimer, 2003; Schroeder, 2006). The 
software-related failure is reported to be around 
20% (Oppenheimer, 2003), 50% (Gray, 1990, 
Kalyanakrishnam, 1999), and from 5% to 24% 
(Schroeder, 2006). The percentage of hardware-
related failure is from 10% to 30% in (Gray, 1990; 
Kalyanakrishnam, 1999; Oppenheimer, 2003), 
and from 30% to over 60% (Schroeder, 2006). 
The network-related failure is significant in some 
of those works, while it accounts for around 20% 
(Kalyanakrishnam, 1999) and 40% (Oppenheimer, 
2003) of the failures. Human errors also lead to 
10% - 15% (Gray, 1990) and 14% - 30% (Op-
penheimer, 2003) of the failures. These works 
reported different breakdown of failures, because 
of the different systems they studied.

Fitting Distribution to 
Empirical Availability Data

Some other works studied statistical distributions 
of empirical availability data such as Time-to-Fail 
(TTF) and Down Time (DT). Such methods find 
the best fitted theoretical distribution for a given 
empirical data set, by estimating the parameters 
of the theoretical distributions with techniques 
such as Maximum Likelihood Estimation (MLE) 
(Aldrich, 1997). Several distributions have been 
used to model the peer availability, including log-
normal, Weibull, exponential, hyper-exponential, 
and Pareto distributions. The detail of these 
distributions and their properties can be found in 
(Patel, 1976).

Exponential distribution and hyper-exponen-
tial distribution have been used to investigate 
the availability behaviors of software, operat-
ing system, workstation, and peer-to-peer file 
sharing system in (Goel, 1985; Iyer, 1985; Lee, 
1993; Mutka, 1988; Plank, 1998; Tian, 2007). For 
the research such as process lifetime estimation 
(Harchol-Balter, 1997) and network performance 
(Paxson, 1997), Pareto distribution has been used 
a lot. Weibull distribution is another distribution 
widely used for modeling the resource availabil-
ity. Xu et al.(1999) applied it to the modeling of 
network-connected PCs.

Several studies (Schoeder, 2006; Nurmi, 2005; 
Iosup, 2007; Nadeem, 2008) compared different 
distributions for the modeling. Nurmi (2005) 
and Brevik (2004) used exponential, hyper-
exponential, Weibull, and Pareto distributions to 
model the TTF availability data gathered from 
student lab computers, a cycle-harvesting distrib-
uted computing system - Condor (Litzkow, 1988; 
Thain, 2005), and an early survey of Internet hosts 
(Long, 1995). Goodness-of-fit analysis indicated 
that hyper-exponential and Weibull distributions 
fit the empirical data more accurately. Schroeder 
et al.(2006) studied the distribution fitting of TTF 
in high-performance computing (HPC) systems 
with 4750 machines, using Welbull, lognormal, 
gamma, and exponential distributions. The results 
pointed out that Weibull distribution is a better fit. 
Iosup et al.(2007) found Weibull the best fitted 
among several distributions for Mean Time Be-
tween Failure (MTBF) and failure duration data of 
Grid’5000 (Bolze, 2006; http://www.grid5000.fr).

More recently, Nadeem et al.(2008) also ap-
plied several distributions to the analysis of grid 
resource availabilities. It introduced the class 
level modeling method by identifying three types 
of resources in the Austrian Grid (http://www.
austriangrid.at). Based on the administration 
policy, it categorized the resources into three 
classes: dedicated resources, temporal resources 
and on-demand resources. The distribution fitting 
and goodness-of-fit tests are done separately for 
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each class’s availability (TTF) and unavailability 
(Mean Time to Reboot (MTR)) data. While other 
works found one or two best fitted distributions, 
this work found different best fitted distributions 
for different class.

Availability Prediction

Brevik et al. (2004) assumed a homogeneous en-
vironment, and proposed an availability prediction 
method on top of the found Weibull distribution. 
This method answered the question what is the 
largest availability duration for a given confidence 
value and a desired percentile. Iosup et al. (2007) 
proposed a resource availability model that con-
sidered the failure distribution among clusters, the 
TTF distribution, failure duration distribution, and 
the distribution of the failure size, which is the 
number of failed processors. This model is used to 
predict the failures in a multi-cluster grid system.

Some other works (Ren, 2006; Rood, 2007) 
utilized the availability pattern on weekdays and 
weekends to predict the availability. Nadeem et 
al. (2008) used Bayes Rule and Nearest Neighbor 
Rule to predict the resource availability. Mickens et 
al.(2006) proposed saturating counter predictors, 
state-based history predictors, a linear predictor, 
and a hybrid predictor that dynamically selects 
the best predictor. These predictors have been 
evaluated with trace data sets of distributed serv-
ers, peer-to-peer network, and corporation PCs.

A HEURISTICS-BASED FAILURE 
PROBABILITY ESTIMATION

The prediction methods of resource available 
status reviewed in Section 2 provide a different 
accuracy for their selected environments. Since 
this paper targets at finding optimized task as-
signment with estimated task failure probabilities, 
the distribution of empirical availability data can 
provide enough information. Here, a simple and 
straight heuristics-based failure probability esti-
mation method is employed.

Life Cycle of a Volunteer Peer

The life cycle of a volunteer peer can be modeled 
as shown in Figure 1. TTF is the time between a 
peer’s start/restart and the next failure/shutdown. 
DT is the time between a failure and the next peer 
restart. Given a statistical distribution of TTF, 
the cumulative distribution function (CDF) of 
this distribution’s value at each uptime x is the 
probability that a peer’s TTF is smaller than or 
equal to x, which equals to the failure probability 
at uptime x. The failure probability monotonously 
increases with time. Since none of a single distri-
bution can characterize the resource availability 
accurately for any systems in large scale comput-
ing environments (Nurmi, 2005; Nadeem, 2008), 
a heuristics-based mechanism is proposed to 
estimate the failure probability at runtime with 
gathered TTF data.

Figure 1. Life cycle of a volunteer peer
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Failure Probability Estimation

Volunteer computing platforms have two kinds of 
peers: dispatchers and workers. A task dispatcher 
is a specific server that controls a volunteer com-
puting platform. Workers are volatile peers that 
compute tasks and send back the task results to 
the dispatcher. To estimate the failure probability 
of each worker, runtime TTF data are required. 
To gather such runtime data, a worker availability 
status list is maintained by the dispatcher. The list 
stores the start time of each worker. If a worker 
is currently unavailable, it is marked as offline in 
the list. The list is maintained as follows:

A Worker Goes Online

As shown in Figure 2(a), when a worker goes on-
line, it sends an online notification message to the 
dispatcher. Once the notification is received, the 
dispatcher updates the worker availability status 
list as shown in Figure 2(b). The current time is 
stored as the start time of this worker.

Find Offline Worker

To gather the runtime TTF data, the dispatcher 
also checks the availability status of workers pe-
riodically. As shown in Figure 3(a), the dispatcher 
sends status checking messages to the workers 
that are marked online in the worker availability 
status list. Once the message is received by an 
alive worker, the worker sends a reply message 
back to the dispatcher as shown in Figure 3(b). If 
a worker is offline, it cannot reply the checking 
message. Then, it is marked as offline in the list. 
As an example, before the periodical status check, 
worker 4 in Figure 3 had been marked as online 
with a start time in the list, and then went offline. 
Thus, it does not reply the checking message. The 
dispatcher then updates the worker availability 
status list, and marks worker 4 to be offline. It also 
calculates the TTF of the worker 4’s last online 
session. Given the current time and start time of 

the last online session, the TTF is 680 minutes 
(from 2010/11/23 3:10 to 2010/11/23 14:30).

With this simple periodical availability status 
checking mechanism, the runtime TTF data are 
gathered on the dispatcher. Thus, the TTF distri-
bution can be found at runtime. Suppose the 
gathered TTFs are {ttf1, ttf2, ttf3, ..., ttfn}, where n 
is the number of gathered TTFs. The failure prob-
ability F(x) of a worker (x is the time after a 
worker went online) can be estimated as shown 
in Equation (1):

F x
n

n
x( ) ,=  (1)

where nx is the number of TTFs that are less than 
or equal to x.

LEAST FAILURE PROBABILITY 
DISPATCH POLICY

With the failure probability estimation, this paper 
proposes a performance-oriented task dispatch 
policy - Least Failure Probability Dispatch 
(LFPD) for volunteer computing platforms. The 
assumptions are slightly different from the ones in 
our previous work (Wang, 2007). While the previ-
ous work assumes a homogeneous environment, 
this paper assumes that the volunteer computing 
platform is a heterogeneous environment, in which 
all the workers have different performances and 
different bandwidths to the dispatcher.

An Enhanced Workflow 
Management Mechanism

A workflow management mechanism has been 
proposed in our previous work (Wang, 2007). It 
is responsible for directing the workflow control 
and the task information update. It cannot fully 
satisfy the requirement of the LFPD, because it 
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assumes the same task failure probability for all 
the dispatched tasks. Thus, an enhanced workflow 
management mechanism is proposed to assist 
the LFPD.

To support the LFPD, the following informa-
tion of each task i is stored and updated by the 
dispatcher.

• Status: ``undispatched’’, ``dispatched’’, 
and ``finished.

• Redundancy rate that records how many 
workers process the task i at the same time: 
RRi.

• The list of worker IDs that process the task 
i: workerIDi[RRi].

• The list of estimated failure probability for 
each copy of task i: EFPsi[RRi].

Figure 2. Worker i goes online
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Figure 3. Checking worker availability status, gathering TTF data
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• The overall failure probability: FPi.

The overall failure probability is calculated as:

FP EFPs k
i i

k

RRi

=
=

[ ].
1


 (2)

Similar to the original workflow management 
mechanism, the enhanced workflow management 
mechanism uses the status information to analyze 
whether an ̀ `undispatched’’ task can be dispatched 
or not. An ``undispatched’’ task can only be dis-
patched when all the tasks that it depends on are 
``finished.’’ A workflow has two kinds of status: 
``blocked’’ and ``unblocked.’’ While there is no 
such ̀ `undispatched’’ task, the workflow manage-
ment mechanism uses the redundant task dispatch 
to reduce the performance degradation. Such status 
of a workflow is defined as ``blocked.’’

The initial workflow information of each task 
i is as follows:

• Status: ``undispatched.’’
• Redundancy rate: RRi = 0.
• The overall failure probability: FPi = 1 

which means that a task will never finish 
before it is dispatched

When the dispatcher dispatches a task i to a 
worker j, it provides the required input values from 
the preceding tasks, and then changes the task i’s 
status to ``dispatched’’ if it was ``undispatched,’’ 
and increases RRi by one. The worker j is stored 
in the workerIDi[RRi]. The failure probability of 
this assignment {task i → worker j } is estimated 
and stored in EFPsi[RRi]. The overall failure prob-
ability is calculated again.

When the dispatcher receives the result of a 
task i from a worker j, it changes the status of task 
i to ``finished’’, and sends a ``cancel’’ message 
to the workers in workerIDi[RRi], except worker 
j. The function to cancel duplicate copies after 

the task finish can reduce the overhead due to 
redundant task dispatch.

When a worker j is found to be offline by the 
periodical available status check, RRi of this task 
is decreased by one. The worker ID is removed 
from workerIDi[RRi]. Finally, the overall failure 
probability of the task is updated.

The Task Selection and 
Dispatch Policies

While the workflow management mechanism 
controls the process of a job workflow, it requires 
policies to select the tasks for dispatch, and find 
the task-to-worker assignment when the task 
enquiries come.

Task Selection Policy

In our previous work (Wang, 2007), the least-
RR-selected policy has been proposed to equally 
reduce the failure rate of all the ``dispatched’’ 
tasks. It selects a task with the least redundancy 
rate and dispatches the task to an idle worker. As 
the least-RR-selected policy assumes a constant 
task failure rate, it cannot be applied directly to the 
LFPD. In this paper, therefore, a highest-failure-
probability-selected policy is proposed to provide 
the similar function for LFPD. It selects the task 
with the highest overall failure probability.

Furthermore, the failure probabilities of a task 
on different workers are different in a heteroge-
neous environment. By considering the task as-
signment of multiple tasks to multiple workers, a 
lower overall failure probability can be achieved. 
Thus, the idea of dispatch window is introduced. 
The dispatch window is the number of tasks that 
will be dispatched together. Given a window 
size w, the dispatcher waits for task enquiries 
from workers until the dispatch window is full, 
then it selects w tasks with the highest-failure-
probability-selected policy.
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Dispatch Policy

After getting w tasks to dispatch, the dispatcher 
finds the optimal task-to-worker assignment that 
minimizes the overall failure probability of the 
w tasks.

Suppose that each task i has its computation 
cost (cmpi) and communication cost (commi) in-
formation, and each worker j has its performance 
(Perfj) and bandwidth (Bandj) information. This 
information is available for the dispatcher. Given 
a task i and worker j, the estimated process time 
of task i on worker j is:

T
cmp

Perf

comm

Bandi j
EPT i

j

i

j
,

.= +  (3)

Thus, the estimated failure probability of this 
assignment is:

EFP F T CurrentTime StartTime
i j i j

EPT
j{ } ,

( ),→ = + −  
(4)

where F(x) is the CDF of TTF’s distribution; Start-
Timej is the start time of worker j in the worker 
availability status list.

Suppose that the window size is w, the selected 
tasks are { t1, t2, t3, ..., tw }, and the worker peers in 
the dispatch windows are {p1, p2, p3, ..., pw }. For 
each permutation of { p1, p2, p3, ..., pw }, there is 
an assignment. For example, the following assign-
ment is for the permutation { p’1, p’2, p’3, ..., p’w }:

t p

t p

t p
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For each of the assignments, the estimated 
failure probability (EFP) of each task-to-worker 
pair is calculated with Equation (4). Then, the 
overall failure probability of the assignment is:

OFP EFP
t p

k

w

k k
= →

=
∏ { ' }

.
1

 (6)

There are w! possible assignments. The dis-
patcher calculates each assignment’s OFP, and 
compares them. The assignment with the least 
OFP is used for the task dispatch. The dispatcher 
sends tasks to the workers in the dispatch window, 
using the decided assignment. The workflow in-
formation is updated using the enhanced workflow 
management mechanism proposed in Section 4.1.

EVALUATION RESULTS

The effectiveness of the proposed LFPD is evalu-
ated using a simulator that has been developed on 
a discrete event simulation environment - OM-
NeT++ (www.omnetpp.org). The purposes of this 
simulation are as follows:

1.  To prove the effectiveness of the LFPD 
policy.

2.  To verify the effect of the task dispatch 
window.

3.  To study the effect of different parameters.
4.  To analyze the effect of identifying multiple 

worker types.

Baseline Policies

To discuss the effectiveness of the LFPD policy, 
two baselines are used.
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Simple Redundant Task 
Dispatch Policy

The window-size-1 is a special case of the LFPD 
policy, because there is only one (1!) task-to-work 
assignment. Thus, the window-size-1 LFPD 
policy can be considered as an extension of the 
original redundant task dispatch policy that uses 
the proposed heuristics-based failure probability 
estimation model. This simple redundant task 
dispatch policy is used as a baseline to discuss 
the effectiveness of the LFPD policy.

Greedy Dispatch Policy

The proposed LFPD policy selects a task-to-
worker assignment with the least overall failure 
probability. Thus, the effectiveness of the LFPD 
policy highly depends on the estimation accuracy 
of the failure probabilities. If the dispatcher can 
predict task failures perfectly, it can eliminate 
all the task failures. In such case, an intensively 
optimized dispatch policy for volunteer computing 
platforms can be achieved. The comparison be-
tween such a dispatch policy and the LFPD policy 
can demonstrate the effectiveness of the LFPD 
policy. Therefore, in this paper, a greedy dispatch 
policy that can predict failure perfectly is used 
as another baseline in the following evaluation.

The greedy dispatch policy assumes that the 
dispatcher knows the perfect knowledge of the 
workers’ future availability status. Using such 
knowledge, the dispatcher can perfectly predict 
whether a task can be finished on a worker without 
failure. The way to find the best task-to-worker 
assignment is similar to the LFPD policy. Instead 
of using the assignment with the least overall 
failure probability, the greedy dispatch policy uses 
the assignment with the least number of failures.

Using the LFPD policy, the computing power 
is wasted in some cases. These cases can be found 
in advance with the knowledge of the worker’s 
future availability status. The greedy dispatch 

policy adopts new rules to handle such cases as 
follows:

1.  A task copy will incur a failure on a worker. 
The computing power of this worker is 
wasted. The greedy dispatch policy does not 
dispatch such tasks that will incur failures. 
A ``sleep’’ message is sent to the worker. 
The worker sleeps for a pre-defined period 
after receiving the message.

2.  A task copy will finish on a worker. Multiple 
copies of this task are running on different 
workers. However, this copy will finish later 
than some other copies (larger estimated fin-
ish time). A task copy’s estimated finish time 
can be calculated when it is dispatched as: 
EFT = TEPT + CurrentTime. The computing 
power of this worker is also wasted, because 
it does not contribute to the process of the 
job. Therefore, instead of dispatching dupli-
cate task copies, the greedy dispatch policy 
insures that there is only one copy of any 
task. This old copy of a task is continually 
replaced with a new copy that has a smaller 
EFT value, whenever a new task-to-worker 
assignment is found for the workers in the 
dispatch window. When an old task copy 
is replaced with a new one, the old copy is 
canceled on the worker that executes it. If 
the new task copy has a larger EFT value, 
a ``sleep’’ message is sent to the worker.

The Simulator Configuration

The dispatcher and worker modules are imple-
mented with the OMNeT++ to simulate the LFPD 
policy, the simple redundant task dispatch policy 
(the window-size-1 LFPD policy), and the greedy 
dispatch policy. To study the effectiveness of the 
policies in a real world environment, two sets of 
real world resource availability trace data are used 
to generate the worker failures. The Skype trace 
data set (Guha, 2006) has application-level re-
source availability data of 2,081 Skype supernodes 
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for about 28 days. Skype is a peer-to-peer VoIP 
software that connects thousands of volatile peers. 
The Microsoft PCs trace data set (Bolosky, 2000) 
stores the availability data of 51,662 desktop PCs 
within the Microsoft corporation network for 35 
days. The volatile peers in the peer-to-peer network 
and desktop PCs in the corporation network are 
two typical worker types for volunteer computing.

In a heterogeneous environment, the perfor-
mance of each worker is different. To simulate such 
an environment, worker’s performance parameters 
are generated with a power-law distribution. As 
this work focuses on the computation-intensive 
problems that satisfy ``computation time ≫ data 
transfer time,’’ the communication cost is not 
considered in the simulation.

The simulation parameters are as follows:

• Number of Workers: the number of work-
ers in the platform. It is the number of 
peers in the trace data sets.

• Number of Tasks: the number of tasks for 
the computing job.

• Mean Task Process Time: mean process 
time of a task. The process time of a task 
on a worker depends on the performance 
parameter of his worker.

• Idle Worker Inquire Interval: an inquire 
interval of idle workers that received the 
``sleep’’ message. The ``sleep’’ message is 
only used in the greedy dispatch policy.

• Number of Task Groups: the number of 
task groups in the computing job. It is the 
factor of inter-task dependency.

The simulation parameters are listed in Table 1.
Since the same mean task process times are 

used to evaluate the two trace data sets, the dif-
ferent availability characteristics make it hard to 
compare the evaluation results of these two trace 
data sets. Thus, the Microsoft PCs trace data set 
is modified to have the same mean TTF as the 
Skype trace data set. The basic statistical proper-
ties of these two trace data sets are shown in 
Table 2.

Performance Evaluation

The two dispatch policies are evaluated with 
different parameters and different resource avail-
ability trace data sets. The total process time of 
the computing job for different combinations are 
compared and discussed. To simply the discussion, 
all the results are normalized with the correspond-

Table 1. Simulation parameters for LFPD policy and the greedy dispatch policy 

Skype Trace Microsoft PCs Trace

Number of Workers 
Number of Tasks

2,081 
80,000

51,663 
2,000,000

Mean Task Process Time 
Number of Task Groups 

Idle Worker Inquire Interval

1250, 2500, 5000, 10000 seconds 
5, 10, 20 

200 seconds

Table 2. Summary of the basic statistical properties of the data sets 

Skype Trace Microsoft PCs Trace

Mean TTF (seconds) 
Mean Down Time (seconds) 

Average percentage of online node

55,125 
51,509 
33.15%

55,125 
15,906 
81.24%
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ing total process time of the simple redundant 
task dispatch policy.

Figure 4 shows how the normalized total 
process time changes with the dispatch windows 
size and the mean task process time, using the 
Skype trace data set. The results with Microsoft 
PCs trace data set are shown in Figure 5.

Comparison with the Simple 
Redundant Task Dispatch Policy

The results indicate that the LFPD policy outper-
forms the simple redundant task dispatch policy 
(window-size-1 LFPD). The improvement is more 
significant for a larger number of task groups. A 
smaller mean task process time also leads to a 
slightly better improvement. For 20 task groups 
and the mean task process time of 1250 seconds, 
LFPD delivers up to 6% and 12% improvements 
for the Skype trace data set and Microsoft PCs 
trace data set, respectively.

The number of task groups is related to how 
many times a workflow is blocked during the 
process of the workflow. The ``blocked’’ status 
introduces a serious performance overhead, be-
cause the computing power is used for re-execution 
of the failed tasks. The LFPD policy reduces the 
number of task failures, and thus mitigates this 
performance overhead. It explains the reason why 
the LFPD policy is more efficient for a larger 
number of task groups.

For a given trace data set, a larger mean task 
process time leaves less rooms for the LFPD 
dispatch to find a better assignment. As shown 
in Equation (4), the EFP of any task-to-worker 
assignment depends on the task process time, the 
current time, and the start time of the worker. Be-
cause the latter two values are given while finding 
a better task assignment, the EFP is decided only 
by the task process time. For example, there are two 
workers in the dispatch window, and two selected 
tasks. Given any assignment, a larger mean task 
process time leads to a longer task process time 
on both workers. Therefore, the EFP increases for 

both the two tasks. This EFP increment makes 
the overall failure probability (OFP) of both two 
possible assignments higher. The LFPD policy 
is designed to reduce the number of failures, by 
finding proper task-to-worker assignments. How-
ever, if all the assignments provide a high overall 
failure probability, the LFPD policy becomes less 
efficient. As a result, the LFPD policy delivers 
less improvement in the case of a larger mean task 
process time. In both of these two trace data sets, 
the mean TTF is 55125 seconds. The large mean 
task process time (10000 seconds) enlarges the 
tasks failure probability. Thus, the LFPD dispatch 
is less efficient, compared to the ones with a small 
mean task process time.

The results with two trace data sets are slightly 
different for their different availability character-
istics. It is because of an overhead introduced by 
the dispatch window. When the dispatch window 
is not full, the workers that are waiting in the win-
dow are idle. Their computing power is wasted. 
Thus, the less time to fill a dispatch window, the 
better performance can be achieved. In the case of 
these two trace data sets, the average number of 
online workers in the Microsoft PCs trace is much 
larger. Thus the time of the Microsoft PCs trace 
data set to fill a dispatch window can be expected 
to be much shorter than that of the Skype data 
set. Therefore, the LFPD policy delivers a better 
performance improvement with the Microsoft PCs 
trace data set for all the parameter combinations.

Comparison with the 
Greedy Dispatch

As shown in both Figures 4 and 5, the greedy 
dispatch policy beats the LFPD policy for a large 
mean task process time (10000 seconds). The rea-
son is that the greedy dispatch policy eliminates 
all the task failures with its perfect knowledge 
of the worker availability status. While both the 
simple redundant task dispatch policy and the 
LFPD policy suffer from the inefficiency for the 
high failure probabilities, the performance of the 
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Figure 4. Compare the LFPD policy and the greedy dispatch policy for different mean task process time 
(Skype Trace)
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Figure 5. Compare the LFPD policy and the greedy dispatch policy for different mean task process time 
(Microsoft PCs Trace)
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greedy dispatch policy is not affected. Therefore, 
the normalized process time with the greedy dis-
patch policy decreases while increasing the mean 
task process time.

These two figures also show that the LFPD 
policy is more efficient than the greedy dispatch 
policy for a small mean task process time. It is 
because of the ̀ `sleep’’ message used in the greedy 
dispatch policy. The greedy dispatch policy lets a 
worker sleep if it finds this dispatch to be a waste 
of computing power. It happens when the existing 
copy of a task has a smaller EFT than this new 
copy. This mechanism boosts the performance in 
most cases. However, it also introduces a possible 
overhead, for letting workers sleep even when 
the workflow is no longer ``blocked’’ and ``un-
dispatched’’ tasks are available. When the mean 
task process time is small, the failures occur less 
frequently. Therefore, the greedy dispatch policy’s 
advantage for eliminating task failures becomes 
less significant. In such cases, this particular 
overhead becomes more obvious and leads to 
worse efficiency.

Effects of Window Size 
on the Process Time

As shown in both Figures 4 and 5, a larger window 
size results in a shorter process time for the LFPD 
policy in most cases. This is because the LFPD 
policy is likely to find a better task-to-worker as-
signment with a larger window size, especially for 
the smaller mean task process time. As discussed 
earlier, a smaller mean task process time results 
in less frequent failures. Thus, the LFPD policy 
has a higher probability to find an assignment 
with less failures.

The overhead introduced by the ``blocked’’ 
status is not serious when the number of task 
groups is small. Thus, the improvement achieved 
with the LFPD policy is small. Therefore, while 
the window size increases, the overhead for the 
dispatch window becomes obvious. The overhead 
is more serious when the number of online workers 

is small. It explains why the process time with the 
LFPD increases when the window size exceeds a 
certain value in Figures 4(b) and 4(c). With a much 
larger number of online workers, the overhead 
for the dispatch window is not significant. Thus, 
the results with the Microsoft PCs trace are not 
affected by a small number of task groups and a 
large window size.

Improvement of the Performance 
by Identifying Worker Types

In the real world, multiple types of workers 
exist. A different type of workers has different 
availability characteristics. Nadeem et al.(2008) 
introduced the class level modeling method by 
pre-identifying three types of resources in the 
Austrian Grid (http://www.austriangrid.at). The 
TTF distribution of different types of resources 
is largely different across the three types. The 
heuristics-based failure estimation relies on the 
empirical distribution, and assumes that all the 
workers have similar availability behavior. Gather-
ing multiple types of workers’ TTF into a single 
TTF distribution leads to a low estimation accu-
racy. The low estimation accuracy will degrade 
the performance, because the LFPD policy cannot 
find the optimal task-to-worker assignments with 
the inaccurate failure estimations.

To improve the failure estimation accuracy, the 
worker type is considered. Two types of workers 
are selected from the two real world trace data 
sets. First, the two trace data sets are clustered 
into several types, using a K-Means clustering 
algorithm in the Weka toolkit (Witten, 2005). By 
extracting the TTF and the down time pair from the 
original trace data sets, two dimensional data are 
generated. The number of clusters is four, based on 
the assumption that four kinds of workers (diur-
nal, weekly, long TTF, and long downtime) exist. 
The clustering results are shown in Table 3. Each 
cluster shows different characteristics. Cluster 3 
of Microsoft PCs trace shows a diurnal pattern, 
while Cluster 3 of Skype trace is highly volatile.
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5,000 peers are selected from each cluster of 
major clusters of both trace data sets to form a 
new 2-type trace data set. Thus, this 2-type trace 
data set is considered to consist of two types of 
workers. This trace data set is used in the simula-
tion to study the effect of identifying worker types.

The simulation parameters are listed in Table 
4. The LFPD policy with and without the ability 
to identify two worker types are simulated. If 
two types of workers are identified, each type of 
worker’s TTF data is gathered separately. When 
failure probability estimation is needed for a task-
to-worker assignment, the dispatcher selects the 
corresponding TTF distribution for each worker 
and then estimates the failure probability of the 
worker.

Figure 6 shows improvement achieved by 
identifying worker types. The vertical axis repre-
sents the normalized total process time with 
identifying worker types. These results are nor-
malized by the total process time without identi-
fying worker types. The results with the worker 
type identification show an average improvement 
of 0.7% (ranges from 0.1% to 1.5%). The results 
also indicate that the improvement is more sig-
nificant for a larger mean task process time, a 
larger number of task groups, and a larger dispatch 

window size. As discussed in Section 5.3.1, a 
larger mean task process time leaves less rooms 
for the LFPD dispatch to find a better assignment. 
Therefore, the accuracy of failure estimation has 
a bigger impact on the performance. It has also 
been discussed that a larger number of task groups 
makes the performance degradation more serious. 
Thus, accurate failure estimation offers a higher 
improvement. The larger the dispatch window is, 
the more possible task-to-worker assignments 
exist. If failure estimation is not accurate, the 
LFPD policy cannot find the optimal assignment 
from these assignments. Therefore, the accuracy 
of the failure estimation is more critical.

CONCLUSION

The redundant task dispatch policy proposed in 
our previous work (Wang, 2007) has a major 
limitation: the average failure rate model is not 
the best fitted for the volunteer peers in the real 
world. To address this limitation, this paper has 
proposed a heuristics-based mechanism for failure 
probability estimation based on a life cycle model 
of volunteer peers and the statistical data. Then, 
the LFPD policy has been introduced. Instead of 

Table 3. Clustering results (node distribution, mean uptime/mean downtime) 

Skype Trace Microsoft PCs Trace

Cluster 1 
Cluster 2 
Cluster 3 
Cluster 4

4.0%, 8 days/6.68 hrs 
6.3%, 9.49 hrs/4.40 days 
79.6%, 6.73 hrs/8.72 hrs 

10.1%, 2.75 days/6.50 hrs

18.4%, 20.66 days/13.97 hrs 
5.7%, 28.68 hrs/4 days 

62.2%, 16.1 hrs/6.76 hrs 
13.7%, 7.97 days/8.99 hrs

Table 4. Simulation parameters for the 2-type trace data set 

2-type Trace Data

Number of Workers 5,000(Volatile) + 5,000(Diurnal)

Number of Tasks 
Mean Task Process Time 
Number of Task Groups 

Window Size 
Idle Worker Inquire Interval

400,000 
1250, 2500, 5000, 10000 seconds 

5, 10, 20 
1, 2, 3, 4, 5, 6, 7, 8 

200 seconds
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Figure 6. The improvement archived by identifying multiple worker types
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dispatching a task whenever a task enquiry comes, 
this dispatch policy waits for several task enquiries 
from different workers, and then dispatch tasks 
to them at once. It uses a heuristics-based failure 
probability estimation method to find an optimized 
task-to-worker assignment that minimizes the 
overall failure probability of the tasks.

The LFPD policy has been evaluated with real 
world trace data sets on a simulator. The evalua-
tion results have been compared with those of two 
selected baseline policies. The comparison results 
indicate the effectiveness of the LFPD policy. 
The results also prove that the LFPD policy can 
beat the greedy dispatch policy when the mean 
task process time is much smaller than the mean 
TTF of the workers. The difference between the 
results with two trace data sets is also discussed. 
To study how the different type of workers in 
the real world may affect the effectiveness of the 
LFPD, a trace data set that consists of two types 
of workers has been generated from the two real 
world trace data sets. The LFPD policy has been 
simulated with and without the ability to identify 
different type of workers. The results indicate that 
worker type identification can provide additional 
performance improvement.
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ABSTRACT

In order to create a successful grid infrastructure, sites and resource providers must be able to publish 
information about their underlying resources and services. This information enables users and virtual 
organizations to make intelligent decisions about resource selection and scheduling, and facilitates ac-
counting and troubleshooting services within the grid. However, such an outbound stream may include 
data deemed sensitive by a resource-providing site, exposing potential security vulnerabilities or private 
user information. This study analyzes the various vectors of information being published from sites to 
grid infrastructures. In particular, it examines the data being published and collected in the Open Science 
Grid, including resource selection, monitoring, accounting, troubleshooting, logging and site verifica-
tion data. We analyze the risks and potential threat models posed by the publication and collection of 
such data. We also offer some recommendations and best practices for sites and grid infrastructures to 
manage and protect sensitive data.
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INTRODUCTION

Grid computing has become a very successful 
model for scientific collaborations and projects to 
leverage distributed compute and data resources. 
It has also offered the research and academic 
institutions that host these resources an effective 
means to reach a much larger community. As grid 
computing grows in scope, and as an increasing 
number of users and resources are plugged into 
the grid, there is an increasing need for metadata 
services that can provide useful information about 
the activities on that grid. These services allow 
for more sophisticated models of computing, and 
are fundamental components of scalable grid 
infrastructures. The scope of these services is 
fairly broad and covers a variety of uses includ-
ing resource selection, monitoring, accounting, 
troubleshooting, logging, site availability and site 
validation. This list could grow, as grids evolve 
and other types of metadata become interesting 
to users and administrators. This means that it 
becomes important for a grid infrastructure to 
provide central collection and distribution points 
that can collate information gathered from mul-
tiple sources.

The typical publication model involves push-
ing data from site based informational end points 
to central collectors, using streaming feeds or 
periodic send operations. The central collec-
tors then make this data available to interested 
parties using standard interfaces and protocols 
in the form of web services and database query 
engines. The usability of the grid depends on the 
widespread availability of this information. Given 
the increasingly open nature of grid computing 
these collectors and information services generally 
present publicly accessible front-ends.

Now consider the implications of this model 
for a site providing grid resources. Being included 
in a grid infrastructure means that a large amount 
of site information suddenly enters the public 
domain. This could include information deemed 
as sensitive or private from the perspective of the 

site, the user or the grid collaboration as a whole. 
It becomes very important then, to have controls 
on the access and flow of this data, so that the 
information sources can decide what data they 
want published and what data they want restricted. 
Since these models of informational flow are still 
evolving in today’s grids, these controls are still 
in the process of being designed into the software 
infrastructure. As such, there isn’t a standard way 
to control this flow of information. We think there 
is an urgent need to study the various vectors of 
information being provided by sites to grid infra-
structures. This includes an analysis of the nature 
of the information itself, as well as the software 
publishing this information.

In our work, we use the Open Science Grid 
(OSG) (“Open Science Grid Consortium,”) as a 
case study for this model of information flow, 
looking at the five major information collection 
systems within the OSG, and analyzing the se-
curity implications of this infrastructure. We also 
provide some recommendations on improving the 
current infrastructure to preserve the privacy and 
security of sensitive information.

THE OPEN SCIENCE GRID

The OSG offers a shared infrastructure of dis-
tributed computing and storage resources, inde-
pendently owned and managed by its members. 
OSG members provide a virtual facility available 
to individual research communities, who can add 
services according to their scientists’ needs.

It includes a wide selection of resource pro-
viders, ranging from small universities to large 
national laboratories. This broad range of sites 
results in a diverse set of security requirements. 
Reconciling these diverse security priorities is a 
challenge, and requires close interaction between 
the sites and the OSG managers. One approach to 
addressing this issue is to provide the necessary 
tools in the grid middleware stack, so that sites 
can configure security policies directly into the 
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software. The OSG provides a software distribu-
tion called the Virtual Data Toolkit (VDT) (“Virtual 
Data Toolkit,”). This includes a packaged, tested 
and supported collection of middleware for par-
ticipating compute and storage nodes, as well as 
a client package for end-user researchers.

The OSG also provides support and infra-
structure services to collect and publish infor-
mation from participating sites, and to monitor 
their resources. These services are provided by 
the OSG Grid Operations Center (GOC) (“OSG 
Grid Operations Center,”). The GOC provides a 
single point of operational support for the OSG. 
The GOC performs real time grid monitoring and 
problem tracking, offers support to users, devel-
opers and systems administrators, maintains grid 
services, and provides security incident responses. 
It manages information repositories for Virtual 
Organizations (VOs) and grid resources.

INFORMATION COLLECTION IN OSG

There are currently five major information collec-
tion systems in the OSG, which rely on informa-
tion feeds from sites to centralized servers. The 
following is a description of each of these services, 
and an analysis of the information being published 
by them from a site security perspective.

Resource Selection Information

In the OSG framework, the Generic Information 
Provider (GIP) (Field, 2008) gathers site resource 
information. GIP aggregates static and dynamic 
resource information for use with LDAP-based 
information systems. Information published is 
based on the Glue Schema (Glue Working Group, 
2007). The CEMon (Compute Element Moni-
tor) (Sgaravatto, 2005) service is responsible for 
publishing this information to a central OSG 
information collector service called the CEMon 
Consumer. CEMon connections are authenticated 

and encrypted (using GSI). This information is then 
made public in two ways (Padmanabhan, 2007):

1.  Class-ads are published to a Condor match-
maker service called the Resource Selection 
Service (ReSS), which allows Condor cli-
ents to select appropriate resources for job 
submission.

2.  The Berkeley Database Information Index 
(BDII) collects this information for resource 
brokering. It tracks status of each participat-
ing cluster in terms of available CPUs, free 
CPUs, supported VOs, etc.

The Glue Schema provides a more detailed 
list of attributes supported in this scheme. For the 
purposes of this study, we concentrate on those 
attributes published by GIP that may be deemed 
sensitive by certain sites. This includes:

• Operating System version/patch 
information

• Authentication method (grid-mapfile, 
GUMS)

• Underlying job-manager and batch system 
information

• Internal system paths

In some sense, publication of this information 
is essential to a site’s successful participation in 
the grid. However, a site must understand the 
implications of making this information public. 
Prior to joining the grid, much of this information 
was inherently under the control of the site, and 
limited to people under its own administrative 
domain. As such, administrators must be aware of 
any conflicts with the current site security policy 
and requirements that may have been drafted prior 
to participation in the grid.

Additionally, a site may only want to provide 
this information up to a desired level of detail. 
Since the GIP software will publish all available 
information in its default mode, a site may want 
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to consider limiting, or overriding some of the 
attributes being published.

Another consideration is the public nature 
of this information, once it has been sent to the 
CEMon Consumers. Given that this information 
is only useful to actual users of the grid, it might 
be useful to provide some minimal restrictions so 
that the information is only accessible to current 
members of the OSG (or collaborating grids).

Accounting

The Gratia software provides the accounting 
framework for the OSG (Canal, Constanta, 
Green & Mack, 2007). Gratia consists of two 
components:

1.  The Gratia probes that run on the site re-
source and interface with the site-specific 
accounting and batch systems. These probes 
extract resource usage information from the 
underlying infrastructure and convert it into 
a common Usage Record-XML (Global Grid 
Forum, 2003) based format. This is then sent 
to a central collector.

2.  The Gratia collector is a central server oper-
ated by the OSG GOC that gathers informa-
tion from the various probes, and internally 
stores this in a relational database. It makes 
this information publicly available through a 
web interface, in certain pre-defined views. 
The web interface also allows viewers to 
create their own reports and custom SQL 
queries against the usage data.

The Gratia records include information that 
might be considered sensitive by both the sites 
and the grid users. Specifically, we identified the 
following information as potentially sensitive:

• User account names
• User DN information
• Job file and application binary names

Given that this information can be accessed 
through a public SQL interface, all user activity 
on the OSG can be traced and analyzed in fairly 
sophisticated ways, by anyone with a web browser.

User account and DN information could be used 
by an attacker that has compromised an account 
on one site to query a list of sites with the same 
user account/DN, thus increasing the scope of the 
attack. It is not being suggested that masking this 
information will protect a site from a compromised 
account on another system. Certainly, once an ac-
count has been compromised, any other site that 
uses a common set of login credentials should 
be considered vulnerable. However, making this 
information less accessible to an attacker could 
mitigate the scope of the attack.

Job file or application names would be less 
useful to attackers, but could reveal information 
about the nature of the jobs being run. There is 
the potential for a rival project to gain valuable 
clues about the research being done from this 
information. A researcher may want to restrict 
this information to a limited set of people. On the 
other hand, from an accounting standpoint, the 
underlying file descriptions may not be as inter-
esting as the actual resource consumption being 
measured. In most cases, the accounting software 
only needs to be able to uniquely identify a job, 
and doesn’t care about the specifics of underlying 
job or application names.

For these reasons, it is recommended that ac-
cess to this data be restricted along user and VO 
lines using grid certificates as the mechanism 
for controlling this. Sites can also mask sensitive 
information by modifying the probe software to 
apply filters to the records.

Logging

The OSG uses Syslog-ng (“Syslog-ng Logging 
System,”) to provide centralized logging of user 
activity on the Grid. Syslog-ng is an extension to 
the Syslog protocol that provides more flexible 
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support for distributed logging and richer content 
filtering options.

Currently OSG resources optionally log all 
information related to Grid processes using 
syslog-ng, and send this to a central collector 
managed by the GOC. The primary uses for this 
information are:

1.  Troubleshooting – Being able to trace the 
workflow of a distributed job is very useful 
as a debugging tool for failures. It makes it 
significantly easier to detect how and why 
a job might be failing, especially when 
multiple sites are involved. The OSG GOC 
has a troubleshooting team to deal with such 
cases.

2.  Security Incident Response – Having cen-
tralized logs available to the OSG security 
team, makes it very useful to be able to 
analyze the scope and extent of a security 
compromise. It allows the GOC to identify 
compromised sites or users, and to judge the 
nature of the compromise. Affected sites can 
then be notified for rapid incident response.

In the troubleshooting case, there is the need 
to protect failure modes from becoming publicly 
available, as this could reveal possible avenues for 
attack. For example, a poorly configured site may 
have vulnerabilities in the execution path. While 
not apparent through the standard client software, 
these may be exposed through syslog informa-
tion. In general, logging information should only 
be available to authorized personnel within the 
OSG administrative domain, or to specific users 
when debugging problems. Another approach to 
this issue involves the level of logging performed 
by the site, so that only a minimal amount of in-
formation is logged by default. This translates to 
logging only the start and stop times for jobs and 
data transfers for a given user. In the event of a 
failure, the site can increase the level of logging, 

and work in conjunction with the troubleshooting 
team and the user to diagnose the specific problem.

Security incident information is perhaps even 
more sensitive, and syslog information revealing 
incident details must have tight access controls. 
Once again, this points to restricting the informa-
tion to an authorized set of security personnel.

Syslog-ng allows for collectors on a per site 
basis (Tierney, Gunter & Schopf, 2007), which 
can then filter out the information getting passed 
to the OSG wide collector. This would allow 
sites to collect detailed information internally, 
while filtering the information sent to the OSG. 
Any information sent to the OSG GOC should be 
encrypted. As long as there is enough information 
being sent to identify a failure or compromise at 
a central level, the relevant sites can be notified 
of this. The sites can then address the specifics of 
the problem, and provide more information to the 
OSG GOC and security team, as necessary. This 
is the model that is expected to go into production 
for future OSG deployments.

Site Availability and Validation Data

The OSG GOC performs site availability and 
validity tests on participating compute and storage 
elements, and publishes these results online. These 
tests are run at regular intervals, either using a Perl 
script (site_verify.pl) or using a customizable set 
of probes called RSV (Resource and Service Vali-
dation) (“OSG Resource and Service Validation 
Project,”). The basic aim is to validate the services 
being advertised through the resource selection 
and monitoring modules (CEMon). Much of the 
information being collected here is analogous to 
CEMon information, and subject to the same is-
sues. The RSV probes use a push model, similar 
to the Gratia service. The site_verify.pl script takes 
the form of a remote grid job run by the GOC at 
individual sites, relaying information back using 
the standard Globus data movement protocols 
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(GASS, GridFTP) (“Globus Toolkit,”). Possibly 
sensitive information being reported includes:

• Account Names
• Historical system availability information
• Currently running software information
• Internal System Paths

Given that site validation data is both being 
collected at regular intervals, and being archived, 
it offers the ability to track the state of a system 
over time. This may provide information about 
regular system downtimes, when a system may be 
in a transitional state and particularly susceptible 
to an attack.

Moreover, the archived nature of this informa-
tion suggests that the site is subject to a “Google 
Hack” (Acunetix, “Google Hacking,”), even if 
system data is no longer been published. An at-
tacker can use standard search-engine technology 
to scan the Internet for systems that match certain 
keywords. This can be used to scope out systems 
with known vulnerabilities based on advertised 
software levels. This is compounded by the fact 
that modern search-engines like Google do their 
own external caching and archiving of informa-
tion, creating a situation where anything that is 
published on the web has the chance of persist-
ing, despite a site no longer wishing to make that 
information publicly available. There are known 
methods to prevent a site form being listed in a 
search engine, and it is recommended to use these 
for this kind of data.

Monitoring

The OSG uses the CEMon software for monitoring 
sites. An analysis of this has already been included 
in the “Resource Selection Information” section.

The OSG also supports an optional package 
called MonALISA (MONitoring Agents using 
a Large Integrated Services Architecture) to 
monitor system availability and load. Sites using 
MonALISA send system information to a central 

MonALISA service, which allows general users to 
query site information from a web-based clickable 
map interface. It monitors the following informa-
tion (Legrand, 2007):

• System information for computer nodes 
and clusters.

• Network information (traffic, flows, con-
nectivity, topology) for WAN and LAN.

• Performance of applications, jobs and 
services.

• End user systems, and end-to-end perfor-
mance measurements.

Since this includes performance and load in-
formation for systems and networks, it could be 
used to determine whether a machine is susceptible 
to a Denial-Of-Service attack. In other words, it 
could be used to target systems that are running 
close to their maximum capacity.

This type of information is, however, ex-
tremely useful to legitimate users of a grid - it 
helps them determine the optimal locations for 
their workloads. If possible, it should only be 
made available to grid users, without exposing it 
to the outside world.

SUMMARY OF SECURITY RISKS

So far we have identified the following pieces of 
information, that are published to the OSG, as 
being potentially sensitive to a site:

1.  Operating system and software level 
information

2.  Local account names
3.  Supported grid user DNs
4.  Underlying authentication methods
5.  Job-manager / batch-system information
6.  Internal system paths
7.  Job names
8.  Error and failure information
9.  System load and performance information
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10.  User activity at the site
11.  Historical system availability data

While much of this data is very important to 
users and VOs on the grid, and essential in cre-
ating a robust and flexible grid architecture, it is 
important to design the systems that publish this 
information such that they can support the desired 
level of protection for the data. In other words, 
information should be restricted to legitimate users 
of the grid, and sites should have ultimate control 
over what information they wish to publish, and 
at what level of detail.

RECOMMENDED GRID 
MIDDLEWARE CONFIGURATION

While software may evolve, and the specific 
methods for configuring software may change, the 
general goals for proper middleware configuration 
remain the same. The following recommendations 
will help provide some amount of control to sites 
that wish to protect sensitive data:

1.  Override attributes that are considered sensi-
tive with alternate values that can convey the 
equivalent information. For example the GIP 
allows named attributes to be overwritten 
by specifying them in a special file (alter-
attributes.txt). This could allow a site to 
replace detailed software levels with more 
generic information.

2.  Use site level collectors for multi-resource 
sites. This will allow the site to filter sensi-
tive data at this level before forwarding it to 
OSG. Syslog-ng is designed with this sort 
of architecture in mind.

3.  Turn down level of detail for the published 
information to the minimum required – 
during troubleshooting efforts, this can be 
turned up for more diagnostic information. 
This limits the overall exposure of the site.

4.  Always use encrypted data streams and se-
cure protocols to send information, instead 
of using clear text. Many OSG services, 
such as Gratia or Syslog-ng, offer both SSL 
and clear-text options to send data to their 
respective collectors. Sites should always 
use the former, when given a choice.

RECOMMENDATIONS FOR 
DATA PROTECTION

Additionally, it is in the best interest of the grid 
provider (OSG), to provide methods for protect-
ing this data. This protection must happen in 
multiple ways:

1.  All grid infrastructure software that transmits 
or collects data from public networks should 
support secure and encrypted communica-
tion protocols.

2.  The software design should allow sites to 
override arbitrary attributes being published.

3.  Information collectors should endeavor to 
authenticate the machines that publish site 
data – only machines whose identities can be 
verified should be allowed to publish their 
information. This prevents third parties from 
publishing fake or invalid data for a given 
site. GSI host certificates are an effective 
way to achieve this kind of authentication. 
CEMon already uses this, and the model 
could easily be extended to other OSG col-
lection services.

4.  Use of grid certificates to restrict access to 
data where possible. Web servers should at-
tempt to verify the identity of the user before 
allowing access to grid resource information. 
Current technologies, (e.g. mod_gridsite 
(“Gridsite,”) for Apache based web servers) 
provide the ability to control access based 
on the user certificates. Additionally, this 
information could be restricted along VO 
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lines, so that a VO is only authorized to ac-
cess its own data.

5.  Prevent indexing or caching of dynamic 
site information on web servers by search 
engines. This can be done by using files like 
robots.txt to prevent search engines from 
storing this information.

6.  In the long run, there should be a concerted 
effort to consolidate software systems col-
lecting similar information, so that site 
administrators and security officers have a 
single point of control for protecting such 
information. For example the Teragrid’s Inca 
monitoring system consolidates resource 
validation, troubleshooting and monitoring 
functionality under a single engine (“Inca: 
User Level Grid Monitoring,”; “TeraGrid,”).

Some of these features already exist in the OSG 
software, but there also needs to be a compre-
hensive effort to integrate these types of features 
across the middleware and collector infrastructure.

APPLICABILITY TO OTHER GRIDS

While our work has largely been a case study on 
the OSG, the general principles of securing site 
information are applicable to any major grid infra-
structure. Collection and publication of resource 
information is a common feature across grids, 
and results in similar requirements and goals with 
respect to protection of such information.

Indeed, many of the discussed software sys-
tems are currently deployed in other grid infra-
structures as well. e.g. CEMon and MonALISA 
at various EGEE sites (“MonALISA Repository 
for Alice,”; “Enabling Grids for E-Science,”). 
Other grids have their own information services 
providing equivalent functionality. The Teragrid 
uses the Inca monitoring system for resource 
availability, validation and monitoring purposes, 
collecting and publishing similar site information 
as that discussed in the “Information Collection 

in OSG” section. These systems face similar risks 
with respect to sensitive site information, and we 
expect the general techniques for protecting this 
information to be applicable as well.

There is an increasing trend towards interoper-
ability among grids, with international collabora-
tions and VOs driving usage and infrastructure 
requirements. There is a shift away from cen-
tralized grid providers, towards integrated VO 
architectures, where a given VO frames its own 
usage model. This points to cross-grid collection 
services that operate on a per-VO basis. Since VOs 
work in close collaboration with the major grid 
providers, many of the current technologies dis-
cussed have uses cases for such VO based services. 
For example, the ALICE VO uses MonALISA to 
provide integrated monitoring of its supporting 
resources. This means that VOs must also take 
site security requirements into consideration as 
they build their grid information frameworks.

FUTURE WORK

The focus of this work has been on the OSG, and 
its tools, infrastructure and metadata. It would be 
useful to extend this analysis to other major grid 
infrastructures such as the Teragrid or EGEE, to 
understand how they approach issues pertaining 
to sensitive site-related information. This would 
highlight common problems and solutions, and 
provide alternative approaches towards protect-
ing site data.

Also, given that scientific collaborations are 
increasingly adopting the VO model of grid com-
puting, where a VO maintains a certain amount of 
control over its own users and metadata, it would be 
interesting to analyze how VOs manage sensitive 
information, and how they publish and integrate 
this data across one or more grid infrastructures.
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CONCLUSION

While a bulk of this article has been devoted to the 
importance of protecting information that might 
reveal weaknesses in a site’s security infrastruc-
ture, this should not be taken as an endorsement 
of the “security by obfuscation” philosophy. We 
recognize that there is no substitute for hard se-
curity – regular fixing and patching of software, 
intelligent system monitoring, and strong security 
polices and practices are essential for a truly secure 
platform. However, practical security consider-
ations demand that administrators account for the 
fact that not all vulnerabilities may be known at 
a given time. There may also be delays between 
the discovery and the patching of a vulnerability. 
Thus, it is prudent to minimize the amount of 
information available to a malicious entity and 
limit the extent of a compromise. While it is 
necessary to make certain kinds of information 
public for the success of open grid computing, it 
is also in the resource provider’s best interest to 
understand the risks involved in doing so. Since 
grid architectures tend to be as generic as pos-
sible, some of the published information may be 
extraneous. The site must find a balance between 
how much information it seeks to publish about 
itself, and how much information it wishes to 
protect. It may also want to limit the consumers 
of this information to a controlled set of persons.

We believe that this article would serve as a 
useful tool for sites that wish to identify these chan-
nels of information, so that they can determine the 
appropriate level of protection they wish to apply 
to their published data. We also hope to motivate 
further study and discussion on the protection of 
site information across various grid infrastructure 
and middleware providers.
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ABSTRACT

One of the most successful working examples of virtual organizations, computational Grids need authen-
tication mechanisms that inter-operate across domain boundaries. Public Key Infrastructures (PKIs) 
provide sufficient flexibility to allow resource managers to securely grant access to their systems in such 
distributed environments. However, as PKIs grow and services are added to enhance both security and 
usability, users and applications must struggle to discover available resources-particularly when the 
Certification Authority (CA) is alien to the relying party. This chapter presents a successful story about 
how to overcome these limitations by deploying the PKI Resource Query Protocol (PRQP) into the grid 
security architecture. We also discuss the future of Grid authentication by introducing the Public Key 
System (PKS) and its key features to support federated identities.
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AUTHENTICATION IN VIRTUAL 
ORGANIZATIONS

Computational grids provide researchers, institu-
tions and organizations with many thousands of 
nodes that can be used to solve complex com-
putational problems. To leverage collaborations 
among entities, users of computational grids are 
often consolidated under very large Virtual Or-
ganizations (VOs).

Participants in VOs need to share resources, 
including data storage, computational power and 
network bandwidth. Because these resources 
are valuable, access is usually limited, based on 
the requested resource and the requesting user’s 
identity. In order to enforce these limits, each grid 
has to provide secure authentication of users and 
applications.

Erroneously granting access to unauthorized 
or even malicious parties can be dangerous even 
within a single organization---and is unacceptable 
in such large VOs.

Moreover, the dynamic nature of grid VOs 
requires the authentication mechanisms to be 
flexible enough to easily allow administrators to 
manage trust and quickly re-arrange resource-
sharing permissions. Indeed, VOs are usually born 
from the aggregation of already existing organiza-
tions and constitute an umbrella that groups the 
participating organizations rather than replacing 
them. For example, large VOs like the ATLAS 
and CMS Large Hadron Collider collaborations 
may be distributed across multiple organizational 
and national boundaries. Authentication must al-
low individual organizations to maintain control 
over their own resources.

The Problem. When participating in a VO, an 
organization must solve the problem of securely 
identifying resource requesters that come from 
outside its boundaries. PKIs offer a powerful and 
flexible tool to solve the potential authentication 
nightmare. Nonetheless, grid and VO administra-
tors are still striving to find an acceptable solution 
to address interoperability issues that originate 

from the way VOs differ in policies, infrastructures 
and resource control.

Consider the situation where access to grid 
resources is managed via a Web portal. The portal 
can use SSL to provide strong mutual authentica-
tion, between client and server, based on grid-
approved PKI credentials. To do this, the portal 
administrator needs to set up the SSL Trust List 
to only allow credentials from approved CAs; 
the portal also needs to know how to validate the 
entire trust chain for that credential (that is, the 
end entity certificate presented, its issuer and the 
issuer’s issuer, and so forth) up to the approved 
self-signed grid trust anchor.

To do this validation, the portal needs to know 
how to access services such as the location of 
the CA certificate and revocation data for each 
of these intermediate CAs. However, the portal 
cannot count on having pre-configured details 
for them. Even if it did—or if the information 
was packaged in each end entity certificate—this 
information may change over time, rendering this 
critical data stale. Having some way to dynami-
cally discover service entry points of interest for 
grid-approved authorities (or indeed, the very 
authorities themselves) would solve a number of 
issues and would also provide for more flexible 
implementation options for the grid authorities, 
potentially lowering the costs of future service 
changes, and facilitating the future offering of 
additional services.

Our Solution Path. In order to help VOs to 
more efficiently address PKI interoperability 
issues we have started a collaboration with the 
TACAR project to foster the adoption of the 
PKI Resource Query Protocol (PRQP) which 
enables discovery of resources and services in 
inter-PKI and intra-PKI environments. Although 
PRQP provides a viable solution for immediate 
deployment, in this paper we extend this solution 
by advocating for the adoption of a Public Key 
System (PKS) in order to provide support for VO 
authentication over the Internet.
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PAST AND PRESENT OF 
AUTHENTICATION IN GRIDS

According to Ian Foster, a grid is a system that 
“coordinates resources that are not subject to 
centralized control, using standard, open, gen-
eral-purpose protocols and interfaces, to deliver 
nontrivial qualities of service” (Foster, 2002). In 
order for the grid computing model to be success-
ful, users and VOs must access a wide variety of 
resources using a uniform set of interfaces. Given 
that most resource providers have their own se-
curity policies and schemes to begin with, grids 
must overcome the challenge of integrating a wide 
variety of authentication mechanisms to achieve 
this kind of resource sharing. Without a common 
authentication layer, Virtual Organizations and 
resource providers are forced to adopt ad hoc 
schemes to achieve integrated resource sharing. 
However, the adoption of arbitrary schemes dis-
courages information sharing and collaboration 
among researchers, and essentially makes the grid 
model unworkable.

The Grid Security Infrastructure (GSI) has 
become the de facto security layer in scientific, 
research and academic grids. It provides applica-
tions, VOs and resource providers with a secure 
and standard means to perform authentication 
across organizational boundaries. GSI is built 
on top of a PKI layer and uses standard X509 
v3 certificates for authenticating principals 
and granting access to local resources. Several 
major grid infrastructures, including Open Sci-
ence Grid (OSG), European Grid Infrastructure, 
TeraGrid and Earth Systems Grid (ESG) rely on 
GSI for managing authentication between users 
and services.

In a distributed environment, it is important 
to maintain traceability back to the individual 
entity matching a given certificate. The task of 
identifying users is distributed across various 
grid CAs throughout the world. These CAs are 
accredited and audited by the International Grid 
Trust Federation and its three regional Policy 
Management Authorities. A list of accredited 

CAs is maintained by the IGTF and distributed 
to relying parties throughout the world.

Grid CAs issue users a PKI certificate, includ-
ing a public key linked to the private key con-
trolled by the grid subscriber. These certificates 
may either be long-lived (typically issued by 
classic grid CAs) or short-lived (typically issued 
by online CAs such as SWITCH (SWITCH, 
2008) or MyProxy-based CAs (NCSA, 2008)) 
depending on the use case. The IGTF maintains 
different authentication profiles to manage CAs 
with different qualities of service, for the benefit 
of relying parties.

A resource provider or virtual organization 
relies on these CAs to be able to identify a given 
user. As such, if an end entity is able to present a 
valid certificate that is signed by a CA trusted by 
the relying party, the entity can be authenticated 
(of course, the end entity also needs to prove 
knowledge of the private key). GSI authentication 
is mutual (GLOBUS, 2008)—if a user wishes to 
access a service, both the user and the service 
must be able to present signed certificates to each 
other. The respective signing authorities must be 
trusted by the entity on each side of the transac-
tion. Allowing the user and the service to have 
certificates signed by different CAs is the key to 
establishing cross-realm trust in grids. This also 
eases usability and scalability—the user need 
maintain only a single individual credential (single 
point of identity) no matter how many services 
she wishes to use. In order to improve usability, a 
user of grid services can sign a Proxy Certificate 
(PC) on his or her own behalf.

In general these proxies contain a slightly 
modified version of the user’s identity (to indicate 
that it is a proxy certificate), a new public key, 
and a very short lifetime. These proxy credentials 
can then be used to access applications, or further 
delegated to application servers to perform actions 
on behalf of that user, without having to expose 
the user’s original long-lived credential and pri-
vate key—thus practicing the security principle 
of “least privilege.”
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Most GSI-based grid applications can recog-
nize PCs and will trust the credential as long as 
the chain of trust leads back to the original user 
and a trusted CA. A detailed scheme of the whole 
chain of certificates involved in identity verifica-
tion is shown in Figure 1.

Additionally, grids and VOS may use special 
authorization services to handle fine-grained roles 
based access control. For example, OSG VOs use 
a Virtual Organization Management Service 
(VOMS) (Ciaschini, 2004) service to generate and 
sign an Attribute Certificate that contains one or 
more Fully Qualified Attribute Name (FQAN) 
strings, linked to the user’s subject DN. This 
FQAN is embedded in the user’s proxy certificate 
as an X.509v3 extension and defines that user’s 
role within the VO. VOMS proxies can be used 
to manage roles and levels of access to resources, 
while using the same identity principal (user 
certificate) across the grid.

PKI RESOURCE 
DISCOVERY IN GRIDS

To use these more general PKIs, applications must 
be capable of finding and using services and data 
repositories provided by Certification Authori-
ties. Unfortunately, even the retrieval of the list 
of revoked certificates (CRLs) is still a problem 
when dealing with CAs from different hierarchies 
or loosely coupled PKI meshes.

Grid PKIs can become rather complex, and 
the number of grid CAs accredited by the Policy 
Bodies (which are relatively young) is expected 
to grow in the near future. Indeed, as long as poli-

cies and common practices are established and 
well understood, the number of accredited CAs 
should increase in the number of hundreds, thus 
increasing the need for a standardized solution 
for a PKI resource discovery system.

Current Data Distribution. Currently, the 
mechanism for querying the trusted providers is 
fairly simple: administrators and users download 
a trusted CA distribution. This can either happen 
as part of a manual process, or it can be included 
within the grid software distribution (such as the 
Open Science grid software stack). This packaged 
data consists of a set of accredited CAs. (Ac-
creditation is done by peer review in the various 
policy bodies.)

Because of the need to provide users and ad-
ministrators with additional data besides the CA 
certificates, the downloaded package includes 
extra files. In particular, for a given CA, the 
package typically includes the following static 
information: the CA certificate, the .info file, a 
CRL URL file, a namespaces file, and a signing 
policy file.

The .info file contains general CA informa-
tion along with contact information (including 
a URL). Applications can use information in 
the .info file to contact the CA. An example of a 
distributed .info file is shown in Figure 2. Some 
of the information distributed in this file (e.g. 
url, email or status) is required by applications 
and users to find details about the CA. The CRL 
URL file contains a URL pointer from where one 
would download the CRL. All accredited IGTF 
classic CAs provide this file. Sites and users build 
revocation lists by periodically querying the in-
formation in the CRL URL file and downloading 

Figure 1. Chain of Trust in grids environment. The usage of Proxy Certificates allows the user to del-
egate tasks without exposing her private key—since each Proxy Certificate has its own unique keypair
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revocation lists from the CRL url for each CA. 
This means that many grid software installations 
in the world are downloading these large CRLs 
from the CA providers at regular intervals. From 
what we have seen, this has often created denial 
of service conditions for certain CAs.

The namespaces file defines the Distinguished 
Names (DN) namespace that the CA is authorized 
to use; the signing policy file defines the rules for 
the signing policy of that CA. The namespaces 
file and the signing policy file may contain over-
lapping information from a policy point of view 
(although only the signing policy file has an imple-
mentation in software). Although this information 
could be embedded into a CA’s certificate, the 
need for updating this data periodically led to the 
creation of the .info file and bundling it together 
with the certificate.

TACAR (Terena Academic CA Repository) 
and IGTF register and distribute this information 
to users and sites as follows. The accredited CA 
sends the trust anchor information directly to the 
IGTF/TACAR through a TERENA officer or a 
TERENA TACAR trusted introducer.

The IGTF packages and distributes the of-
ficial CA package. Relying parties download the 
IGTF package every time there is a new release 
(approximately once a month). Relying parties 
are encouraged to verify this against the TACAR 
repository. Then, based on the information within 

the downloaded package, relying parties download 
the CRL from the CRL URL on a daily basis.

Ultimately, in most cases, this relies on a very 
static “cron-based” process. There are several im-
provements to this that can be made by PRQP that 
would replace this type of static file and crontab 
based access with something more dynamic, and 
query driven.

Other Solutions. To publish pointers to data, 
a CA could use certificate extensions such as 
the Authority Information Access (AIA) and the 
Subject Information Access (SIA) (R. Housley, W. 
Polk, W. Ford, and D. Solo, 2002). Regrettably 
the lack of support built into applications and the 
difficulties in updating extensions in certificates 
clash with the need for flexibility required by 
today CAs.

To overcome the problem with updating the 
pointers, it is possible to use SRV records (A. 
Gulbrandsen, P. Vixie, and L. Esibov, 2000) in 
DNS (P. Mockapetris, 1987). Although interesting, 
the problem with this solution resides in the lack 
of correspondence between the DNS structure, 
which is built on a strictly hierarchical namespace, 
and PKIs where there are no requirements for the 
used namespace.

Other solutions are either overly complicated to 
solve our problem---e.g., Web Services (F. Curb-
era, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, 
and S. Weerawarana, 2002) uses SOAP (A. Kar-
markar, M. Hadley, N. Mendolsohn, Y, Lafon, M. 

Figure 2. Example of distributed info file within grid communities. Notice how some of the distributed 
information have no equivalent pointers in standard X509 certificates
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Gudgin, J.-J. Moreau, H. Nielsen, 2007), WSDL 
(E. Christensen, F. Curbera, G. Meredith, and S. 
Weerawarana, 2001; R. Chinnici, M. Gudgin, J.-J. 
Moreau, and S. Weerawarana, 2005) and UDDI 
(L. Clement, A. Hately, C. von Riegen, and T. 
Rogers, 2004) or they are specifically targeted 
to local area networks---e.g., Jini (W. Edwards, 
2000; K. Arnold, 2000) UPnP (UPnP Forum, 
2008; M. Jenronimo and J. Weast, 2003) or SLP 
(E. Guttman, C. Perkins, and J. Kempf, 1999; E. 
Guttman, 1999).

TRUST AND CERTIFICATION 
POLICIES

The use of a standardized and well-established 
technology such as public key certificates has 
enabled applications such as browsers to facilitate 
ease of use within grids. However, especially when 
integrating credentials from different authorities, 
an important aspect to consider is the policies 
under which those credentials have been issued. 
Although a PKI potentially provides the benefit 
of strong binding of identities to public keys, the 
strength of that binding is really dependent on 
the policies and practices followed by the issuing 
authority, and the subscribers.

A CA is a trusted third party entity which is-
sues digital certificates for use by relying parties. 
In a certificate, the CA attests that the public key 
matches the identity of the owner of the corre-
sponding private key, and also that any other data 
elements or extensions contained in the certificate 
match the subject of the certificate. The obliga-
tion of a CA (and its registration authorities) is to 
verify an applicant’s credentials, so that relying 
parties can trust the information contained in the 
certificates it issues. If a relying party trusts the 
CA and can verify the CA’s signature, then it can 
also verify that a certain public key does indeed 
belong to whoever is identified in the certificate (as 
long as they accept this, the end entity is fulfilling 
its responsibilities with respect to protecting the 

private key). If the CA can be subverted, then the 
security of the entire system is lost; likewise, if 
an end entity is negligent, then the security and 
trust associated with their particular credential 
could be lost.

The degree to which a relying party can trust the 
binding embodied in a digital certificate depends 
on several factors. These factors can include the 
practices followed by the certification authority 
in authenticating the subject; the CA’s operating 
policy, procedures, and security controls; the scope 
of the subscriber’s responsibilities (for example, 
in protecting the private key); and the stated re-
sponsibilities and liability terms and conditions of 
the CA (e.g warranties, disclaimers of warranties, 
and limitations of liability). The processing of 
information contained in these multiple complex 
documents for the purpose of making a trust 
decision about each PKI involved is too onerous 
for the average user. Relying parties therefore 
usually accept recommendations from trusted 
accreditation bodies about the relative trustwor-
thiness and suitability of credentials being issued 
by a particular CA. For grids, those accreditation 
bodies are the three regional PMAs that constitute 
the IGTF. TAGPMA is the accreditation authority 
for the Americas (covering a geographical region 
from Canada to Chile).

TAGPMA conducts peer reviews of grid CA 
operations. A grid CA can be accredited as a grid 
credential issuer after TAGPMA reviews their 
Certificate Policy (CP) and Certification Prac-
tices Statement (CPS) to ensure that the practices 
implement the policies and that the policies are 
equivalent to standard approved grid profiles. Once 
approved, the CA and associated information is 
packaged for official distribution for IGTF rely-
ing parties. Re-review of a CA is conducted on a 
periodic basis to ensure they are still compliant 
with the standard grid profiles.

Not all grid CA accreditation applicants are 
able to map their existing policies and practices 
to an approved IGTF profile. However, a relying 
party may still wish to accept the credentials of 



171

Federated PKI Authentication in Computing Grids

such a CA operator based upon their own assess-
ment of trustworthiness of the CA. In order for 
the relying party to make a local trust decision, 
they should consider the statements by the CA 
published in their CP and CPS and also review 
any other relevant security or trust-related docu-
mentation. Currently this information is gener-
ally not readily available to a relying party from 
the CA’s certificate, nor can a relying party or 
potential subscriber easily find the URI for the 
application or revocation of credentials from such 
CAs. A mechanism for publishing and updating 
this information would greatly enhance the flex-
ibility, and usability of potential grid PKIs. The 
PRQP is a perfect candidate for providing such 
functionality.

INTEROPERABLE GRID 
PKIS: FIRST STEPS

Effective authentication frameworks that make use 
of certificates potentially require many different 
services such as OCSP servers, CRL repositories, 
or timestamping to validate certificates issued by 
accredited CAs. As a consequence, certification 
authorities need to be able to provide these ser-
vices and to enable applications to discover them.

Because the need to distribute PKI related 
data and pointers to services is of primary con-
cern in grids, each grid environment defines its 
own specific format and solution. Although this 
might temporarily solve specific issues within a 
specific grid community, it does not encourage 
the exchange of information and interoperability 
with other organizations.

It is to be noted that because of the customized 
nature of current solutions, specific extensions to 
applications must be developed in order to be able 
to operate in such environments.

The PKI Resource Discovery Protocol. 
The notion of a discovery protocol for PKIs first 
appeared in our earlier paper (M. Pala and S. W. 
Smith, 2007), which proposed the PKI Resource 

Query Protocol (PRQP)1 to provide pointers to 
any available PKI resource from a particular CA.

The PRQP (M. Pala, 2008) has been already 
discussed in the IETF PKIX working group. The 
updated version of the PRQP specification, which 
includes grid-specific enhancements proposed in 
this paper, is published as an Experimental-Track 
Internet Draft. In PRQP, the client and a Resource 
Query Authority (RQA) exchange a single round 
of messages where the client requests a resource 
token by sending a request to the server. The 
server replies back by sending a response to the 
requesting entity.

The client can request the address of one or 
more specific services by embedding one or more 
Object Identifiers (OIDs) into the request. The 
resources might be items that are (occasionally) 
embedded in certificates today—such as URLs 
for CRLs, OCSP, SCVP or CP/CPS locations-
--as well as other items, such as addresses for 
the CA website, the subscription service, or the 
revocation request.

Alternatively, the client may ask for the loca-
tion of all the services provided by a CA by not 
specifying any identifier in the request.

The Resource Query Authority. In PRQP, 
the server is called the Resource Query Authority 
(RQA). An RQA can play two roles. First, a CA 
can directly delegate an RQA as the party that can 
answer queries about its certificates, by issuing a 
certificate to the RQA with a unique value set in the 
extendedKeyUsage (i.e. prqpSigning). The RQA 
will provide authoritative responses for requests 
regarding the CA that issued the RQA certificate. 
Alternatively, an RQA can act as Trusted Authority 
(TA) (“trusted” in the sense that a client simply 
chooses to trust the RQA’s recommendations and 
assertions). In this case, the RQA may provide 
responses about multiple CAs without the need 
to have been directly certified by them.

In this case, provided responses are referred 
to as non-authoritative, meaning that no explicit 
trust relationship exists between the RQA and 
the CA. To operate as a TA, a specific extension 
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(prqpTrustedAuthority) should be present in the 
RQA’s certificate and its value should be set to 
TRUE. In this configuration the RQA may be 
configured to respond for different CAs which 
may or may not belong to the same PKI as that 
of the RQA.

Security Considerations. The PRQP provides 
URLs to PKI resources, therefore it only provides 
locators to data and services, and not the real 
data. It still remains the client’s job to access the 
provided URLs to gather the needed data, and 
to validate the data (e.g., via signatures or SSL).

Because of this consideration, both the NONCE 
and the signature are optional in order to provide 
flexibility in how requests and responses are 
generated.

Also, it is then possible to provide pre-comput-
ed responses in case the NONCE is not provided 
by the client. If an authenticated secure channel 
is used at the transport level between the client 
and the RQA (e.g. HTTPS or SFTP) signatures 
in requests and responses can be safely omitted.

Distribution of RQA addresses. The distribu-
tion of the RQA’s address to clients is still an open 
issue. There are four possible approaches. A first 
option would be to use the AIA and SIA exten-
sions to provide pointers to RQAs. We believe 
that by using these extensions in certificates to 
locate the RQA, one could provide an easy way 
to distribute the RQA’s URL. The size of issued 
certificates would be smaller than embedding all 
the pointers for CA’s resources, thus providing a 
more space efficient solution.

The second option is applicable mostly for 
LANs, and consists of providing the RQA’s ad-
dress by means of DHCP. This method would be 
mostly used when a trusted RQA is available on a 
local network. These two techniques can then be 
combined together. Although the service number 
for DHCP and DHCPv6 for PRQP have not yet 
been assigned by IANA, the official protocol draft 
describes how to provide local RQAs addresses 
via dynamic host configurations.

The third option—which could be successfully 
applied in special-purpose application environ-
ments like Grid Computing—is to embed the 
RQA’s address directly into application software 
distributions. This approach could be adopted 
in grids and VOs where a centralized software 
distribution system is in place. At each software 
update, the RQA network address can be updated 
as well. If the distributed software is not digitally 
signed by a trusted authority, this approach could 
be subject to serious security threats, e.g. distribu-
tion of an altered package by a malicious attacker 
where the configured RQAs are not the “official” 
ones. Besides the security considerations already 
discussed above, the trust level in the application’s 
RQA configuration should be not less then that put 
into browser or operating system certificate stores.

Ultimately, the RQA address can be retrieved 
by querying the DNS for specific service records. 
The SRV records—or Service records—technique 
was meant as a way to provide pointers to serv-
ers directly in the DNS. As defined in RFC 2782 
(A. Gulbrandsen, P. Vixie, and L. Esibov, 2000), 
the introduction of this type of record allows ad-
ministrators to perform automatic discovery for 
local network services. The core idea behind SRV 
records is to have the client query the DNS for a 
specific SRV record. For example if an SRV-aware 
OCSP client wants to discover an OCSP server 
for a certain domain, it performs a DNS lookup 
for ocsp.tcp.example.com (the “ tcp” means the 
client requesting a TCP enabled OCSP server). 
The returned record contains information on the 
priority, the weight, the port and the target for the 
service in that domain.

Although used for many different network-
related configurations (e.g., printing services), this 
approach has not been successfully deployed for 
PKI-related services. Besides the issues related to 
relying on not authenticated services for discover-
ing the network addresses of specific resources, 
the main issues are related to the fact that there 
is no correspondence between DNS structure 
and data contained in the certificates. The only 
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exception being when the Domain Component 
(DC) attributes are used in the certificate’s Sub-
ject. Fortunately, with the recent deployment of 
DNSSEC (Arends, R.; Austein, R.; Larson, M.; 
Massey, D. & Rose, S., 2005; Weiler, S. & Ihren, 
J., 2006) services and their integration with current 
OSes, some of the trust considerations related to 
the local service discovery via DNS records will 
be soon solved.

However, this approach can be successfully 
adopted in VOs where the centralized policy body 
authority could provide the RQA configurations 
on behalf of the whole VO.

Finally, we want to point out that other mecha-
nism will be available to discover LAN provided 
services in IPv6 (Deering, S. & Hinden, R., 1998) 
based on simple ping of reserved IP addresses in 
the local segment.

INTEGRATING PRQP INTO GRIDS

In our work toward a dynamic discovery of PKI-
related services for Computing Grids, we analyzed 
the security requirements and the current chal-
lenges in distributing pointers to authentication 
data. To ease the administrators’ burden and to 
provide a more efficient way to distribute resource 
locators, we extended the PRQP specification 
with grid-specific support. In particular, these 
extensions provide an interoperable method to 
distribute information about provided services. 
Although some solutions already exist in the com-
puting grid environment (e.g. the monthly IGTF/
TACAR update), our work addresses the problem 
by providing a more standardized solution that 
would allow for better interoperability between 
organizations (as discussed earlier).

OpenCA’s LibPKI (OpenCA, 2008a) provides 
an updated implementation of the full PRQP proto-
col. At present, a PRQP server is also available as 
a stand-alone application (OpenCA Labs, 2008c) 
and freely downloadable2. The GSI based security 
layer, used across several major grids and VOs, 

is built on top of the OpenSSL library, a widely 
used open-source library. Since GSI is based on 
standard PKI mechanisms, it plugs nicely into the 
PRQP model. A PRQP client can be implemented 
at the GSI layer using callouts – we plan to imple-
ment this in the future.

Grid-Specific Resources. In order to better 
leverage PRQP in the Grid environment, we de-
fined a set of object identifiers (OIDs) that enhance 
PRQP with the ability to provide grid-specific data 
distribution. Because grid communities organize 
themselves in VOs that accept common authenti-
cation profiles (such as those of the IGTF), it has 
been easy to analyze the requirements and identify 
the needed enhancements to PRQP.

Besides identifying the OIDs for general PKI 
operations (e.g., HTTP based or browser-specific 
services, CA “communication gateways”, etc.)3, 
we also defined some Grid-specific pointers (see 
Table 1).

The accreditationBody and the accreditation-
Policy pointers can be used to specify the bodies 
and the policies (or profiles) under which a CA 
has been accredited. In addition to these, we also 
defined the commonDistributionUpdate and the 
accreditedCACertificates OIDs. These identifiers 
can carry information about pointers to the most 
recent Grid distribution data (the former) and to 
the set of accredited CA certificates (the latter).

One interesting feature of PRQP is its flex-
ibility. It can provide CA management with a 
dynamic model to add services or, if needed, to 
switch to newer and more efficient ones. This 
feature becomes of primary concern in grids 
where currently grid-specific services have not 
been standardized yet.

CAs can leverage PRQP flexibility properties 
in order to provide dynamically updated informa-
tion about its accreditation status to applications 
via the accreditationStatus pointer. The set of grid-
specific pointers we introduced facilitates more 
flexible trust options from the VO’s perspective, 
in the set of CAs it chooses to trust. For instance, 
besides the generally accepted IGTF distribution, 
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these pointers also allow a VO to specify a set of 
additional CAs that the VO wishes to trust locally 
(that the VO has vetted itself for use within the 
community), by simply specifying an additional 
local distribution maintained by the VO or any 
entity it delegates this responsibility to (e.g. refer 
to the additional non-IGTF accredited CAs that 
are accepted by TeraGrid).

PRQP AND TACAR: A REAL 
WORLD DEPLOYMENT

An interesting aspect of the grid trust model is the 
presence of a central authority, often embodied 
by the grid policy management authority. Usu-

ally this authority is represented by a federation 
of authentication providers and relying parties 
responsible for accreditation of CAs willing to 
participate in the organization.

The presence of such an authority eases the 
deployment of PRQP in that it provides a central 
point where the RQA can be deployed. In this 
section, we discuss the real-world experience 
in deploying the PRQP service for the TACAR 
project. To speed up the service deployment and 
ease CA administrators from running an additional 
service, we deployed a centralized RQA service 
that serves the entire grid community.

Trusting a Central RQA. In the TACAR 
PRQP deployment, we adopted a trust model that 
utilizes a centralized Resource Query Authority 

Table 1. Newly Identified OIDs for Grid Operations. Of particular interest are the Grid specific pointers 
that enable an RQA to provide Grid specific information to applications. It is also to be noted that some 
of the proposed PKIX Identifiers refer to services that are not yet standardized 

OID Text Description

PKIX {id-ad 1} ocsp OCSP Service

{id-ad 2} caIssuers CA Information

{id-ad 3} timeStamping TimeStamping Service

{id-ad 10} dvcs DVCS Service

{id-ad 11} scvp SCVP Service

General PKI 
operations

{id-ad 50} certPolicy Certificate Policy (CP) URL

{id-ad 51} certPracticesStatement Certification Practices Statement (CPS) URL

{id-ad 60} httpRevokeCertificate HTTP Based (Browsers) Certificate Revocation Service

{id-ad 61} httpRequestCertificate HTTP Based (Browsers) Certificate Request Service

{id-ad 62} httpRenewCertificate HTTP Based (Browsers) Certificate Renewal Service

{id-ad 63} httpSuspendCertificate Certificate Suspension Service

{id-ad 40} cmsGateway CMS Gateway

{id-ad 41} scepGateway SCEP Gateway

{id-ad 42} xkmsGateway XKMS Gateway

{eng-ltd 3344810 10 2} webdavCert Webdav Certificate Validation Service

{eng-ltd 3344810 10 3} webdavRev Webdav Certificate Revocation Service

Grid Specific {id-ad 90} accreditationBody Accreditation Body URL

{id-ad 91} accreditationPolicy Accreditation Policy

{id-ad 92} accreditationStatus Accreditation Status Document

{id-ad 95} commonDistributionUpdate Grid Distribution Package

{id-ad 96} accreditedCACertificates Certificates of Currently Accredited CAs
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which serves all the organizations participating 
in the grid community.

This model is easily applicable when the 
VOs and grids share the same set of accredited 
Certification Authorities. In this case, the client 
application queries the central RQA to discover 
the needed information about CAs participating 
in the VO. For this model to work, the central 
RQA must know the pointers for each and every 
CA that is recognized by the VO. In this case, 
the RQA is to be trusted by all the participating 
parties. The RQA can be configured to act as a 
trusted responder or, if every participating CA 
is willing to certify the RQA’s key pair, as an 
authoritative responder.

It may be unrealistic to expect a policy authority 
(like IGTF) to operate a central RQA which would 
require 24x7 support; however, the operation could 
be easily delegated by the policy authority to one 
of the more prominent accredited CA sites that 
are already geared for 24x7 services. The policy 
body would then simply need to require periodic 
assertions (or audits) to confirm that the central 
service was operated precisely and integrally.

In our PRQP deployment for TACAR we 
adopted a delegated model where the central 
RQA service is run by one of the accredited CAs. 
Moreover, in order to facilitate the update of the 
pointers provided by each CA to the RQA admin-
istrators, we provided a web-based configuration 
tool (integrated with the TACAR control panel) 
that allows CA administrators to easily update/
add URL pointing to the provided services. The 
configuration is then pushed to the RQA server 
and automatically deployed at regular intervals 
during the day.

TOWARDS GLOBAL GRID 
AUTHENTICATION

Our experience with PRQP provided us with 
the idea that an Internet-wide service aimed at 
enhancing trust-infrastructures deployment and 

interoperability is both needed and soon deploy-
able. In particular, we started working at the 
deployment of a distributed support system for 
trust infrastructures suitable for Internet-scale 
deployment and dynamic federation management, 
namely the Public Key System (PKS). In order 
to ease roll over between isolated PKI islands to 
globally available and locally configurable PKI 
services, this infrastructure will allow smooth 
co-existence and progressive integration with 
existing infrastructures.

The PKS we first designed in (M. Pala, 2010) 
and that we plan to develop and deploy for Grid 
authentication purposes first, is composed of 
three main parts: a DHT-based overlay network, 
a unified message format, and the support for 
federated identities.

The PKS uses a peer-to-peer overlay network 
to route messages to the target CAs and federation 
authorities. In particular, we use a simplified ver-
sion of the Chord protocol based on the PEACH 
(M. Pala and S. W. Smith, 2008) system. We 
selected this routing algorithm for two reasons. 
First, it already provides support for node identi-
fiers based on public key certificates. Secondly, 
the PEACH protocol is easy to support from the 
developers point of view: other protocols like 
Kademilia (Maymounkov, P., Mazieres, D., 2002) 
or P-Grid (Aberer, K., Mauroux, P.C., Datta, A., 
Despotovic, Z., Hauswirth, M., Punceva, M., 
Schmidt, R., 2003) might provide additional 
features at a greater implementation costs.

A collaborative Approach. In our previous 
work, we designed and prototyped a scalable 
system for PKI resources look-up. In (M. Pala 
and S. W. Smith, 2008) we introduced a new 
peer-to-peer overlay network that makes use of a 
Distributed Hash Table routing protocol (namely, 
Peach). Results from this work have demonstrated 
that PKIs can make effective use of peer-to-peer 
technologies and have laid the path for the next 
steps in this new field. Building on our previous 
work, we extended this approach to provide a 
support system for Public Key trust infrastructures 
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deployment. In particular, we enhanced the peer-
to-peer protocol to support (1) interoperable PKI 
message exchange among CAs, and (2) usable 
federated identities deployment. The most notice-
able addition to the PEACH network infrastructure 
is introduction of a new type of nodes, the PK 
Federation Authorities.

In the PKS model, network administrators 
deploy local PKS responders. As such, the PKS 
is similar to the DNS where caching servers are 
deployed in LANs to ease client configurations. 
The PKS responders, in this case, act as a PKI 
proxy for applications. In case the local organi-
zation also deployed it’s own CA, the local PKS 
node will reply to PKI requests for the local PKI in 
addition to forwarding requests that are addressed 
for external CAs.

In order to locate available CAs efficiently on 
the PKS network, we use unique node identifiers 
for each CA. We leverage the availability of the 
CAs’ digital certificates by deriving the node’s 
identifier from the fingerprint of the CA certificate 
itself. For example, if CA1 wants to participate 
in the PKS network, it will setup a PKS node and 
issue a certificate that identifies it as the authorita-
tive PKS responder.

When joining the PKS network, the PKI gate-
way will present its own certificate together with 
its issuing CA’s certificate. The node identifier, 
that is the identifier that will enable the node to be 
found on the network, is calculated by using the 
fingerprint of the CA’s certificate. To validate the 
identity of the joining node, a simple validation 
of the presented certificate chain will guarantee 
that the joining node has been authorized as a PKS 
responder for that particular CA. This approach 
guarantees high scalability, provides a simple 
approach to PKS responders deployment, and is 
logically compatible with the Peer Name Resolu-
tion Protocol (Microsoft) already available in the 
Windows operating system (although available 
only over IPv6).

Ultimately, we notice that the PKS network 
can support any type of public key identifiers, not 

only X.509 certificates. This feature stems from 
the use of the output of the hash function to link 
a node on the PKS network to an identity (e.g., 
a CA or a PK-FA). Although our work primarily 
focuses on X.509 certificates, the PKS overlay 
network is capable of supporting multiple types 
of public key based identifiers.

Two-Tier Approach. To ease the deployment 
of PKS, applications such as browsers or email 
clients, access the PKS by querying the local PKS 
server. The local PKS responder is responsible of 
discovering if the responder authoritative for the 
CA requested by a client is available on the PKS 
network and, if so, it forwards the application’s 
request to the target node. The response is then 
routed back to the client through the same local 
PKS responder.

In other words, applications use only one 
simple transport protocol for all PKI-related que-
ries (e.g., OCSP, CMM, SCEP, etc.) and do not 
need to implement any of the peer-to-peer overlay 
network operations (e.g., join() or lookup()).

The Quest for Federated Identities. One of 
the urgent needs in today’s on-line communities 
is the possibility to demonstrate one’s participa-
tion to one or more federations. In the case of 
Computing Grids, these federations are identi-
fied by saccreditation bodies. These authorities 
decide the policies (or rules) that an organization 
must follow in order to be accredited. They also 
perform audits to check on the compliance of an 
accredited organization with the policy of the 
VO. Therefore, being the authority recognized by 
every member participating to the VO, the policy 
body is the authoritative source of isnformation 
about the VO membership. Regrettably, there is 
no standardized way to dynamically provide that 
information to applications.

To accommodate the need to federate existing 
organizations, the PKS supports PK Federation 
Authorities (PK-FA) nodes. These nodes provide 
information about the deployed federations by 
indicating if a particular entity is part of a specific 
federation or not. The protocol we designed in 
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(M. Pala, 2010) allows clients to sensibly reduce 
the list of trust anchors (or Trusted Certification 
Authorities). In particular, by trusting the PK-FA 
certificate, a client can dynamically discover if 
a CA is part of the trusted federation, and, if so, 
can use the PKS to correctly route the requests 
about the provided PKI services.

Since the source of trust is the PK-FA, the trust 
is built by combining the PK-FA response with the 
usual certificate validation of the certificate that is 
being verified. The use of dynamically generated 
PK-FA responses allows infrastructures to dynami-
cally join or leave federations. In fact, although 
that there is no direct certification link between 
the PK-FA (the trusted entity) and the certificate 
to be verified, the trust (from a federation point 
of view) flows from the signed PK-FA response 
as it identifies the certificate issuing CA as part of 
the trusted federation. In other words, the PK-FA 
provides a source of technical bridge that allows 
to verify (from an application standpoint) the 
compliance of an organization to a well-known 
policy without the need of cross certification 
among trust infrastructures.

This allows applications to implement user-
friendly trust anchor management systems based 
on the idea of federation (e.g., the Banking Federa-
tion, the Credit Cards Association, etc.).

CONCLUSION

In our work we provide a description of the grid 
authentication layer. We also provide an overview 
of the issues that grids and virtual organizations 
face every day in distributing crucial information 
that enables the usage of digital certificates.

Our work also analyzes the current status of 
the PKI Resource Query Protocol and describes 
the TACAR experience in integrating the protocol 
into an existing infrastructure.

We believe that PRQP can provide an effective 
solution to the PKI services pointer distribution 
issue, especially in virtual organizations where a 

common authentication layer exists. The PRQP 
introduces a new layer of indirection that allows 
mapping of PKI resource discovery to network 
addresses. Today, no existing software provides 
such a flexible service. In fact, no deployed in-
frastructure exists that provides an efficient and 
interoperable PKI resource-discovery service.

Building on top of our experience with PRQP 
deployment, we focused on allowing for improved 
interoperability among trust infrastructures by 
introducing the Public Key System (PKS) and its 
promising characteristic toward an Internet-wide 
support infrastructure for federated identities.
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1  The subsequent description here of the PRQP 
protocol is derived from our earlier paper 
(M. Pala and S.W. Smith 2007).

2  http://www.openca.org/projects/prqpd/
3  A more complete explanation of the non 

grid-specific pointers is currently submitted 
for publication.
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Chapter  12

INTRODUCTION

Grid computing has emerged to cater the need 
of computing-on-demand (Jana, Chaudhuri, & 
Bhaumik, 2009) due to the advent of distributed 
computing with sophisticated load balancing, 

distributed data and concurrent computing power 
using clustered servers. The Grid enables resource 
sharing and dynamic allocation of computational 
resources, thus increasing access to distributed 
data, promoting operational flexibility and col-
laboration, and allowing service providers to scale 
efficiently to meet variable demands (Foster & 
Kesselman, 2004).
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ABSTRACT

Mobile Grid includes the characteristics of the Grid systems together with the peculiarities of Mobile 
Computing, with the additional feature of supporting mobile users and resources in a seamless, trans-
parent, secure, and efficient way. Security of these systems, due to their distributed and open nature, is 
considered a topic of great interest. We are elaborating a process of development to build secure mobile 
Grid systems considering security on all life cycles. In this chapter, we present the practical results ap-
plying our development process to a real case, specifically we apply the part of security requirements 
analysis to obtain and identify security requirements of a specific application following a set of tasks 
defined for helping us in the definition, identification, and specification of the security requirements on our 
case study. The process will help us to build a secure Grid application in a systematic and iterative way.
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Mobile computing is pervading our society 
and our lifestyles with a high momentum. Mobile 
computing with networked information systems 
help increase productivity and operational ef-
ficiency. This however, comes at a price. Mobile 
computing with networked information systems 
increases the risks for sensitive information sup-
porting critical functions in the organization which 
are open to attack (Talukder & Yavagal, 2006).

At first glance, it seems that the marriage of 
mobile wireless consumer devices with high-
performance Grid computing would be an unlikely 
match. After all, Grid computing to date has utilised 
multiprocessors and PCs as the computing nodes 
within its mesh. Consumer computing devices 
such as laptops and PDAs are typically restricted 
by reduced CPU, memory, secondary storage, and 
bandwidth capabilities. However, therein lies the 
challenge. The availability of wirelessly connected 
mobile devices has grown considerably within 
recent years, creating an enormous collective 
untapped potential for resource utilisation. To wit, 
recent market research shows that in 2008, 269 
million mobile phone and 36 million smartphone 
(Gartner, 2009) were sold worldwide, and that in 
2006, 17 million PDAs (Gartner, 2007) were sold 
worldwide. Although these individual computing 
devices may be resource-limited in isolation, as 
an aggregated sum, they have the potential to play 
a vital role within Grid computing (Phan, Huang, 
Ruiz, & Bagrodia, 2005).

Mobile Grid, in relevance to both Grid and 
Mobile Computing, is a full inheritor of Grid with 
the additional feature of supporting mobile users 
and resources in a seamless, transparent, secure 
and efficient way (Litke, Skoutas, & Varvarigou, 
2004). Grids and mobile Grids can be the ideal 
solution for many large scale applications being 
of dynamic nature and requiring transparency 
for users.

Security has been a central issue in grid com-
puting from the outset, and has been regarded as 
the most significant challenge for grid comput-
ing (Humphrey, Thompson, & Jackson, 2005). 

The characteristics of computational grids lead 
to security problems that are not addressed by 
existing security technologies for distributed 
systems (Foster, Kesselman, Tsudik, & Tuecke, 
1998; Welch et al., 2003). Security over the mobile 
platform is more critical due to the open nature of 
wireless networks. In addition, security is more 
difficult to implement into a mobile platform due 
to the limitations of resources in these devices 
(Bradford, Grizzell, Jay, & Jenkins, 2007).

The reasons that led us to focus on this topic 
are several: Firstly, the lack of adequate develop-
ment methods for this kind of systems since the 
majority of existing Grid applications have been 
built without a systematic development process 
and are based on ad-hoc developments (Dail et 
al., 2004; Kolonay & Sobolewski, 2004), sug-
gests the need for adapted development method-
ologies (Giorgini, Mouratidis, & Zannone, 2007; 
Graham, 2006; Jacobson, Booch, & Rumbaugh, 
1999; Open Group, 2009). Secondly, due to the 
fact that the resources in a Grid are expensive, 
dynamic, heterogeneous, geographically located 
and under the control of multiple administrative 
domains (Bhanwar & Bawa, 2008), and the tasks 
accomplished and the information exchanged are 
confidential and sensitive, the security of these 
systems is hard to achieve. And thirdly, because 
of the appearance of a new technology where se-
curity is fundamental together with the advances 
that mobile computation has experienced in recent 
years that have increased the difficulty of incor-
porating mobile devices into a Grid environment 
(Guan, Zaluska, & Roure, 2005; Jameel, Kalim, 
Sajjad, Lee, & Jeon, 2005; Kumar & Qureshi, 
2008; Kwok-Yan, Xi-Bin, Siu-Leung, Gu, & Jia-
Guang, 2004; Sajjad et al., 2005).

In this paper, we will apply the activity of 
security requirements analysis for obtaining a set 
of security requirements on a mobile grid environ-
ment for a case study of media domain where the 
mobile devices participate as actives resources. 
Using misuse cases and security use cases we 
obtain a vision about the threats and risks of the 
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system and about the security requirements and 
mechanisms that we must use to protect to our 
mobile grid system.

The rest of paper is organized as follows: First, 
we present the related work with this topic. Next, 
we will describe some of the security require-
ments most important on grid environments and 
will identify the common attacks that can appear 
on a mobile grid system. Later, we give a brief 
overview of our development process for mobile 
grid systems, we will describe the analysis activity 
and we will study one of the tasks of this activity, 
the “Identifying secure Mobile Grid Use Cases” 
task. After, we will present a case study and we 
will apply the task of identifying security require-
ments for obtaining a set of security requirements 
for our real application. Finally, we will finish by 
putting forward our conclusions as well as some 
research lines for our future work.

BACKGROUND

There are numerous approaches related to secure 
development processes but here we present some 
of those that we believe to be most interesting 
and that consider security as an important fac-
tor for success and application in Mobile Grid 
environments. Rational Unified Process (RUP) 
(Kruchten, 2000) describes how to effectively de-
ploy commercially proven approaches to software 
development for software development teams, 
although it does not specifically address security. 
One extension of the Unified Process is defined 
in (Steel, Nagappan, & Lai, 2005) in which the 
authors present a methodology for the integra-
tion of security into software systems which it 
is called the Secure Unified Process (SUP). SUP 
establishes the pre-requirements to incorporate the 
fundamental principles of security. It also defines 
an optimized design process of security within the 
life cycle of software development. The problem 
is that it is a very general approach that has to 
be adapted for each specific application that we 

wish to develop. The specific aspects of Mobile 
Grid systems necessitate the definition of new 
activities, artefacts, roles, techniques and security 
disciplines which are not considered in Secure UP. 
Another recent approach proposes the integration 
of security and systems engineering by using ele-
ments of UML within the Tropos methodology 
(Castro, Kolp, & Mylopoulos, 2001; Mouratidis 
& Giorgini, 2006). Secure Tropos (Mouratidis, 
2004) is an extension of the Tropos methodology 
(Bresciani, Giorgini, Giunchiglia, Mylopoulos, & 
Perin, 2004) and has been proposed to deal with 
the modelling and reasoning of security require-
ments and their transformation to design that 
satisfies them. There are many security aspects 
that cannot be captured as a result of the dynamic 
behaviour and mobile considerations of Mobile 
Grid systems.

Several approaches for the integration of the 
security in the development process for specific 
domains appear in the relevant literature. For 
example, in (Fernández-Medina & Piattini, 
2005), the authors propose a methodology with 
which to build multilevel databases, taking into 
consideration aspects of security (with regard to 
confidentiality) from the earliest stages to the end 
of the development process. SEDAWA (Trujillo, 
Soler, Fernández-Medina, & Piattini, 2009) is 
another approach that proposes a comprehensive 
methodology with which to develop secure Data 
Warehouses based on the MDA framework. Ap-
proaches which integrate security in the develop-
ment process for generic applications and systems 
also exist, such as for example, (Georg et al., 
2009) which proposes a methodology based on 
aspect-oriented modelling (AOM) with which to 
incorporate security mechanisms into an applica-
tion, and (Fernández-Medina, Jurjens, Trujillo, 
& Jajodia, 2009), whose authors explore current 
research challenges, ideas and approaches for 
employing Model-Driven Development to inte-
grate security into software systems development 
through an engineering-based approach, avoiding 
the traditional ad hoc security integration. None 
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of these approaches are defined and designed 
for Grid computing and none of them support 
mobile nodes.

A further approach (Jurjens, 2001, 2002) 
concentrates on providing a formal semantics for 
UML to integrate security considerations into the 
software design process. The approach presents 
UMLsec (Jan Jürjens, 2005) which is an extremely 
interesting approach which incorporates security 
properties into the UML model. UMLsec has 
been applied in security-critical systems and in 
the industrial context of a mobile communica-
tion system (J. Jürjens, Schreck, & Bartmann, 
2008; Popp, Jürjens, Wimmel, & Breu, 2003), 
and the security aspects of this kind of systems 
has been analyzed, but it has not been applied in 
Grid environments with specific security aspects. 
UMLsec is a perfect candidate to model the mobile 
security aspects within the diagrams of deploy-
ment, activity, classes, collaboration, etc., which 
complement to the use cases and describe the 
complete behavior of detailed way. Our approach 
models mobile Grid security aspects in use cases 
diagrams, so that our approach and UMLsec can 
work together to capture, between other things, the 
mobile security requirements in the different UML 
diagrams used in the analysis. A model driven 
architecture approach towards security engineer-
ing, called Model Driven Security, is introduced 
in reference (Basin, Doser, & Lodderstedt, 2003). 
This approach, called SecureUML (Basin & 
Doser, 2002), integrates role-based access control 
policies into a UML-based model-driven soft-
ware development process, but is not focused on 
Grid systems. The Comprehensive, Lightweight 
Application Security Process (CLASP) is a life-
cycle process that suggests a number of different 
activities throughout the development life cycle in 
an attempt to improve security (Graham, 2006). 
Finally, AEGIS (Flechais, Sasse, & Hailes, 2003) 
is the only approach found in which the authors 
attempt to apply the methodology to Grid systems, 
although they do not explain how to do this, and do 
not define guidelines and practices with which to 

capture specific security aspects in Grid systems. 
This approach should be adapted to the necessities 
and features of Grid systems.

We conclude that the existing proposals are 
not specific enough to provide a complete solu-
tion of security under a systematic development 
process for Mobile Grid environments. This is due 
to the fact that none of the approaches defines a 
systematic development process for this specific 
kind of systems that incorporates security from 
the earliest stages of the development. The ap-
proaches which provide security to the software 
development processes for Mobile Grid systems 
are scant or nonexistent, because the secure de-
velopment approaches are not focused on Grid 
systems and they do not take into account mobile 
devices. Thus, reflected the need to advance in the 
study of new contributions to the secure system-
atic development of Grid systems incorporating 
mobile devices.

SECURITY REQUIREMENTS 
AND ATTACKS ON A 
MOBILE GRID SYSTEM

Defining Security Requirements

The special security requirements of Grid applica-
tions derive mainly from the dynamic nature of 
Grid applications and the notion of virtual orga-
nization (VO), which requires the establishment 
of trust across organizational boundaries. In this 
kind of environment, security relationships can be 
dynamically established among hundreds of pro-
cesses spanning several administrative domains, 
each one with its own security policies. As a result, 
the Grid security requirements are complex and 
pose significant new challenges.

The most common general security require-
ments and challenges associated with Grids and 
Mobile systems (Bellavista & Corradi, 2006; 
Foster & Kesselman, 2004; Nagaratnam et al., 
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2003; Open Grid Forum, 2006; Vivas, López, & 
Montenegro, 2007) are presented below:

• Authentication. Authentication mecha-
nisms and policies are supposed to con-
stitute the basis on which local security 
policies can be integrated within a VO. 
Difficult issues with respect to authentica-
tion in Grids are scalability, trust across 
different certification authorities, revoca-
tion, key management, and delegation.

• Confidentiality. The nature of Grids forc-
es data to be stored in accessible online 
databases. Confidential code may be re-
quested to execute on a remote host, and 
confidential data may need to be used at 
remote locations. Data may also need to be 
replicated at multiple sites, and thus should 
be stored in an encrypted form and remain 
consistent throughout.

• Integrity. Many applications have strong 
code or data integrity concerns. The trust 
status of remote resources is important 
when data arises from remote processing 
as the accuracy of results can be trusted 
only to the extent that the remote host gen-
erating the data is trusted.

• Authorization and access control. 
Authorization refers to the ability to con-
trol the level of access that individuals or 
entities have to a wireless network or re-
source and how much information they can 
receive. In Grids local access mechanisms 
should be applied whenever possible, and 
the owner of a resource should be able to 
enforce local user authorization.

• Revocation. Revocation is crucial for au-
thentication in case of a compromised key 
and for authorization when a VO is ter-
minated or a user or mobile user proves 
untrustworthy.

• Distributed trust. Trust is a complex theo-
retical issue. A Grid must be constructed 
in a dynamic fashion from components 

whose trust status is hard to determine. 
Determining trust relations between partic-
ipant entities in the presence of delegation 
is important, and delegation mechanisms 
must rely upon stringent trust requirements.

• Freshness. Freshness is related to authen-
tication and authorization and is important 
in many Grid applications. Validity of a 
user’s proof of authentication and authori-
zation is an issue when user rights are del-
egated and the duration of a job may span 
several weeks.

• Scalability. A Grid must be easy to extend 
and capable of progressive replacement in 
mobile environments. Fault recovery and 
dynamic optimization should be usually 
possible, and degradation should happen 
gracefully.

• Trust. Trust refers to the assured reliance 
on someone or something. Since VOs can 
span multiple security domains, trust re-
lationships between domains are of para-
mount importance. Sites in a Grid must be 
able to enter into trust relationships with 
Grid users, mobile users and maybe other 
Grid sites as well. In a Grid environment 
trust is usually established through ex-
change of credentials, either on a session 
or a request basis.

• Single sign-on. A user should be able to 
authenticate only once, whereupon he may 
acquire, use and release resources without 
further authentication in different domains 
of the Grid. Users may want to initiate 
computations running for long periods of 
time without needing to remain logged on 
all the time.

• Delegation. Privilege delegation for op-
erations executed by a proxy is a basic re-
quirement for Grid environments, among 
other reasons in order to satisfy the single 
sign-on requirement. Delegation of user 
rights depends upon the security require-
ments of the application.
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• Privacy. Privacy is the ability to keep infor-
mation from being disclosed to determined 
actors. Privacy can be important in many 
Grid applications, for instance in medi-
cal and health Grids (Herveg, Crazzolara, 
Middleton, Marvin, & Poullet, 2004). It 
is also very important in mobile devices 
with limited memory and whose access is 
through wireless networks.

• Non-repudiation. Non-repudiation refers 
to the inability to falsely deny the perfor-
mance of some action. It is especially im-
portant in e-commerce involving money 
transactions and mobile environments. 
With the advent of Enterprise Grid this re-
quirement becomes very important.

• Credentials. Interdomain access requires a 
uniform way of expressing the identities of 
users or resources, and must thus employ 
a standard for the encoding of credentials. 
In many scenarios, a job initiated by a user 
may take longer than the life span of the 
user’s initially delegated credential. In 
those cases, the user needs the ability to be 
notified prior to expiration of the creden-
tials, or the ability to refresh those creden-
tials such that the job can be completed.

• Exportability. Code is required to be ex-
portable and executable in multinational 
testbeds. As a result, bulk encryption can-
not be required.

• Secure group communication. 
Authenticated communications for dynam-
ic groups is required since the composition 
of a process group may change dynami-
cally during execution.

• Multiple implementations. It should be 
possible to enforce security requirements 
with distinct security technologies and 
mechanisms.

• Interoperability. In the context of mobile 
Grids, interoperability means that services 
within a single VO must be able to com-
municate across heterogeneous domains. 

Interoperability guarantees that services 
located in different administrative domains 
are able to interact at multiple levels.

• Interoperability with local security solu-
tions. Access to local resources is normally 
enforced by local security policies and 
mechanisms. Interoperability between sites 
and domains with different local policies is 
necessary in a mobile Grid environment. In 
order to accommodate interdomain access, 
one or several entities in a domain may 
act as agents of external entities for local 
resources.

• Integration. In order to allow the use of 
existing services and resources, integration 
requirements call for the establishment of 
an extensible architecture with standard in-
terfaces. Security integration is facilitated 
by the use of existing security mechanisms. 
Uniform credentials and certification in-
frastructure. A common way of expressing 
identity, e.g. by a standard such as X.509, 
is necessary for interdomain access.

• Policy exchange. Allow service requestors 
and providers to exchange dynamically se-
curity (among other) policy information to 
establish a negotiated security context be-
tween them.

• Secure logging. Provide all services, in-
cluding security services themselves, with 
facilities for time-stamping and securely 
logging any kind of operational informa-
tion or event in the course of time - secure-
ly meaning here reliably and accurately, 
i.e. so that such collection is neither inter-
ruptible nor alterable by adverse agents.

• Assurance. Provide means to qualify the 
security assurance level that can be expect-
ed of a hosting environment.

• Manageability. Explicitly recognize the 
need for manageability of security func-
tionality within the OGSA security model. 
For example, identity management, policy 
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management, key management, and so 
forth.

• Firewall traversal. A major barrier to 
dynamic, cross-domain Grid comput-
ing today is the existence of firewalls. As 
noted above, firewalls provide limited 
value within a dynamic Grid environment. 
However, it is also the case that firewalls 
are unlikely to disappear anytime soon.

• Anonymity. Anonymity is the state of being 
not identifiable within a set of principles 
(Pitzmann & Köhntopp, 2001). Preserving 
anonymity is of greater concern in mobile 
systems for several reasons. Mobile sys-
tems yield more easily to eavesdropping 
and tapping, compared to fixed networks, 
making it easier to tap into communication 
channels and obtain user information.

• Mobility. Because mobile devices come 
with many capabilities, mobile applica-
tions must run on a wide variety of de-
vices, including the devices embedded in 
various environments and devices carried 
by users. Applications must also support 
varying levels of network connectivity.

• Self-organization. The wireless networks 
topology must be adapted in case of node 
or system compromise and failure. If a ma-
licious node discloses the network topol-
ogy, routing establishment paths may be 
affected as well.

All these security requirements must be identi-
fied and analyzed in the analysis activity of our 
development process from the mobile grid security 
use cases defined in this activity and that we will 
explain further on.

Defining Attacks on Mobile 
Grid Environments

According to (Enterprise Grid Alliance Security 
Working Group, 2005), the following include 

some of the threats and risks based on the unique 
characteristics of an enterprise Grid:

• Access control attacks: defines risks with 
unauthorized entities, as well as authorized 
entities, bypassing or defeating access con-
trol policy.

• Mobile colluding attackers: adversaries 
having different levels of attacking ability 
can collaborate through separate channels 
to combine their knowledge and to coordi-
nate their attacking activities. This realizes 
the strongest power at the adversary side.

• Defeating Grid auditing and accounting 
systems: includes threats to the integrity of 
auditing and accounting systems unique to 
an enterprise Grid environment. This may 
include false event injection, overflow, 
event modification, and a variety of other 
common attacks against auditing systems.

• Denial of Service (DoS): this describes an 
attack on service or resource availability. 
As an enterprise Grid is often expected to 
provide a better availability compared to a 
non-Grid environment, the following DoS 
threats must be considered as part of a risk 
assessment:
 ◦ DoS attack against the Grid compo-

nent join protocol to prevent new au-
thorized Grid components/users from 
successfully joining.

 ◦ Authorized Grid component or user is 
“forced” to leave the grid.

 ◦ User or service attempts to flood the 
Grid with excessive workload which 
may cause compute, network and/or 
storage components to become ex-
hausted, or the latency to access those 
resources significantly impacts other 
Grid users.

 ◦ Altering scheduling (or other Quality 
of Service) priorities that have been 
defined for Grid components to un-
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fairly prioritize one application/ser-
vice over another.

• Malicious code/“malware”: this describes 
any code that attempts to gain unauthorized 
access to the Grid environment, to subse-
quently elevate its privileges, hide its exis-
tence, disguise itself as a valid component, 
or propagate itself in clear violation of the 
security policy of the enterprise Grid.

• Masquerading attacks: describes a class of 
attacks where a valid Grid component may 
be fooled into communicating or working 
with another entity masquerading as valid 
Grid component. Such an attack could per-
mit the disclosure or modification of in-
formation, the execution of unauthorized 
transactions, etc.

• Mobile eavesdropper and traffic analyst: 
such an adversary can at least perform 
eavesdropping and collect as much infor-
mation as possible from intercepted traf-
fic. It is mobile and equipped with GPS 
to know its exact location. The minimum 
traffic it can intercept is the routing traffic 
from the legitimate side. An eavesdropper 
with enough resources is capable of ana-
lyzing intercepted traffic on the scene. This 
ability gives the traffic analyst quick turn-
around action time about the event it de-
tects, and imposes serious physical threats 
to mobile nodes.

• Mobile node intruder: if adequate physical 
protection cannot be guaranteed for every 
mobile node, node compromise is inevita-
ble within a long time window. A success-
ful passive node intruder is protocol com-
pliant, thus hard to detect. It participates 
in collaborative network operations (e.g., 
ad hoc routing) to boost its attack strength 
against mobile anonymity; thus it threat-
ens the entire network including all other 
uncompromised nodes. This implies that a 
countermeasure must not be vulnerable to 
a single point of compromise.

• Object reuse: this describes how sensitive 
data may become available to an unau-
thorized user, and used in a context other 
than the one for which it was generated. 
In the enterprise grid context, this is a 
risk if a Grid component is not properly 
decommissioned.

• Sniffing/snooping: involves watching 
packets as they travel through the network. 
An enterprise Grid potentially introduces 
additional network traffic between applica-
tions/services, the system and grid compo-
nents that should be protected. Failure to 
address this threat may result in other types 
of attacks including data manipulation and 
replay attacks.

In addition to these, it is also necessary to adopt 
the general security mechanisms applicable in any 
enterprise scale IT infrastructure, and includes 
physical security to protect against threats from 
humans (either malicious or accidental) as well 
as man-made and natural catastrophes.

OVERVIEW OF OUR PROCESS

A. Process of Development

The process is designed for building software 
systems based on Mobile Grid computing with 
security aspects. It is a process which builds, from 
initial requirements and needs of Mobile Grid 
systems, a secure executable software product. 
It is not a process for including only security in 
a development process but it is a development 
process in itself incorporating security aspects 
during all the process.

Our systematic process of development 
(Rosado, Fernández-Medina, López, & Piattini, 
2008) is an iterative and incremental process. An 
iterative approach refers to the cyclic nature of 
the process in which activities are repeated in a 
structured manner and proposes an understanding 
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of the problem through successive refinements, 
and an incremental growth of an effective solution 
through several versions. Thus, in each iteration 
of the process, new and necessary characteristics 
can be added and extended so that a complete final 
design is obtained. Also, it is a reusable process 
in the sense of the utilization of artifacts built in 
others executions of this process or in previous 
iterations which have been validated and tested 
and that improve the quality of the new artifacts 
built and save developers’ time and effort.

The structure of the process which we propose 
follows the classical cycle, in which we find a 
planning phase, a development phase including 
analysis, design and construction and finally a 
maintenance phase. The phases of planning and 
maintenance are common phases which any de-
velopment of information systems has to define, 
so we move on a generic development process to 
carry out the activities and tasks of these phases. 
Thus, our work focuses on defining what is really 
specific and differentiating in developing systems 
based on Grid computing, the development phase. 
This phase consists of three activities, analysis, 
design and construction, and each of them de-
fines the specific tasks necessary, the artifacts to 
be used, and the steps to take to analyze, design 
and build specific information systems as Mobile 
Grid systems are.

Therefore, the main block of this process con-
sists of a requirements analysis activity driven by 
use cases (Rosado, Fernández-Medina, López, & 
Piattini, 2010a), a design activity that focuses on 
architecture (Rosado, Fernández-Medina, López, 
& Piattini, 2011), and construction activity ori-
ented to implementation. All these activities are 
supported by a repository where different reus-
able elements which can be used in the different 
activities and tasks of the process are stored. These 
reusable elements are use cases and security use 
cases diagrams oriented to Grid systems to be 
reused in the analysis activity to capture the secu-
rity requirements (Rosado, Fernández-Medina, & 
López, 2009a, 2009b, 2009c; Rosado, Fernández-

Medina, López, & Piattini, 2010b); a reference 
security architecture (Rosado, Fernández-Medina, 
& López, 2011b) where we define security ser-
vices for Mobile Grid environments reused in the 
design activity which guarantees that the system 
is built under a secure environment and meets all 
the requirements and security needs of the system; 
and implemented interfaces based on Grid tools 
and platforms (as Globus) to be reused in the 
construction activity (See Figure 1).

In this paper, we study one of the tasks of the 
secure mobile grid system analysis activity, the 
Identification of secure Mobile Grid Use Cases 
task whose steps can be seen in Figure 3. In this 
task we identify threats and risks related to mobile 
grid environments which attack assets that we 
want to protect, and we build the diagrams of 
security use cases and misuse cases for mobile 
grid environments considering these assets, threats 
and attacks.

B. Secure Mobile Grid 
System Analysis Activity

The analysis activity is based on use cases in which 
we define the behaviour, actions and interactions 
with those implied by the system (actors) to obtain 
a first approach to the needs and requirements 
(functional and non-functional) of the system to be 
constructed. This activity is supported by reposi-
tories in which several types of elements appear: 
Firstly, the elements that have been developed in 
earlier stages; secondly, those that have been built 
at the beginning of the process and finally, those 
that come from other executions of the process 
from which we have obtained elements that can 
be reused by other applications. Reuse is appro-
priate here thanks both to the common features 
of applications based on Grid computing (CPU 
intensive, data intensive, collaborative and so on) 
and to the fact that these applications use mobile 
devices. Therefore, we must abstract all the com-
mon features (by analyzing the main features of 
Grid applications and constructing, for example, 
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generic use case diagrams in which all these 
common features are represented) and make them 
available for the process (through the repository) 
in order to be able to use the common elements in 
any activity and adapt them to our needs.

The analysis activity is composed of tasks 
which build use case diagrams and specifications 
to obtain the analysis model in which the require-
ments are defined. This activity produces internal 
artifacts which are the output of some tasks and 
the input of others. All these internal artifacts are 
included in the analysis model to be used in the 
following activities if this is necessary. Figure 2 
shows a graphical representation of the analysis 
activity tasks using SPEM 2.0 diagrams.

In this subsection, we describe the analysis 
activity, enumerating and describing briefly what 

tasks are parts of this activity. This analysis activ-
ity is composed of six tasks (see Figure 2):

1.  Defining Use Cases of the application. 
The purpose of this task is to define the 
functional use cases of the application 
identified from the stakeholder needs and 
study the interactions with the user without 
considering the specific aspects of Mobile 
Grid environments.

2.  Identifying secure Mobile Grid Use Cases. 
In this task we study the security aspects 
of the application within the Mobile Grid 
context and identify the possible security use 
cases and misuse cases that can be reused 
from those defined in the repository, for the 
system in development.

Figure 1. Development process for secure Mobile Grid systems with SPEM 2.0
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3.  Building secure Mobile Grid Use Cases 
diagram. Once the use cases have been 
identified and defined, we build the overall 
use case diagram (or diagrams) in which we 
define the relationships between all the use 
cases and actors previously identified, and 
we describe the information from all the 
diagram’s elements by following a new UML 
profile for Mobile Grid use cases (Rosado, 
Fernández-Medina, López, & Piattini, 
2011a). We can also reuse and integrate 
some diagrams with common features of 
the repository which have been previously 
built for Mobile Grid environments.

4.  Supporting with UML models. In this task we 
complete the analysis model with different 
UML models such as the sequence and col-
laboration diagrams according to use cases 
and scenarios, or class diagrams for an initial 
structural description of the system from the 
use cases diagrams built in previous tasks.

5.  Verifying Analysis Model. The purpose of 
this task is to verify that the artifacts have 
been correctly generated and the possible 
conflicts or errors in the analysis model 

have to be identified and analyzed for their 
subsequent refinements and corrections in 
next iterations of this activity.

6.  Specifying Requirements. This task consists 
of the formal definition of the requirements 
identified in previous tasks (functional 
requirements and non-functional require-
ments including security) in natural language 
(though a template of requirements specifi-
cation will be defined in the future).

Once we have described the tasks of the analy-
sis activity, we will explain the task 2, which is in 
charge of analyzing security requirements for the 
mobile grid system, and we apply the steps of this 
task in a case study. This task have been improved 
and updated with regard to the published work in 
(Rosado, Fernández-Medina et al., 2009b).

C. Task 2: Definition of secure 
Mobile Grid Use Cases

In this task, a study of the system security must 
be carried out before identifying the security use 
cases and misuse cases of the repository. First, 

Figure 2. Tasks and artifacts of the Secure Mobile Grid System Analysis activity
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generic Grid use cases that are common to many 
Grid applications are identified of the repository 
because will take part in the application analysis. 
Secondly, assets that we wish to protect should be 
identified; thirdly, the possible threats and attacks 
to these assets should be defined and the risk as-
sociated with these threats should be studied. The 
security use cases and misuse cases should then 
be defined, thus obtaining certain elements of the 
reusable repository such as the misuse cases for 
the system and the security use cases that miti-
gate them. Finally, a security assessment should 
be carried out. Some of the security use cases 
and misuse cases identified for the application 
are therefore stored in the repository and can be 
reused for this specific application since they are 
part of the secure Mobile Grid UC output artifact.

During this task, it is possible to discover new 
use cases which are suitable for incorporation into 
the repository, or we may wish to modify or update 
existing use cases in the repository. The repository 
is an input and output artifact from which we can 
obtain different elements and add or create new 
ones. Also, we have to consider possible conflicts 
between Grid use cases, security use cases and 
misuse cases and solve them in this iteration.

A set of steps will serve as a guide for defining 
and specifying security requirements for mobile 
grid systems. Figure 3 shows the steps of this task 
using SPEM 2.0 diagrams.

• Step 2.1. Identify generic Grid UC: Once 
we have defined the use cases of the appli-
cation in the task 1, we have to identify 
which are the generic Grid use cases that 
are related to the use cases of the applica-
tion. To define the Grid use cases we will 
use the GridUCSec-profile defined as a 
model of the process (Rosado, Fernández-
Medina, López et al., 2011a; Rosado, 
Fernández-Medina et al., 2010b) and using 
the repository where a large set of Grid use 
cases are defined.

• Step 2.2: Identify Security Assets: The se-
curity assets for a grid with mobile devices 
depend on the characteristics and type of 
system to be built. The CPU-intensive ap-
plications will consider resources as main 
assets while data-intensive applications 
will consider data as main assets to protect.

• Step 2.3: Identify Threats, Attacks and 
Risks. The threats analysis is the process of 
identifying, as many risks that can affect 
the assets as possible. A well-done threat 
analysis performed by experienced people 
would likely identify most known risks, 
providing a level of confidence in the sys-
tem that will allow the business to proceed. 
In previous section the most important 
threats and attacks for these environments 
have been defined.

Figure 3. Task 2: Identifying secure Mobile Grid UC
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• Step 2.4: Identify Security Use Cases and 
Misuse Cases: Once we have identified 
the threats and vulnerabilities for Grid 
environments and mobile computation, 
we can identify the security use cases and 
misuse cases where threats, attacks and 
security identified in the previous step are 
expressed and represented in these use 
cases indicating the assets to protect, the 
security objectives to achieve and the secu-
rity requirements that the system must ful-
fill through of our UML profile (Rosado, 
Fernández-Medina, López et al., 2011a; 
Rosado, Fernández-Medina et al., 2010b).

• Step 2.5: Security Assessment: It is neces-
sary to assess whether the threats are rel-
evant according to the security level speci-
fied by the security objectives. Then, we 
have to estimate the security risks based 
on the relevant threats, their likelihood 
and their potential negative impacts, in 
other words, we have to estimate the im-
pact (what may happen) and risk (what will 
probably happen) which the assets in the 
system are exposed to. We have to interpret 
the meaning of impact and risk.

Therefore, the aim of this activity is identify 
security use cases and misuse cases correctly 
defined where all security requirements of our 
system are represented and identified.

We shall now provide a detailed description of 
this task that we have considered in our process 
using the SPEM 2.0 textual notation. We define the 
roles, steps, work products and guidance, which 
will be characterized according to the discipline 
that they belong to. According to SPEM, the task 
2 is described by using the structure shown in 
Figure 4. Each task specifies WorkProductUse as 
both input and output respectively, the roles that 
perform or participate in this RoleUse task, and 
the collection of Steps defined for a Task Defini-
tion which represents all the work that should be 

carried out to achieve the overall development 
goal of the Definition task.

As a result of this task, we will obtain the fol-
lowing artifacts: generic Grid use cases and secure 
Mobile Grid use cases. The roles which will take 
part in this task are: Client or Expert user, Use 
Case Specifier, Security Requirements Engineer, 
Security Analyst and Mobile Grid Specialist.

Regarding the techniques and practices for the 
realization of this task, we can found: meetings 
and interviews with the involved, security use 
cases and misuse cases and cost/effort-benefit 
and analysis risks.

CASE STUDY

Our development process will be validated with 
a business application in the Media domain (see 
Figure 5) attempting to solve existing problems 
in this domain. The process will help us to build 
a Mobile Grid application, which will allow 
journalists and photographers (actors of media 
domain) to make their work available to a trusted 
network of peers the same instant it is produced, 
either from desktop or mobile devices.

With the explosion of ultra portable photo/
video capture media (i.e. based on mobile phones, 
PDAs or solid state camcorders) everyone can 
capture reasonably good quality audiovisual 
material while on the move. We want to build a 
system that will cater for the reporter who is on 
the move with lightweight equipment and wishes 
to capture and transmit news content. This user 
needs to safely and quickly upload the media to 
a secure server to make it easier for others to ac-
cess, and to avoid situations where his device’s 
battery dies or another malfunction destroys or 
makes his media unavailable.

In the media domain, both the distributions 
of content, and the need for rapid access to this 
content, are apparent. News is inherently distrib-
uted everywhere and its value falls geometrically 
with time. These two reasons make the need for 
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Grid technology evident in both scenarios which 
represent, however, a plethora of relevant business 
cases which share these two common characteris-
tics: the need for fast access to distributed content.

Following the process of analysis defined in 
the definition of mobile grid security use cases 
activity aforementioned, we will identify and 
analyze security requirements involved in this case 
study helping of security repository and mobile 
grid security uses cases. For all possible use cases 
defined for this application, we are only going to 
consider three use cases (due to space constraints), 

defined in Table 1, which we are going to work 
with in the following tasks.

Once we have identified some of functional 
use cases of the application, now, we must iden-
tify all the use cases and security use cases for 
the Grid system that are related to the functional 
use cases of the application. These use cases for 
the Grid system include Grid use cases, security 
use cases, Grid security use cases, misuse cases 
and mobile use cases together with Grid actors 
and Misactors, all of them defined with the Gri-
dUCSec-profile.

Figure 4. Detailed description of the Task 2 using SPEM 2.0
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We use the reusable artifacts of the repository 
where many of these use cases for Grid systems 
and diagrams that can be easily used in this ap-
plication and that help us obtain use cases, actors 
and associations that are necessary in this applica-
tion are defined.

To identify the use cases and security use cases 
of the Grid system, we have to follow the steps 
defined in this task of the SecMobGrid process. 
Next we apply each one of these steps for this 
application.

Step 2.1: Identify Generic Grid 
UC for the application

We must act on the repository of Grid use cases 
to identify the generic Grid use cases that are 
needed to extract and that are related to the use 

cases defined in the previous task. In the repository 
we have a set of generic use cases which have a 
common behaviour for any Grid systems and have 
been identified in other executions of the process 
and that can be used in this application. We select 
some of these generic Grid use cases that have 
relation with the functional use cases identified 
previously and which are defined in Table 2.

Step 2.2: Identify Security Assets

On mobile Grid environments we can identify a 
set of assets that we must protect for obtaining a 
secure grid system, which are the following: User 
and system data (stored, transmitted); Identity in-
formation; Credentials (private keys, passwords); 
Accounting; CPU-/Storage-/Mobile devices-/
Network-resources; General system.

Figure 5. Mobile Grid Computing system for Media application
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In this first iteration of our case study, we define 
the most important assets related to the use cases 
aforementioned that we must protect and that 
are the reference for the identification of threats, 
attacks and security use cases. These assets are:

• Personal information about the journalist 
or editors: name, age, address, subscrip-
tions, salaries. All this personal informa-
tion is stored in the system and must be 
protected from unauthorized access.

• Media information used: photos, articles, 
recordings, videos, intellectual property 
rights. This information is of a profession-
al nature and will be exchanged between 
Grid users and stored in different localiza-
tions of the Grid system for an easy and 
quick acess.

• Exchange information: messages, queries, 
transactions. The data transmitted between 
Grid elements (users, resources, server, 

etc.) which contain sensitive information 
that have to be protected from external dis-
closure or alteration.

Step 2.3: Identify Threats, 
Attacks and Risks

The set of threats and attacks that can occur in a 
Mobile Grid system is similar to that produced 
in a distributed system by adding those occurring 
in the mobile environment with wireless network 
and limited resources.

Examples of threats are unauthorized disclo-
sure of information, attacks to the content of a 
message through wireless links, denial-of-service 
attacks, network authentication related attacks, 
physical node attacks, alteration of information, 
and so on. In Table 3 we can see the threats con-
sidered for the assets identified in Mobile Grid 
environments.

Table 1. Use cases 

Use Case Name Add/edit Mobile user

Goals/Description Provide authentication mechanisms

Scenario example All users must be subscribed in the Grid

Description - A new user fills in or edits an electronic subscription form with his/her profile information 
- The Grid administrator adds a new user to the system by approving the form or approves the user profile 
change

Use Case Name Search for news

Goals/Description

A journalist can search for news material through the system interface in: 
1. public sources 
2. his organisation’s historical archive 
3. trusted commercial portals according to the subscriptions paid-for.

Scenario example The journalist familiarizes himself with the topic

Description
- A user formulates a search query 
- The user selects sources to search from a list 
- The user submits the query

Use Case Name Get query results

Goals/Description Receive query results from available repositories

Scenario example The Journalist receives a list with the results of the search query

Description

- The system returns results based on the metadata description of the stored material. 
- Results can be sorted according to the journalist’s needs, such as thematic groups. 
- Visualization of results is based on the end user device capabilities (low resolution video for mobile 
devices)
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In this first iteration, we can identify several 
possible types of threats to Information:

• Unauthorized access to Grid system. In 
this scenario, the user wants to login the 
system, so that we must ensure authorized 
access.

• Unauthorized disclosure and alteration of 
information. The user can send informa-
tion to the system or receive from the sys-
tem, so that we must protect the informa-
tion both transmitted and stored. Also we 
must protect the personal information that 
is transported through credentials.

• Masquerade. An attacker masquerades as a 
certain user, access the Grid and sends re-
quests and obtains data from the Grid with 

the stolen credentials of a legal user. Such 
an attack could permit the disclosure or 
modification of information, the execution 
of unauthorized transactions, etc.

Step 2.4: Identify the Security 
Use Cases and Misuse Cases

Once we have defined the most significant threats 
and major assets to be protected in this first itera-
tion, we start with the identification, definition and 
incorporation of security use cases and misuse 
cases for the application.

In the repository, the main security use cases 
for Mobile Grid environments, and misuse cases 
that capture the behaviour of the main threats 
identified in these environments are defined. We 

Table 2. Generic Grid Use Cases defined in the repository 

Grid UC Name User Register

Goals/Description Register a user in the Grid before the user can send jobs or access to the Grid.

Scenario example A new user fills in a form with information (username, role, domain, resource, credential type, etc.) and 
the form is stored in the Grid.

Description - A user gives information to register in the Grid system 
- The Grid system processes this information and stores it in the Grid 
- The user obtains the Grid system a username and password to log in.

Grid UC Name Request of query

Goals/Description Make a query to the Grid

Scenario example A user wants to obtain information about a topic (pictures, news, videos, etc.) and s/he requests the Grid 
with this query and waits for the results.

Description - A query is received in the Grid 
- The Grid processes the query and sent it to appropriate target 
- The target executes the query and returns results

Grid UC Name Data Retrieve

Goals/Description Retrieve data requested

Scenario example The Grid retrieves data of the resources indicated by the request

Description - A request of retrieval of data has been authorized 
- The request is processed and the task is sent to the resource where data is stored 
- The resource returns requested data

Grid UC Name Send results

Goals/Description The results obtained are sent to the mobile device which initiated the request.

Scenario example The results of a query are appropriately formatted to be shown on the screen of the mobile device.

Description - The result of a query o request is obtained in the Grid when the task or subtasks have finished. 
- The Grid studies the sender to know the resource display, memory, cpu, etc. and to send the results in 
the right format



197

Identifying Secure Mobile Grid Use Cases

can identify those security use cases and misuse 
cases that fit in with the attacks and threats for 
this application identified in the previous step.

In this first iteration, the misuse cases that we 
have found in the repository and that fit in with 
the threats identified for this application are: 
Alteration info, Disclosure info, Unauthorized 
access and Masquerade.

In the repository, these misuse cases are de-
fined in a generic way, therefore, we have to adapt 
them to this case study with the specific elements 
(actors, messages, assets, etc.) of this application. 
Table 4 shows the definition of these misuse cases.

With these misuse cases, we can identify se-
curity use cases that mitigate them observing the 
information offered by the repository for secu-
rity use cases and the diagrams defined where we 
can see the relationships of mitigation between 
security use cases and misuse cases. In case that 
the required use cases are not in the repository 
we can define them and specify relationships as 
it is convenient.

We find in the repository the security use 
cases (including Grid security use cases and Grid 
actors) that are related to the misuse cases identi-

fied. These security use cases are: Authenticate, 
Authorize access, Ensure Confidentiality and 
Ensure Integrity.

Some security use cases have different in-
stances depending on the use case path defined 
(Firesmith, 2003) so that we have to define some of 
them relating to the assets and misuse cases identi-
fied in this first iteration. For example, “Ensure 
Integrity” security use case has three instances, 
one related to message integrity from Grid to user, 
other related to message from user to Grid, and 
other related to data stored in the Grid. All these 
paths are important to be taken into account in the 
application, but here we only show one of them 
for simplicity making the same analysis for the 
rest of paths of these security use cases.

Table 5 shows the instances of the security use 
cases selected in this first iteration and which are 
defined in the Grid use cases repository. These 
security use cases selected are related to misuse 
cases identified previously mitigating the threats 
and attacks defined in such misuse cases.

Table 3. Assets and threats 

Assets Threats

User and system data (stored, transmitted) - Unauthorized access (stored data) 
- Eavesdropping (transmitted data) 
- Unauthorized publishing 
- Manipulation 
- Erroneous data

Identity information - Eavesdropping 
- Manipulation

Credentials (private keys, passwords) - Theft / Spoofing (masquerade as a certain user, illegal use of software) 
- Publishing

Accounting - Manipulation of log entries, CPU/memory usage, number and size of processes 
- Acquire information about competitor’s work

CPU-/Storage-/Mobile devices-/Network-
resources

- Misuse (e.g. Spambot) 
- Denial of Service

General System - Security holes / exploits 
- Malicious / compromised resources 
- Backdoors, viruses, worms, Trojan horses
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Table 4. Misuse Cases for the case study 

Misuse Case Alteration of information (MC1)

Attack Attack on the content of a message (integrity).

Summary The external attacker type gains access to the message exchanged between the journalist and the Grid system, and 
modifies the part of the message that contains the media information with the intention of changing its meaning 
by modifying some aspects of the information like authors, dates, or secrecy information.

Preconditions

1) The external attacker has physical access to the message.

2) The external attacker has a clear knowledge of where the secrecy information is located within the message.

Interactions

1  User Interactions The journalist sends a query message for obtaining media information

2  Misuser Interactions The external attacker intercepts it and identifies the part of the message to modify the media information and he/
she forwards it to the media Grid.

3  System Interactions
The Media Grid receives the corrupted message and processes it incorrectly due to its altered semantic content. 
That is, it establishes that the journalist wishes as new media information that media information which has been 
modified by the attacker

Postconditions

1)  The Media Grid will remain in a state of error with regard to the original intentions of the journalist.

2)  In the register of the system in which the media Grid was executed, the request received with an altered semantic content will be reflected.

Misuse Case Disclosure of information (MC2)

Attack Attack on the confidentiality of a message from Grid system to user

Summary The external attacker type gains access to the message exchanged between the journalist and the Grid system, and 
reads a specific piece of information.

Preconditions

1) The external attacker has physical access to the message.

Interactions

1  User Interactions The journalist sends a query message for obtaining media information

2  System Interactions The Grid system receives the query message and processes it. The Grid system returns the media information 
related to the query to the journalist

3  Misuser Interactions The external attacker intercepts it and reads the part of the message that contains the media information and he/
she forwards it to the journalist

4  User Interactions The journalist wishes as new media information that media information which has been intercepted by the attacker.

Postconditions

1) The Grid system will remain in a normal state and the journalist continues without realizing the interception of information by the attacker

Misuse Case Unauthorized access (MC3)

Attack Attack on the access rights and privileges to the Grid system.

Summary The external attacker type gains access to the Grid system.

Preconditions

1) The external attacker has physical access to the system and access messages.

Interactions

1  Misuser Interactions The unauthorized user wants to login the system with the username/password or presenting a certificate.

2  System Interactions The Grid system receives the access request and it allows the access to the Grid.

3  Misuser Interactions The attacker sends queries to the Grid to obtain sensitive information or for storing harmful data for the system.

4  System Interactions The Grid system receives the queries processes them and executes them.
continued on following page
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Table 4. continued

Misuse Case Alteration of information (MC1)

Postconditions

1) The Grid system must not allow the access to unauthorized users

Misuse Case Masquerade (MC4)

Attack Attack on authorized user

Summary The external attacker type pretends to be an authorized user of a system in order to gain access to it or to gain 
greater privileges than those it is authorized for.

Preconditions

1) The external attacker has physical access to the system and the messages exchanged between the user and the Grid.

Interactions

1  User Interactions The journalist sends a request to the Grid to execute certain task.

2  Misuser Interactions The attacker intercepts the request and obtains privileges information and authorized information of the user 
(credentials, roles, rights, etc.)

3  Misuser Interactions The attacker sends requests to the Grid presenting authorized credentials of certain authorized user.

4  System Interactions The Grid system receives these requests of the authorized attacker and executes the harmful actions.

Postconditions

1) The Grid system must check the identity of the user who sends requests.

2) The Grid system must check the privileges and certificates presented by the user and the authenticity of the certificates.

Table 5. Security use cases for the case study 

Security Use Case Ensure Integrity (SUC1)

Use Case Path System Message Integrity

Security Threat A misuser corrupts a message from the system to a user.

Preconditions

1) The misuser has the means to intercept a message from the system to a user.

2) The misuser has the means to modify an intercepted messag

3) The misuser has the means to forward the modified message to the user.

Interactions

1
System Interactions The system sends a message to a user.

System Actions The system ensures that modifications to the message will be obvious 
to the user

2 Misuser Interactions The misuser intercepts and modifies the system’s message and for-
wards it to the user.

3
User Interactions The user receives the corrupted message.

System Actions The system will recognize that the message was corrupted.

4 System Interactions The system will notify the user that the message was corrupted

Postconditions None

continued on following page
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Security Use Case Ensure Confidentiality (SUC2)

Use Case Path User Message Integrity

Security Threat A misuser accesses a private message from the user to the system

Preconditions

1) The misuser has the means to intercept a message from the user to the system

2) The system has requested private information from the user.

Interactions

1 Interactions The user sends a private message to the system.

2 System Actions The system makes the private message illegible while in transit.

3 Misuser Interactions The misuser intercepts the user’s private message.

Postconditions The misuser cannot read the user’s private message

Security Use Case Authenticate (SUC3)

Use Case Path Attempted Spoofing using Valid User Identity.

Security Threat The application authenticates a misuser as if the misuser were actu-
ally a valid user.

Preconditions

1) The misuser has a valid means of user identification.

2) The misuser has an invalid means of user authentication.

Interactions

1 System Interactions The system shall request the misuser’s means of identification and 
authentication.

2 Misuser Interactions The misuser provides a valid means of user identity but an invalid 
means of user authentication

3 System Actions 1) The system shall misidentify the misuser as a valid user. 
2) The system shall fail to authenticate the misuser.

4 Misuser Interactions The system shall reject the misuser by cancelling the transaction

Postconditions

1) The system shall not have allowed the misuser to steal the user’s means of authentication.

2) The system shall not have authenticated the misuser.

3) The system shall not have authorized the misuser to perform any transaction that requires authentication.

4) The system shall record the access control failure.

Security Use Case Authorize Access (SUC4)

Use Case Path Attempted Spoofing using Social Engineering

Security Threat The misuser gains access to an unauthorized resource.

Preconditions

1) The misuser has a valid means of user identification enabling the impersonation of a valid user that is authorized to use a protected 
resource. 

2) The misuser does not have an associated valid means of user authentication.

3) The misuser has basic knowledge of the organization including the ability to contact the contact center.

Interactions

1 Misuser Interactions The misuser contacts the contact center.

Table 5. continued

continued on following page



201

Identifying Secure Mobile Grid Use Cases

Task 2.5: Assessment of Security

Finally, it is necessary to assess whether the threats 
are relevant according to the security level speci-
fied by the security objectives. Therefore we must 
estimate the security risks based on the relevant 
threats, their likelihood and their potential nega-
tive impacts, in other words, we have to estimate 
the impact (what may happen) and risk (what 
will probably happen) to which the assets in the 
system are exposed. We must therefore interpret 
the meaning of impact and risk. In Table 6 we 
define the impact and risk for the threats identi-
fied previously. We are going to evaluate risk and 
impact with five possible values: Very Low, Low, 
Medium, High and Very High. The likelihood of 
a threat could be: Very Frequent (daily event), 
Frequent (monthly event), Normal (once a year), 
Rare (once in several years).

As we can see in the previous table, all threats 
have to be dealt with because they cause a high 
or very high value of risk in the worst case, there-
fore, misuse cases that represent these threats 

must be studied and analyzed in this first iteration 
and will take part of the Grid use cases diagram 
that we will build in the next task. For example, 
for alteration and disclosure of information we 
can see that if the information is sensitive (per-
sonal data, bank data), these treats represent a 
high risk for our system and we must ensure that 
attacks (modifying or altering information) do 
not attain their objectives. In this case we must 
strongly protect the information stored and trans-
mitted between user and system. This assessment 
must be present in the next activities and it must 
take into account when we design the security 
service oriented architecture.

FUTURE RESEARCH DIRECTIONS

The main future lines of research open are de-
tailed below:

• Define the process with a tool that supports 
the SPEM notation, such as EPF (Eclipse 

Table 5. continued

2 Contact center Interactions A user support agent shall request the misuser’s identity and authen-
tication.

3 Misuser Interactions

1) The misuser provides the valid user identity. 
2) The misuser states that he or she has a temporary inability to 
authenticate himself or herself. 
3) The misuser states that he or she has an urgent need to access a 
protected resource requiring authentication and authorization.

4 Contact center Interactions
The user support agent shall request one or more alternate forms of 
authentication. The user support agent shall check the appropriate 
procedures for the proper action.

Contact center Actions
The user support agent shall request one or more alternate forms of 
authentication. The user support agent shall check the appropriate 
procedures for the proper action.

5 Misuser Interactions The misuser fails to provide a valid alternate form of authentication.

6 Contact center Interactions The user support agent shall refuse authentication and authorization 
to the requested resource.

Alternative Paths The misuser can quit at any point.

Postconditions

1) The system shall not have authenticated the misuser.

2) The system shall not have authorized the misuser to access the protected resource.

3) The system shall record the access control failure.
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Process Framework), and enables its au-
tomated integration with the processes of 
other methodologies based on UML as UP, 
OPEN, OpenUP, etc.

• Concrete and refine the generic tasks of 
the used development processes that have 
been incorporated into our process.

• Refine and improve the parameters and 
tagged values of the GridUCSec-profile for 
capturing the most important aspects and 
features of Mobile Grid systems to take 
them into account in the design and con-
struction activities of the process.

• Improve the reference security architec-
ture for that the security aspects consid-
ered in the analysis activity through the 
GridUCSec-profile can easily be incorpo-
rated as parameters into the interfaces of 

the security architecture, into the definition 
of policies of the system or into the deci-
sions of implementation.

• Study and incorporate security patterns 
into the design activity to facilitate and en-
sure the correct incorporation of architec-
tural elements that define already proven 
security solutions and help us construct the 
security architecture specific for mobile 
Grid systems.

• Define templates for the specification of 
security requirements based on IEEE std. 
1233, 12207.1, 830 standards, SIREN, etc. 
that impose a format and a specific method 
for the definition and extraction of infor-
mation for functional and non-functional 
requirements, especially those of security, 
identified in the analysis activity and that 

Table 6. Assessment of impact and risk 

Threat Unauthorized access to Grid system

Impact MEDIUM if the authorization privileges are very limited (i.e. 
only reading). VERY HIGH if the opposite is the case

Attack Unauthorized access

Probability Normal Normal

Risk HIGH VERY HIGH

Threat Unauthorized alteration of information

Impact LOW if there is no personal information modified HIGH if the opposite is the case

Attack Modification of information

Probability Frequent Frequent

Risk LOW HIGH

Threat Unauthorized disclosure of information

Impact LOW when the disclosed information is not sensitive or important HIGH if the opposite is the case

Attack Interception of information

Probability Frequent Very Frequent

Risk LOW HIGH

Threat Masquerade as a certain user

Impact LOW when the exchanged information with the fooled entity is 
not sensitive or important HIGH if the opposite is the case

Attack Masquerade

Probability Frequent Normal

Risk MEDIUM VERY HIGH
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must be completed and managed in the rest 
of activities of the process.

• Carry out new case studies for a continu-
ous improvement of the process in other 
environments and dominions apart from 
the one developed here.

• Extend the applicability of the process and 
adapt its tasks and artifacts in order to de-
velop secure systems oriented to Cloud 
Computing.

• Extend the GridUCSec-profile to define 
not only stereotypes for use cases but also 
stereotypes for other kind of UML models 
such as the models of interaction, deploy-
ment, collaboration, etc., that can be used 
in the different activities of the process.

• Implement all security services and inter-
faces of the reference security architecture 
using the most advanced and used pro-
gramming languages such as Java, .Net o 
C#.

CONCLUSION

The interest in incorporating mobile devices into 
Grid systems has arisen with two main purposes. 
The first one is to enrich users of these devices 
while the other is that of enriching the Grid’s own 
infrastructure. Both benefit from this fact since, 
on the one hand, the Grid offers its services to 
mobile users to complete their work in a fast and 
simple way and, on the other hand, the mobile 
devices offer their limited resources, but millions 
of them, in any place and at any time, endorsed 
by the fast advance in the yield and capacity that 
is being carried out in mobile technology.

In many cases, constrained wireless networks 
are made up of devices that are physically con-
strained and therefore have little room for memory, 
batteries, and auxiliary chips. Security over the 
mobile platform is more critical due to the open 
nature of wireless networks. In addition, security is 

more difficult to implement into a mobile platform 
due to the limitations of resources in these devices.

Due to this difficulty when we want to incor-
porate mobile devices into a grid system and due 
to the fact that we must take into account security 
aspects throughout the life cycle, it is necessary 
to provide a systematic process to developers 
for building this kind of system considering grid 
characteristics, mobile computing and security 
aspects throughout the development process. This 
process must always be flexible, scalable and dy-
namic, so that it adapts itself to the ever-changing 
necessities of mobile Grid systems.

In this paper we have presented a process 
for designing and building a secure mobile grid 
system based on an iterative, incremental and 
reusable process. This process is composed of 
several stages and activities and in each one of 
them the stakeholders carry out their tasks. An 
important activity of the process is the security 
requirements analysis which we have proposed 
with a set of tasks to obtain security requirements 
for mobile grid systems based in security use cases. 
Considering a case study for media domain, we 
have applied the analysis activity for analyzing 
security requirements in this real application using 
techniques of uses cases, misuse cases, security 
use cases and risk assessment where we obtain 
a specification of security requirements of our 
system analyzed on several refinements.

Applying this set of tasks we have been able to 
incorporate security requirements into our analysis 
and into our system. The application of this case 
study has allowed us to improve and refine some 
activities, tasks and artifacts of the process.
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Chapter  13

INTRODUCTION

Most current Grid middleware is designed primar-
ily for high-performance and high-throughput 
computing and data storage (LHC, n.d.; Foster, 
Kesselman, & Tuecke, 2001). Initially, Grid 
infrastructure aimed mostly at the Physics com-
munity, but recently many other domains, such 

as Biology, Pharmaceutics, and Medical research 
have shown increasing interest in using Grids for 
their applications. Grid middleware, including 
gLite (gLite, n.d.) and the Globus Toolkit (Globus, 
n.d.), hides many aspects such as data distribution 
and replication from users of the system. As a 
result, users are often unaware that jobs and data 
are transferred through multiple Grid components 
in different administrative domains implicitly. 
This makes it hard for users to understand the 
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security implications of using Grid middleware, 
in particular when using it for applications that 
use privacy sensitive information.

Medical applications have very strict require-
ments on data handling and storage due to privacy 
concerns and regulations. Therefore, Grid middle-
ware intended for usage in the medical domain 
should support policies that define where particular 
data may be stored, in what form, and what jobs 
from which users may access this data from what 
hosts or administrative domains.

This paper presents a new framework for 
managing privacy-sensitive data on the Grid, that 
allows for explicit data-owner control over data 
access and distribution related aspects. It makes a 
clear distinction between data storage components, 
access control, job authentication aspects, and 
auditing mechanisms for data related operations.

This paper is organized as follows: first we 
describe a use-case for medical research, based 
on our own experience (Olabarriaga, Nederveen, 
Snel & Belleman, 2006). Next, we analyze legal 
requirements with regard to medical data and 
technical aspects that are relevant when using Grid 
infrastructure to manage privacy-sensitive data. 
Finally, we describe a framework that allows data 
owners to express fine-grained data distribution 

and access control policies to allow for secure 
handling of medical data on the Grid. We conclude 
with an overview of some usability aspects.

USAGE SCENARIO

Figure 1 shows a typical Grid infrastructure de-
ployment for medical research. A Grid storage 
system in one trusted administrative domain is 
used for storing medical research data. Although 
data is often replicated across different domains 
to enhance availability and reliability, we assume 
here that all storage facilities reside in only one 
administrative domain trusted by the data owner. 
Different incarnations of storage infrastructure ex-
ist, e.g., SDSC SRB and dCache (dCache, n.d.). In 
this paper, we refer to the storage infrastructure as 
a Storage Resource Broker (SRB) in a general way, 
without referring to a particular implementation.

First, Researcher A (data owner) uploads the 
data to an SRB he or she trusts, e.g., using gridFTP. 
Researcher B can now submit a job on the Grid 
through a Compute Resource Broker (CRB) which 
can reside in any administrative domain. The CRB 
transparently selects a cluster, typically based on 
load, where the job is scheduled for execution. 

Figure 1. A use-case for medical imaging research showing grid resources in different administrative 
domains, with an emphasis on data and job flow
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The user controls job submission via some job 
description, e.g., using a Job Submission Descrip-
tion Language (JSDL), which describes the bi-
nary to execute on the compute element and input 
files. In addition, the job description can specify 
a specific cluster, or resource requirements, to be 
matched with available Grid resources prior to 
scheduling. Running jobs can access files that the 
job’s owner is authorized to access. In some 
cases, the Grid middleware pre-fetches required 
input files using the job’s credentials prior to job 
execution.

Figure 1 also shows a File Catalog that pro-
vides a mapping between Grid ‘logical file names’ 
and the underlying physical files, which may be 
replicated on different storage systems on the 
Grid. Additionally, an SRB may also maintain 
a metadata service (not shown). Since metadata 
and file names may contain privacy sensitive 
information, both services should be managed 
by a trusted domain.

LEGAL REQUIREMENTS

The European Union (EU) has produced legisla-
tion on handling personal information and privacy 
(EC, 1995). This section focusses on EU and 
selected Dutch regulations. Countries outside the 
EU have adopted or are adopting legal measures 
to allow exchange of personal data with the EU 
countries (e.g., U.S. Safe Harbor Framework). 
For more information about other countries see 
(Fischer-Huebner, 2001; EC; Herveg, 2006; U.S. 
Congress, 1996).

EU regulations can be seen as leading guide-
lines for handling personal data (Fischer-Huebner, 
2001). The data protection regulations can be 
summarized as follows. First, there must be a ne-
cessity for data collection and processing. Related 
to that, for each data collection, there has to be 
a clear purpose binding which specifies what is 
done with the information. Usage of data beyond 
this specified purpose is not allowed. In addition, 

a minimality principle exists, which states that 
only the minimum information for the required 
purpose may be collected. Furthermore, there has 
to be transparency of personal data processing 
and collection, implying that the data subject is 
informed of data collection (opt-in or opt-out) 
and that the data subject has a right to access the 
information. Finally, the regulations require that 
information is accurate, which implies that the 
information must be kept up-to-date.

Two Dutch laws (WGBO, 1994; WMO, 1998) 
formalize what may be done with data collected 
from a patient in the course of treatment. In general, 
usage of patient information outside the scope of 
the patient’s treatment is not allowed, unless there 
is considerable public interest or similar neces-
sity to do so. Medical scientific research is often 
considered such an exception (Herveg, 2006).

If a patient explicitly consents with usage of 
his data for medical research, that data is purpose-
bound to a specific medical research activity. The 
data may not be disclosed beyond this activity. The 
physician or medical researcher who determines 
the purpose and means of processing is legally 
responsible for ensuring an appropriate level of 
security to protect data.

The restrictions described above only apply to 
personal data. In some situations, the data can be 
de-personalized to circumvent these restrictions, 
e.g., as done in (Kalra et al., 2005; Montagnat 
et al., 2007; Erberich et al., 2007). However, 
complete de-identification is hard to get right, 
and re-identification is often possible (Sweeney, 
2002; Malin, 2002). For this reason, de-identified 
information should be considered confidential, 
and appropriate distribution and access control 
mechanisms are required.

BASIC GRID SECURITY 
INFRASTRUCTURE

The Grid Security Infrastructure (GSI) (Foster, 
Kesselman, Tsudik and Tuecke, 1998) is the de-
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facto standard for user and host authentication 
on the Grid. GSI is used by most mature Grid 
middleware implementations. Shortcomings of 
this infrastructure are described later in this paper; 
here we introduce the basic GSI infrastructure.

GSI essentially comprises a Public Key Infra-
structure (PKI) that is used to sign user identity and 
host certificates. Users can create limited-lifetime 
Proxy certificates which allow them to send cre-
dentials with their jobs for authentication, without 
the risk of compromising the user’s private key. 
Proxy certificates are used for all transactions by a 
job, such as gridFTP transactions. We here assume 
that all authorization decisions with regard to data 
are based on GSI user authentication by means 
of Proxy certificates. Other approaches (such as 
role-based or attribute-based authorization, as 
proposed in (Alfieri et al., 2004) are possible, 
but not required for our framework. Many Grid 
infrastructures manage access control to resources 
and storage based on virtual organization (VO) 
membership information. However, VO-based 
authorization is often too course-grained for pro-
tecting medical information: there may be many 
users (e.g., researchers) in a VO, which may not 
all be equally trusted to access particular data. 
Therefore, we assume authorization based on user 
identities in this paper.

PROBLEM ANALYSIS

Grids are, by nature, distributed across multiple 
administrative domains, only a few of which 
may be trusted by a specific data owner. Grid 
middleware, and thus jobs, typically run on an 
operating system (OS), such as Linux, that al-
lows administrators to access all information on 
the system. A job or data owner does not have 
control over the hardware or software that runs on 
some remote system. Besides OS and middleware 
vulnerabilities, these systems might also not be 
well protected against physical attacks, such as 
stealing hard disks. Such aspects should be part 

of a risk assessment when decisions are made on 
which sites are trusted to store or access particular 
information.

Given legal constraints, trust decisions will and 
should be conservative. For example, unencrypted 
data, file names, and other sensitive metadata 
should only be stored in trusted domains, e.g., in 
the hospital. This aspect is even more prevalent 
in systems where jobs on remote machines can 
access medical data. Current OSs such as Linux 
provide little assurance that information stored 
on the system cannot be leaked to external parties 
(van ‘t Noordende, Balogh, Hofman, Brazier and 
Tanenbaum, 2007).

Even if files are removed after the job exits 
(e.g., temporarily created files), the contents could 
be readable by administrators or possibly attackers 
while the job executes. Furthermore, disks may 
contain left-over information from a job’s previ-
ous execution, which is readable by an attacker 
who gains physical access to a storage device, if 
the system is not properly configured (NIST). As 
another example, it is possible to encrypt swap 
space in a safe way, but this is an option that has to 
be explicitly enabled in the OS. For these reasons, 
it is important for a data owner to identify critical 
aspects of the administration and configuration 
of a remote host, before shipping data to (a job 
running on) that host.

Another problem is that a data owner cannot 
control nor know the trajectory that a job took 
before it was scheduled on a host, since this is 
implicit and hidden in current Grid middleware. 
Therefore, even if the host from which a job ac-
cesses data is trusted by the data owner, there 
is a risk that the job was manipulated on some 
earlier host.

Current middleware does not provide a way 
to securely bind jobs to Proxy certificates: a cer-
tificate or private key bundled with a program 
can easily be extracted and coupled to another 
program which pretends to be the original program. 
In Grids, this issue is exacerbated by the fact that 
a job may traverse several middleware processes 
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(e.g., a CRB) in different domains before it is 
scheduled at some host. Each of these hosts or 
domains may be malicious, and the administrator 
or an attacker that gains access to one of these 
hosts may replace the original job with another 
program that leaks information to an external 
party. Alternative authentication schemes (e.g., 
username/password-based) do not improve this 
situation.

For this paper, we assume that the implemen-
tation of a job is trusted when this job’s owner 
is trusted. In particular, we assume that medical 
researchers are aware of confidentiality aspects 
regarding medical data and treat this data as con-
fidential information – and as a result use only 
trusted programs to make use of this data. In the 
proposed framework, jobs can only access data 
from hosts that are trusted by the data owner, and 
we assume that a job submitted by a trusted user 
will not leak information to unauthorized parties. 
A mechanism is presented later in this paper that 
allow users to seal jobs in such a way that tamper-
ing with these jobs is not possible.

Note that mechanisms exist that limit the 
capabilities of a possibly untrusted program to 
export information to arbitrary external parties, 
e.g., using the jailing system described in (van ‘t 
Noordende, Balogh, Hofman, Brazier, and Tanen-
baum, 2007). Such solutions can be considered 
as additional measures to increase security, but 
are outside the scope of this paper.

For this paper, we assume that jobs do not ship 
potentially privacy-sensitive (output) data back 
to the possibly untrusted CRB through which 
the they entered the system. Instead, jobs should 
be programmed to encrypt output data with the 
job owner’s public key before returning to their 
CRB, or they should store any potentially sensitive 
(output) data only on secure storage, preferably 
the system that contained the input data.

Summarizing, a number of implementation 
issues should be solved before we can be sure 
that privacy-sensitive information cannot be ac-
cessed by unauthorized parties. First, a secure 

binding between jobs and Proxy certificates 
must be provided. Second, a data owner should 
be able to express in a policy which administra-
tive domains he or she trusts to handle privacy 
sensitive information in a safe way, based on a 
risk assessment. Third, a data owner should be 
able to express policies with regard to a remote 
system’s configuration details which are relevant 
to privacy and security and the way in which data 
is handled.

THE TSRB FRAMEWORK

We propose a framework for secure handling of 
privacy sensitive information on Grids that al-
lows for controlling data access and distribution 
aspects. The components and interactions of the 
framework are presented in Figure 2.

The framework is centered around a secure 
storage infrastructure called Trusted Storage 
Resource Broker (TSRB). There may be many 
TSRBs on the Grid, possibly managed by differ-
ent administrative domains in different VOs. The 
TSRB is coined ``trusted’’, because (1) it is de-
ployed in an administrative domain trusted by the 
data owner, and (2) it is trusted to enforce data-
owner specified access control policies. The TSRB 
controls access to data items or collections by 
combining User-based Access Control Lists (User 
ACLs) and Host-ACLs. Host ACLs contain re-
quired host properties that must be met by a remote 
host before the data can be accessed by a job on 
this host.

Required host properties are described by 
the data owner in a Remote Host Property List 
(RHPL). Each host has a Host Property List 
(HPL) that contains host configuration details. 
The HPL contents are matched with the data’s 
RHPL at connection time. The HPL is maintained 
by the remote host (Cluster A in Figure 2), and is 
signed by the host’s administrator. The TSRB also 
maintains for each data collection or item a Host 
ACL containing a list of administrative domains 
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or hosts, who are trusted by the data owner both 
for confidentiality (of the administrators) and for 
providing correct information in their HPL.

The main actions are illustrated in Figure 2. A 
user uploads data to the TSRB, e.g., using gridFTP 
(step 1). The data is stored in a storage system 
maintained in the TSRB domain. Metadata can 
be stored in a separate service managed by the 
TSRB, e.g., a File Catalog in case of storing files 
(step 2). A job is submitted through a CRB (step 
3), about which the data owner has no information. 
Eventually, the CRB submits the job to a cluster 
(step 4) that must be trusted by the data owner 
before the job can access data.

As part of the protocol before data access is 
authorized, user (job) and host authentication 
takes place, and the data’s RHPL and the remote 
host’s HPL are compared (details are given 
later). If RHPL and HPL match, a microcontract 
is established, which is a statement containing 
agreed-upon host properties and signed by both 
the TSRB and the remote host. Microcontracts are 
established for all authorization decisions, includ-
ing, e.g., resolving file names in a File Catalog 
(step 5), and accessing the data item itself (step 6).

Only after the TSRB receives a microcontract, 
are the data shipped to the job or middleware act-

ing on the job’s behalf. In step 7 a job returns to 
its CRB where it can be collected by its owner. 
Subject to agreement in the microcontract, Cluster 
A ensures that no data from the job’s execution 
remains on the host.

Auditing is important to allow data owners to 
track which jobs applied which operations on their 
data, on behalf of which users, and from which 
hosts. All established microcontracts are shipped 
to an auditor process (see Figure 2), which can 
be used by data owners to trace the transactions. 
Auditing can help establish trust (e.g., using 
reputation-based mechanisms), and enables track-
ing of potential sources of information leakage.

CONCEPTS AND INTERACTIONS

Job Authentication

A solution to provide a secure binding between jobs 
and Proxy certificates is to combine job integrity 
verification with a trust-based mechanism. Only 
if a data owner trusts a remote system to verify 
the integrity of incoming jobs properly, can he or 
she assume the the job-Proxy certificate binding 
to be valid, and can Proxy certificate-based au-

Figure 2. The TSRB framework: files, file names and metadata are managed by a Trusted SRB. Dotted 
lines depict microcontract establishment and auditing, solid lines depict data flow and job transfers
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thentication be trusted. Job integrity verification 
can be implemented securely if all initial content 
of the job is signed by its owner, thus creating an 
unforgeable binding between all components of 
a job, including its proxy certificate.

A secure job container could be created before 
submitting the job, which is signed using the job 
owner’s private key - see a similar idea in (van 
‘t Noordende, Brazier & Tanenbaum, 2004). A 
job container has a well-defined structure, which 
makes it straightforward for the middleware to 
find the components of the job that are relevant 
for integrity verification. Alternative implementa-
tions are conceivable, e.g., using signed Virtual 
Machine images (Travostino et al., 2006).

Host Property Lists

For risk assessment and policy enforcement, hosts 
should announce security relevant properties of 
their operating system, its configuration, and the 
used middleware, including properties regarding 
job integrity verification, in their Host Property 
List (HPL). The host administrator has the respon-
sibility to fill in the HPL correctly. As a concrete 
example, the HPL could report on whether the 
operating system was configured to use encrypted 
swap space, on whether the middleware is capable 
of job integrity verification, and provides jobs 
with a private file system that is removed after 
the job exits.

HPLs allow for run-time assessment on wheth-
er a host adheres to the requirements for secure 
data handling as imposed by a data owner. This 
assessment takes place at the time that a connec-
tion is made to the TSRB. Because HPL matching 
takes place at connection time, no external trusted 
repository of HPLs is required for security.

Microcontracts

Microcontracts state the obligations that the site 
holds with regard to a transaction. Our framework 
requires that all Grid middleware components that 

are concerned with data transfer aspects (e.g., 
gridFTP) are extended with functionality to report 
a signed HPL to their peer processes at connection 
time. Based on whether peers trust each other to 
provide correct information, and on the informa-
tion in their HPLs, both parties decide whether to 
proceed with the transaction (e.g., data transfer), 
which takes place over a mutually authenticated 
secure channel. Agreement should be reached on 
the properties in the data item’s RHPL before any 
data is shipped.

For non-repudiation, both parties must co-sign 
a microcontract once agreement is reached. Non-
repudiation means that none of the parties can 
deny that they agreed on the contract’s content. 
To allow for auditing the exact operations on a 
particular data item, the microcontract has to be 
bound to each individual transaction, by including 
e.g., a hash over the data and the operation in the 
microcontract.

Trusted Storage Resource Broker

The TSRB is the key component for managing all 
privacy sensitive data in our framework. The TSRB 
is the central reference monitor and access point 
for data stored through this TSRB. In particular, 
the TSRB enforces the access control policies 
outlined in this paper. For clarity of exposition, we 
assume that the TSRB is a non-distributed service 
running in a single domain. The TSRB (and by 
implication, domain) is determined as trusted by 
a data owner prior to storing data on it.

Although we refer to the TSRB as a resource 
broker here, the TSRB is effectively an abstrac-
tion for a secure storage system. In case where the 
TSRB uses distributed facilities (e.g., untrusted 
storage elements managed by different domains), 
the TSRB can implement broker functionality. 
In this case, the TSRB should make sure that it 
stores only encrypted data on untrusted storage, 
using cryptographic filenames. Example storage 
systems that are implemented as a broker for 
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encrypted data are described in (Montagnat et al., 
2007; Xu, 2005).

Naming and Metadata Services

The TSRB can offer metadata services for man-
aging and querying metadata about the stored 
data. Metadata is useful to search for data items 
of interest in large data collections. File names 
can be seen as metadata specific to file systems.

Naming or metadata services must be inte-
grated into the TSRB, since access to file names 
and other sensitive metadata should be carefully 
protected. For example, careless encoding of file 
names could enable attackers to identify patient 
or hospital information from a file name and re-
identify a patient. Naming or metadata services 
may be private to a VO, or part of some hierarchical 
naming service. In either case, file name lookup 
requests are subject to data-owner specified access 
control policies as outlined in this paper.

Access Control Lists

Access control in our system is enforced on the 
basis of ACLs. ACLs can be associated with indi-
vidual data items or with a grouping (set) of data 
items. In case of files, grouping may be facilitated 
by e.g., associating ACLs with directory names. 
Unauthorized users should not even be able to 
find out if a given data item exists.

The User ACL contains a list of principals (job 
owners) that are allowed to access a (set of) data 
item(s), together with these principals’ access 
rights on that data. The Host ACL specifies from 
what hosts or domains authorized jobs may ac-
cess particular data, and with what access rights. 
Access rights from the User and Host ACLs are 
combined such that only the minimum set of 
rights for this data is granted to a job of a given 
user running on a given host.

The trusted domains or hosts in the Host ACL 
are determined by the data owner, e.g., based on 
whether he or she trusts the administrator of a 

particular administrative domain. Host ACLs 
are expressed as GSI host/domain name patterns, 
which match with the common name field of the 
x509 GSI host certificate, e.g., *.sara.nl, or host1.
amc.nl. Specific patterns override wildcarded 
patterns. Also associated with data items or sets 
of data is a Remote Host Property List (RHPL). 
Before evaluating a remote host’s HPL, it is 
checked that this host is in the Host ACL; only 
then is the HPL information considered trusted.

We chose to separately store an RHPL with each 
(set of) data items, in addition to the basic User 
and Host ACLs, because of the dynamic nature 
of Grid systems. Different domains may contain 
many machines or clusters, each of which with 
different configuration and job or data handling 
properties, which may even change over time. 
Connection-time RHPL / HPL matching allows 
the system to evaluate these properties at runtime, 
without relying on a (trusted) central repository 
of these properties.

Job Submission Procedure

At job submission time, a host must be selected 
from which the job’s input data is accessible. 
Since CRBs are generally not trusted1, client-side 
software should be used which contacts the TSRB 
before job submission. A file naming convention 
combined with a naming service (e.g., DNS) al-
lows the client job submission program to locate 
the TSRB where the data is stored.

Client-side software can authenticate directly 
to the TSRB using the job owner’s identity key. If 
authorized, it can fetch the relevant access control 
and HPL information, using which a job descrip-
tion is created. To allow for selection of suitable 
hosts by the CRB, HPLs could be published in a 
(global) information system. Note that because 
of run-time (R)HPL evaluation, the information 
system does not need to be completely consistent 
or trusted. This is important for scalability, as 
keeping a possibly global information system 
fully up-to-date may be infeasible.
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Auditing

Auditing is important to allow for tracing all opera-
tions on a particular data item. For convenience 
and scalability, we use a trusted auditor process 
per TSRB, managed by the TSRB. Copies of the 
co-signed microcontracts of all transactions are 
sent to and strored by the auditor. This allows the 
data owners to trace all transactions that involve 
a particular data item in a way that ensures non-
repudiability.

PUTTING IT ALL TOGETHER

Authorization of a data access requires that the 
connecting job’s owner is on the User ACL, that 
the host on which the connecting job runs is on 
the Host ACL, and that the properties in the RHPL 
match the properties in the connecting host’s 
HPL. Authorization of a data request consists of 
the following steps, assuming GSI host/Proxy 
certificate based authentication.

•At connection time, the connecting process 
(either a job or middleware, in case of data pre-
fetching) authenticates with the TSRB using the 
job’s Proxy certificate, resulting in an authenti-
cated and encrypted SSL/TLS channel.

•The information from the Proxy certificate is 
matched against the User ACL to see if access is 
allowed. If not, an error is returned that does not 
indicate whether the data exists or not.

•The TSRB and the connecting process engage 
in a protocol for matching RHPL and HPL proper-
ties. If the connecting process is the middleware 
(e.g., during data pre-fetch), it can directly sign 
the microcontract. If the connecting process is a 
job, it has to request its local middleware (using 
a runtime interface) to match the RHPL of the 
TSRB with the host’s HPL, and to have it sign 
a microcontract on its behalf if these properties 
match. The microcontract includes the (hash over 
the public key of the) Proxy certificate of the job 
to which it was issued.

•The signature over the microcontract (shipped 
together with the GSI host certificate that was used 
for signing) is compared with the Host ACL, to 
see if the HPL information is trusted and if access 
is allowed from this host.

The above mechanisms suffice to establish the 
required combination of Host ACL and User ACL 
based authorization, together with obtaining a mi-
crocontract signed by the connecting host before 
the data is shipped. If all provided information 
matches the data owner’s requirements, the data is 
shipped to the requesting job or middleware, and 
the microcontract is logged in the auditor process.

USABILITY

Determining an appropriate Host ACL and HPL 
specification may be difficult for non-technical 
data owners. However, system administrators who 
support users may define template (R)HPLs with 
basic properties that hosts must adhere to when 
running jobs that access sensitive information. 
Such templates may be provided with the client-
side software used for data uploading, and may 
be adapted by data owners and/or local system 
administrators at the time of use. Similarly, lo-
cal (VO) administrators may help by composing 
default lists of trusted domains for particular data 
types or groups of users. Such measures allow 
secure usage of the system by researchers without 
burdening them with too many details. Dynamic 
adaptation of RHPLs for long-term storage of 
data is an open issue that needs to be addressed.

CURRENT STATUS AND 
FUTURE WORK

We have implemented a proof-of-concept imple-
mentation of the TSRB framework based on a 
gridFTP server from the Globus toolkit. We ex-
tended the gsi-FTP server with an authenticated 
key-exchange protocol to authenticate the client 
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and establish a secure connection for data transfer; 
FTP commands were modified to include TSRB 
concepts such as HPL exchange and microcon-
tracts. The resulting system’s performance is as 
well as can be expected from a protocol that uses 
encryption to protect data transferred from server 
to client. Performance results are described in a 
separate report (Coca, 2011).

One of the more difficult issues to address when 
using our system, is how to decide whether a given 
system setup is secure. We have experimented 
with HPLs to describe various Linux systems. To 
determine a system’s security, we used informa-
tion obtained from the Common Vulnerability and 
Exposures (CVE) vulnerability database (http://
cve.mitre.org), to locate potentially vulnerable 
packages on the system. A vulnerability score 
(Scarfone and Mell, 2009) is associated with each 
entry in the CVE database, which indicates the 
potential impact of a vulnerability on security of 
the system. However, Grid systems generally have 
different characteristics than desktop systems, for 
which the scoring method was devised.

Grid clusters are typically batch systems, and 
worker nodes within a cluster are usually not 
directly exposed to the Internet. Rather, the most 
important threats may originate from within the 
cluster, for example from malicious jobs that 
run concurrently with a job in the same cluster, 
or from jobs that compromised a machine some 
time earlier. We are currently studying whether the 
CVE-based vulnerability scoring can be adapted to 
Grid-specific characteristics.We are also studying 
ways to facilitate dynamic evalutation of HPL-
based policies, such that users or administrators 
do not have to be overly burdened by (manually) 
updating policies or analyzing vulnerability re-
ports to assess a system’s security.

RELATED WORK

Montagnat et al. (2007) describe a Medical Data 
Manager (MDM) for DICOM images and associ-

ated metadata in a secure way. MDM is deployed 
inside hospitals, and provides read-only access 
to automatically de-identified DICOM images 
to grid jobs outside the hospital’s domain. Data 
is encrypted before it becomes accessible to Grid 
jobs, so jobs must first acquire a key from a key 
store before they can access the data. However, 
MDM does not constrain from which hosts jobs 
may access the data or keys. MDM’s reliance on 
automatic de-identification of DICOM headers 
may prove a vulnerability, e.g., in case of images 
which contain facial features of a patient as part 
of the binary data.

Globus MEDICUS (Erberich, Silverstein, 
Chervenak, Schuler, Nelson, & Kesselman, 2007) 
is an approach for sharing medical information 
(metadata and files) through Grid infrastructure. 
Encryption can be used to store information se-
curely on untrusted storage elements in the Grid. 
One of the weak points of the system is that it 
does not clearly describe where the different 
components reside physically, i.e., what the trust 
model is. For example, metadata is stored in a meta 
catalog service which may be operated outside the 
hospital domain. In addition, the system depends 
on GSI for authentication, which makes the lack 
of a clear trust model even more worrisome.

Blancquer et al. (2009) describe an approach 
for managing encrypted medical data, building 
upon Hydra (Xu, 2005) and the ideas presented in 
Montagnat et al. (2007). The contribution of this 
approach is that key management and authoriza-
tion are integrated with common Grid management 
concepts such as Virtual Organizations. However, 
like MDM and Hydra, the approach chosen by 
Blancquer et al. does not deal with the problem 
that the machine where the data is decrypted (by 
the job) may be compromised.

None of the related work considers trust in the 
hosts or clusters from which data are accessed, 
nor with the properties of the software running 
on these hosts.



218

Trusted Data Management for Grid-Based Medical Applications

DISCUSSION

We presented a trust-based security framework for 
Grid middleware that allows for enforcement of 
access control and data export policies for privacy-
sensitive data. The framework proposes a Trusted 
SRB to manage data and enforce fine-grained 
access control policies on behalf of data owners. 
Access control policies combine user-based ac-
cess control and trusted hosts lists with a runtime 
evaluation of properties of remote hosts from 
which jobs request data access. Microcontracts 
allow for establishing data handling agreements, 
and an auditing mechanism based on microcon-
tracts allows for tracing all operations on the data.

The focus of this paper is on usage scenarios 
where Grid-based storage and data sharing is 
required. Our framework emphasizes data-owner 
specified user and host (property) based access 
control policies, to ensure that privacy sensitive 
information is only made accessible to authorized 
jobs running on hosts trusted by the data owner. 
This way, we can ensure that the data owner’s 
requirements for secure data handling are met. 
More generally, we believe that the basic concepts 
presented in this paper, such as remote host prop-
erty list evaluation, microcontracts, and auditing, 
can be of value for any distributed system or Grid 
middleware component in which precise control 
is required over where data or code may be dis-
tributed, and under what constraints.
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ENDNOTE

1  Note that if any (untrusted) CRB could query 
the TSRB directly for the locations from 
which data is available, the result can reveal 
whether a given data file exists or not. Such 
information may be considered sensitive in 
itself, as outlined earlier.
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Chapter  14

INTRODUCTION

The generation of novel insights in many scientific 
domains such as biology, physics, or chemistry 

increasingly relies on compute-intensive appli-
cations that require high-performance or large-
scale, distributed high-throughput computing 
technology and infrastructure. In the discipline 
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Large-Scale Co-Phylogenetic 
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ABSTRACT

Phylogenetic data analysis represents an extremely compute-intensive area of Bioinformatics and thus 
requires high-performance technologies. Another compute- and memory-intensive problem is that of 
host-parasite co-phylogenetic analysis: given two phylogenetic trees, one for the hosts (e.g., mammals) 
and one for their respective parasites (e.g., lice) the question arises whether host and parasite trees are 
more similar to each other than expected by chance alone. CopyCat is an easy-to-use tool that allows 
biologists to conduct such co-phylogenetic studies within an elaborate statistical framework based on 
the highly optimized sequential and parallel AxParafit program. We have developed enhanced versions 
of these tools that efficiently exploit a Grid environment and therefore facilitate large-scale data analy-
ses. Furthermore, we developed a freely accessible client tool that provides co-phylogenetic analysis 
capabilities. Since the computational bulk of the problem is embarrassingly parallel, it fits well to a 
computational Grid and reduces the response time of large scale analyses.
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of bioinformatics, biological insight is typically 
generated via data analysis pipelines that use a 
plethora of distinct and highly specialized tools. 
Most commonly, bioinformaticians and biologists 
collaborate to analyze data extracted from large 
databases containing DNA and/or protein data in 
order to study, e.g., the function of living beings, 
the effect and influence of diseases and defects, or 
their evolutionary history. Early “classic” bioin-
formatics tools, such as CLUSTALW (Thompson 
et al., 1994) or BLAST (Altschul et al., 1997) that 
have been ported to Grid computing environments 
deal with biological sequence search, analysis, 
and comparison. Typically, these programs are 
embarrassingly parallel and therefore represent 
ideal candidate applications for Grid computing 
environments (Stockinger et al., 2006).

The study of the genome represents a way to 
obtain new insight and extract novel knowledge 
about living beings. In particular, stand-alone 
phylogenetic analyses have many important ap-
plications in biological and medical research. Ap-
plications range from predicting the development 
of emerging infectious diseases (Salzberg et al., 
2007), over the study of Papillomavirus evolution 
that is associated with cervical cancer (Gottschling 
et al., 2007), to the determination of the common 
origin of Caribbean frogs (Heinicke et al., 2007).

Recent years have witnessed significant 
progress in the field of stand-alone phylogeny 
reconstruction algorithms, which represent an 
NP-complete optimization problem (Chor and 
Tuller, 2005), with the release of programs such 
as TNT (Goloboff, 1999), RAxML (Stamatakis, 
2006), MrBayes (Ronquist and Huelsenbeck, 
2003) or GARLI (Zwickl, 2006). Because of the 
continuous explosive accumulation and avail-
ability of molecular sequence data coupled with 
advances in phylogeny reconstruction methods, 
it has now become feasible to reconstruct and 
fully analyze large phylogenetic trees comprising 
hundreds or even thousands of sequences (organ-
isms). However, current meta-analysis methods for 
phylogenetic trees such as programs that conduct 

co-phylogenetic tests can currently not handle 
such large datasets.

To alleviate this bottleneck in the meta-analysis 
pipeline, we recently parallelized, and released 
the highly optimized co-phylogenetic analysis 
program AxParafit (Axelerated Parafit - Sta-
matakis et al., 2007) that implements an elaborate 
statistical test of congruence between host and 
parasite trees (Legendre et al., 2002). AxParafit 
is a typical stand-alone Linux/Unix command line 
program. AxParafit has been integrated and can 
be invoked via a user-friendly graphical interface 
for co-phylogenetic analyses called CopyCat 
(Meier-Kolthoff et al., 2007). In this article, we 
present an enhanced version of this tool suite 
(henceforth denoted as CopyCat(AxParafit)) for 
co-phylogenetic analyses, that is packaged into a 
client tool which makes use of a world-wide Grid 
environment and thereby allows for large-scale 
data analysis. In the current version, the underly-
ing Grid middleware is gLite (Laure et al., 2006) 
that is coupled with an efficient submission and 
execution model called Run Time Sensitive (RTS) 
scheduling and execution (Stockinger et al., 2006).

The remainder of this article is organized as 
follows: initially, we provide a brief introduction 
to the field of phylogenetic inference, co-phylo-
genetic analyses, and related software packages 
in Section 2. Next, we discuss the implementation 
and architecture of our new approach for efficient 
adaptation of the CopyCat(AxParafit) tool-suite to 
a Grid environment. Finally, we provide detailed 
performance results on the EGEE (Enabling Grids 
for E-SciencE, http://www.eu-egee.org) Grid 
infrastructure (where the gLite middleware is 
deployed in production mode) and demonstrate the 
performance as well as scalability of our proposed 
bioinformatics tool.

BACKGROUND

Phylogenetic (evolutionary) trees are used to 
represent the evolutionary history of a set of s 
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currently living organisms, roughly comparable 
to a genealogical tree of species rather than indi-
vidual organisms. Phylogenetic trees or simply 
phylogenies are typically unrooted binary trees. 
The s organisms, which are represented by their 
DNA or AA (Amino Acid/Protein) sequences 
that are used as input data for the computation, 
are located at the leave nodes (tips) of the tree 
while the inner nodes of the topology represent 
common extinct ancestors. There exist various 
methods and models to reconstruct such trees 
which differ in their computational complexity 
and also in the accuracy of the final results, i.e., 
there exists a “classic” trade-off between speed and 
accuracy. As already mentioned in the introduc-
tion, phylogenetic analysis has many important 
applications in medical and biological research. 
In Figure 1, we provide a simple example for the 
phylogenetic tree of monkeys.

In the context of this article, however, we will 
not address stand-alone phylogenetic inference, 
but consider the problem of co-phylogenetic 
analysis. Given two phylogenetic trees that rep-
resent the evolutionary histories of hosts and their 

respective parasites, the “classic” example being 
mammals and lice, and given the extant associa-
tions between the former and the latter, we want 
to determine whether the parasite phylogeny is 
more similar to the phylogeny of the respective 
hosts than expected by chance alone. The main 
interpretation of such a congruence between the 
trees is that parasites have been associated with 
respect to their evolutionary history and mostly 
speciated in parallel (co-speciated) with their hosts 
(Page, 2002). Given a parasite tree with n organ-
isms and a host tree with m organisms (sequenc-
es), their associations can be represented as a n 
times m binary matrix, that contains information 
of the type: does parasite x (x=1...n) occur or live 
on host y (y=1...m)? In addition to the question 
of global congruence, one may also be interested 
in whether individual associations significantly 
increase the agreement between the phylogenies. 
Such associations can be interpreted as being 
caused mainly by co-speciation.

As previously mentioned, recent advances in 
stand-alone phylogenetic inference methods in 
combination with the increasing availability of 

Figure 1. Phylogenetic tree of monkeys
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appropriate sequence data, allow for large-scale 
phylogenetic analyses with several hundred or 
thousand sequences (Stamatakis, 2006). Thus, 
large-scale co-phylogenetic studies have, in prin-
ciple, become feasible. However, most common 
co-phylogenetic tools or methods such as BPA, 
Component, TreeMap, TreeFitter (cf. review in 
Charleston, 2006) or Tarzan (Merkle, 2006) are 
not able to handle datasets with a large number of 
organisms or have not been tested in this regard 
with respect to their statistical properties and 
scalability. Faster methods based on topological 
distances between trees, like, e.g., Icong (de Vienne, 
2007) are even limited to the analysis of bijective 
associations only. In this context bijectivity means 
that each parasite can only be associated to one 
single host, and vice versa. Therefore, there is a 
performance and scalability gap between tools 
for phylogenetic analysis and meta-analysis. The 
capability to analyze large datasets is important to 
infer “deep co-phylogenetic” relationships which 
can otherwise not be assessed (Meier-Kolthoff et 
al., 2007; Stamatakis et al., 2007). Deep relation-
ships are relationships that determine the extant 
associations between parasite and host organisms 
at a high taxonomic level, such as, e.g., families 
and orders.

Parafit (Legendre, 2002) and the analogous 
highly optimized AxParafit (Stamatakis et al., 
2007) program implement a statistical test to assess 
hypotheses of global congruence between trees 
as well as the impact of individual associations. 
This test is based on the permutation of the entries 
in the association matrix. The null hypothesis is 
that the global similarity between the trees, or the 
respective impact of an individual local association 
on the similarity, is not larger than expected by 
pure chance. Extensive simulations have shown 
that the Parafit test is statistically well-behaved 
and yields acceptable error rates. The method has 
been successfully applied in a number of biologi-
cal studies (Hansen et al., 2003; Ricklefs et al., 
2004; Meinilä et al., 2004).

In addition, the type-II statistical error of 
Parafit decreases with the size of the dataset (see 
Legendre, 2002), i.e., this approach scales well 
on large phylogenies of hosts and parasites in 
terms of accuracy. The AxParafit program is a 
highly optimized version of Parafit which yields 
exactly the same results. The sequential version 
of AxParafit is up to 67 times faster than the 
original Parafit implementation, while the speedup 
increases with increasing input size, caused by 
higher cache efficiency. The speedup of AxParafit 
has been achieved via low-level optimizations 
in C, re-design of the algorithm, omission of 
redundant code, reduction of memory footprint, 
and integration of highly optimized BLAS (Basic 
Linear Algebra Subroutines, http://www.netlib.
org/blas/) routines.

Earlier work describes these optimizations 
together with a respective performance study. 
Moreover, the program was used to conduct the 
largest co-phylogenetic analysis on real-world 
data to date. The underlying data were smut fungi 
and their respective host plants (Stamatakis et al., 
2007). Smut fungi are parasitic mushrooms that 
cause plant diseases. For economically important 
hosts, such as barley and other cereals, smut fungi 
can for instance cause considerable yield losses 
(Thomas and Menzies, 1997).

Workflow of a Co-Phylogenetic 
Analysis with CopyCat and AxParafit

In this section, we provide an outline of the 
work-flow for a full co-phylogenetic analysis 
using CopyCat(AxParafit). The input for a co-
phylogenetic analysis with CopyCat(AxParafit) 
are the host and parasite phylogenies, that might 
have branch lengths, depending on which method/
model was used to calculate the trees. The afore-
mentioned associations are represented as a plain 
text file containing a list of sequence (organism) 
name pairs of hosts and parasites, i.e., an adjacency 
list. This input data representation is henceforth 
also referred to as list of host-parasite associations. 
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Initially, these files are parsed and transformed 
into the appropriate file format by CopyCat. In 
a first step, a principal coordinate analysis is 
conducted on the respective tree-based distance 
matrices induced by the host and parasite trees. 
This analysis is carried out by the AxPcoords 
(Axelerated Principal Coordinates) program (Sta-
matakis et al., 2007), which is an optimized version 
of the analogous DistPCoA program (Legendre 
and Anderson, 1998). The output of AxPcoords 
for the host and parasite trees is then parsed and 
appropriately prepared for the AxParafit analysis 
which takes the two principal coordinates matrices 
and the binary matrix with the associations as 
input. The output of this computation is a list of 
probabilities for the individual null hypotheses 
that a certain association does not improve the fit 
between host and associate phylogenies. In addi-
tion, a probability for the global null hypothesis 
of the absence of congruence between host and 
parasite trees is computed. Upon termination of 
AxParafit the output files are read by the CopyCat 
tool and presented in a human-readable format. 
It is important to note that the computations with 
AxParafit represent the by far largest part (over 
95%) of the computational effort required to con-
duct such a co-phylogenetic analysis. Therefore, 
the AxPcoords and CopyCat parts of the workflow 
can be handled sequentially and executed locally. 
We will, thus, mainly focus on the parallel and 
gridified versions of AxParafit in the next sections. 
The basic workflow is outlined in Figure 2 (at the 
end of the article).

Parallel AxParafit

The most compute-intensive operation (95% 
of execution time) conducted by AxParafit to 
compute the statistics is a dense matrix-matrix 
multiplication of double precision floating point 
numbers. This is the rationale for integration of 
highly optimized BLAS routines. In the remainder 
of this article, we thus always refer to the BLAS-
based version of AxParafit.

Initially, the program will compute the statistics 
for the global congruence of the complete list of 
host-parasite associations. This part of the com-
putation is significantly less expensive than the 
individual tests for each host-parasite association, 
which take nz times longer, where nz is the number 
of non-zero entries in the binary association matrix, 
i.e., number of entries in the original host-parasite 
association list. For large datasets that require 
parallel and distributed computing resources as 
well as a sufficient amount of memory typically 
nz >> 1. The statistics computed during the global 
test of congruence are required as input data for 
the individual tests of host-parasite associations, 
hence there is a sequential dependency: global test 
→ nz local tests. Thus, in the MPI-based parallel 
implementation we only parallelized these nz lo-
cal tests which can be computed independently of 
each other via a straight-forward master-worker 
scheme. The master simply distributes the nz 
individual host-parasite association tests to the 
worker processes.

The potential bottleneck induced by the se-
quential part of the computations can be allevi-
ated by using, e.g., the respective shared-memory 
implementations of BLAS. With respect to a 
gridification, this sequential dependency actually 
has advantages. Since the inference time as well 
as memory footprint of the global test of congru-
ence are nearly identical (same type of operation, 
identical matrix sizes, permuted input data) to 
each of the individual nz tests, the information 
on run-times and memory requirements collected 
during the global tests can be used for scheduling 
decisions, as well as to determine an optimal level 
of granularity and to assess respective resource 
requirements.

FIT FOR THE GRID

In the following section, we describe how 
CopyCat(AxParafit) has been adapted and modi-
fied for use in a Grid environment. The overall 
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architecture of the client tool will be explained as 
well as the integration with an existing middle-
ware toolkit.

An important design goal of the Grid-based 
system for co-phylogenetic analyses was to re-use 
the current graphical user interface of CopyCat 
such that the deployment of Grid resources is 
hidden from the end-user. One fundamental dif-
ference between the standard and Grid-enabled 
versions of CopyCat (AxParafit) is that specific 

Grid credentials are required (an X.509 user cer-
tificate) since Grid jobs can only be submitted by 
authenticated and authorized users.

Overall Architecture

The basic workflow of a co-phylogenetic study 
using CopyCat and the AxPcoords/AxParafit 
programs has already been outlined in the above 
section. Here, we will describe the architecture 

Figure 2. Detailed work- and dataflow for co-phylogenetic analysis on the Grid
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and workflow for a gridified analysis in greater 
detail. The input data consists of three files: a host 
tree file, a parasite tree file, and a host-parasite 
association list. In the reminder of this article, the 
following terminology is used:

• Individual test (job): an individual test is 
the minimal “work unit” or processing en-
tity that has to be conducted by AxParafit 
to calculate a single host-parasite associa-
tion. In the context of AxParafit this is also 
referred to as job. In total, nz individual 
tests have to be computed to achieve the 
final result.

• Task: a task consists of a fraction (subset) 
of the nz individual tests that have to be 
conducted by AxParafit.

• Grid job: a Grid job is an executable that 
is scheduled by the Grid middleware to 
be executed on a Worker Node of a Grid 
computing resource (also referred to as 
Computing Element). In our model, a 
single Grid job can execute one or several 
such tasks.

The overall workflow is depicted in Figure 
2. The most important Grid-enhancement is the 
interface to the Grid (represented by the Perl 
program AxParafit.pl in Figure 2). Once the input 
files are validated, CopyCat uses AxParafit.pl to 
determine a specific set of tasks (to be registered 
with a Task Server as indicated in Figure 3) and 
Grid jobs which are then submitted to Grid com-
puting resources using the gLite middleware. Each 
individual Grid job then requests tasks from the 
Task Server, processes them, and stores the result 
on a Grid Storage Element.

AxParafit.pl will constantly monitor the over-
all Grid job status and presents intermediate results 
in a CopyCat control window. Once all results are 
obtained and merged, CopyCat indicates where 
the final result can be obtained. Further details 
about AxParafit.pl, AxWorker.pl etc. will be 
given in the other section.

Implementation Details

In the following section we describe the neces-
sary modifications and adaptations of the existing 

Figure 3. Interaction of AxParafit.pl with the gLite Grid middleware, a Task Server and a Storage Ele-
ment. Each submitted Grid job will execute on a Grid Worker Node
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CopyCat and AxParafit tools as well as additional 
components that were necessary to implement the 
system outlined in Section 3.1.

CopyCat

Previous versions of CopyCat already provided 
straight-forward GUI-based functionality for the 
preparation and analysis of co-phylogenetic da-
tasets. The CopyCat GUI is implemented in Java 
using the Standard Widget Toolkit (SWT). Upon 
startup, the user can load the host and parasite trees 
(represented in the standard Newick tree format: 
http://evolution.genetics.washington.edu/phylip/
newicktree.html), together with a host-parasite 
association list in a simple plain-text format that 
contains one host-parasite association per line.

When starting an analysis, the user can now 
utilize a new Grid interface that connects Copy-
Cat to the gridified program AxParafit. Instead 
of directly calling the AxParafit executable, the 
interface invokes a Perl script (AxParafit.pl) 
which hides the Grid-related parts from the user 
and CopyCat. By delegating the invocation pro-
cess to a script, dependencies between the user 
front-end and the Grid software are minimized. 
Thus, future modifications like the development 
of a Web interface for job submissions (see Con-
clusion) or the usage of a different middleware 
system are possible.

The AxParafit.pl script entirely manages the 
execution of AxParafit on the Grid and provides 
status updates to the standard output stream at the 
same time. As CopyCat is listening to the output 
stream of the external programs it invokes, it 
also receives the status updates generated by the 
aforementioned Perl-script and writes them to 
the CopyCat log-message window, thus keep-
ing the user informed about the progress of Grid 
jobs. Upon termination of the script, the output 
of the Grid jobs (individual tests of host-parasite 
associations), as well as the global significance 
test results, are read by CopyCat. The results can 

then be displayed and further analyzed via the 
CopyCat evaluation window.

Within the context of an automated Grid-driven 
simultaneous analysis of several distinct datasets 
(and other potential script-based applications, 
based on CopyCat), the program has been extended 
by a command-line interface. As a side-effect, this 
enables CopyCat users to speed-up certain analy-
ses by simply executing a specific command-line 
call with a defined set of parameters (please refer 
to the CopyCat manual for detailed information 
on the command-line options).

Application-Side Modifications 
of AxParafit

As outlined in other section, the parallel MPI 
implementation of AxParafit uses a simple master-
worker scheme. In order to devise a distributed ver-
sion of AxParafit we modified the code as follows: 
initially, we appropriately modified the global test 
of congruence in AxParafit to write an additional 
file called “gridData.RUN-ID” where RUN-ID is 
the output file name appendix for a specific analy-
sis that is passed to AxParafit via a command line 
parameter (for details see the AxParafit Manual 
at http://icwww.epfl.ch/~stamatak/). This file 
contains the necessary data to make scheduling 
decisions for the distributed computation of the n 
individual tests of host-parasite associations, i.e., 
the number of jobs nz, e.g. Jobs=2000, and the 
approximate execution time per job in seconds, 
e.g., ComputeTime=10 . This data can then be 
used to determine the level of granularity for in-
dividual Grid tasks since in the current example 
the scheduling overhead induced by distributing 
2,000 jobs of 10 seconds each, along with the 
comparatively large input datasets on the Grid, 
would be immense. We have, thus, extended the 
implementation of the individual host-parasite 
association tests in AxParafit by two additional 
command line parameters -l (lower limit) and -u 
(upper limit). These parameters allow for compu-
tation of several host-parasite associations in one 
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single program run. The lower and upper limits 
just refer to the order of the nz non-zero entries in 
the binary association matrix. Thus, in the pres-
ent example, we can schedule larger, in terms of 
execution times, Grid jobs by only distributing 
two Grid jobs with -l 0 -u 1000 and -l 1000 -u 
2000 that would require approximately 10,000 
seconds of execution time each, i.e., Grid job 0 
would compute statistics for the first 1,000 host-
parasite associations and Grid job 1 for the remain-
ing 1,000 associations. The result files of these 
distributed Grid jobs only need to be recovered 
and concatenated in the order of the associations 
they computed, and the respective result file can 
then be read and visualized by CopyCat.

Grid-Side Adaptation

Parafit.pl provides the actual link between Copy-
Cat and the gridified version of AxParafit. First, 
it reads the file “gridData.RUN-ID” to determine 
the number of tasks to be created (registered) for 
execution on the Grid (Step 1 in Figure 3). As 
outlined in Section 3.2.1, the basic idea consists 
of combining appropriate fractions (subsets) of 
the nz individual tests into a single task, i.e., a set 
of individual tests k < nz are executed by a Grid 
job. In order to make efficient use of the Grid and 
to reduce scheduling overhead, a task contains 
a minimum of k individual tests, such that the 
respective job requires at least 30 seconds on an 
average CPU. After the number of tasks has been 
determined, a certain number of Grid jobs (ap-
proximately nz/k) needs to be submitted (Step 3 in 
Figure 3) which then ask for tasks to be executed, 
i.e., issue work requests. An individual Grid job 
can request and execute several tasks, as long as 
the Task Server can provide more work (Steps 
5 and 6 in Figure 3). The protocol used for the 
Task Server is HTTP which allows for fast com-
munication between the client and the server. For 
additional background and fault tolerance features 
of this processing model with a Task Server please 
refer to Stockinger et al. (2006).

Before Grid jobs can be submitted, AxParafit.
pl creates the Grid job specification, i.e. the job 
description file to decide which files (data and/or 
executables) to send to Grid computing resources. 
A typical job description file looks as follows:(See 
Box 1).

The wrapper code (identified as “Executable” 
in the JDL file above) is AxWorker.pl using the 
command line arguments specified by “Argu-
ments”. Once AxParafit.pl is running on a Grid 
Worker Node, it is responsible for requesting tasks 
from a Task Server and executing AxParafitBLAS. 
The two programs (AxWorker.pl and AxParafit-
BLAS) are transferred to the Grid Worker Node 
as specified in the InputSandbox in the example 
above, i.e. gLite provides the means to transfer 
data from the client machine to the actual comput-
ing resource.

In parallel to the execution of Grid jobs, the 
script AxParafit.pl monitors the status and is re-
sponsible for providing and assembling the final 
result (Steps 8 and 9 in Figure 3).

In particular, when tasks have been processed 
successfully, they are downloaded from the Stor-
age Element and transferred to the client. Note 
that an alternative implementation option is to 
transfer the output of individual tasks via the gLite 
middleware (using the OutputSandbox). However, 
because of performance and reliability consider-
ations, it has turned out to be more efficient to store 
files at an external Storage Element and retrieve 
them from there: one reason is that the actual job 
output can only be retrieved if gLite indicates 
that a job has been finished. However, because 
of update latencies in the Grid-wide information 
and motoring system, jobs might have finished 
already several dozens of seconds or even a few 
minutes ago while the job status is still indicated 
as pending or running.

As a final remark: since the gLite services can 
only be accessed by authorized users, the execu-
tion of the AxParafit.pl script requires the usage 
of a valid X.509 proxy certificate.
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EXPERIMENTAL RESULTS

The main goal of the gridified version of 
CopyCat(AxParafit) is to accelerate and facilitate 
large-scale analyses. We present two experiments 
with large computational demands and study 
their performance on the Grid. The performance 
improvement is outlined with respect to running 
the application sequentially on a single machine. 
Moreover, we conduct a performance comparison 
between a dedicated compute cluster and the Grid.

Test Environment

The Grid platform that is supported by our ap-
plication is gLite 3. Tests are conducted using 
gLite on the EGEE production infrastructure. In 
particular, we use the Virtual Organization (VO) 
that is dedicated to biomedical applications: 
“biomed”. Members of this VO have access to 
about 50 Computing Elements (acting as front-
ends to computing clusters), each having between 
2 and a few hundred processing cores. The exact 
number of processing cores available to a single 
user at a given time cannot be easily obtained since 
it depends on the current system load as well as 
the general availability of a Computing Element 
at a certain point in time. Currently, gLite does 
not support resource reservation nor job priorities, 

which means that experimental results can not be 
fully reproduced. However, once one is correctly 
registered with the Virtual Organization, one can 
use it any time of the day.

On the client side, we used gLite on GNU/
Linux on an AMD Opteron machine (2 GB RAM, 
2.2 GHz CPU) located in Lyon, France – previous 
tests (in particular with the installation of CopyCat 
and the Grid interface have been conducted on a 
machine located in Lausanne, Switzerland). The 
gLite components used are the workload man-
agement system (for job submission and status 
monitoring) as well as data management clients 
for file transfer. Additionally, we deployed and 
used a Task Server that is located in Lausanne, 
using resources provided by the Vital-IT group 
of the Swiss Institute of Bioinformatics. In the 
second experiment, we used a dedicated compute 
cluster with 128 CPUs. In contrast to the Grid, the 
cluster had to be reserved in advance.

Experiment with Real-world Data

In the first experiment we are interested in the 
raw performance (response time) of AxParafit.pl, 
i.e., how long does it take to fully process a set of 
tasks on the Grid. In this experiment, we do not 
include CopyCat but directly invoke AxParafit.
pl as shown in Box 2.

Box 1.

Executable = “AxWorker.pl”;  

Arguments = “-j ax-May1319-41-28 -p 100 -1 2048 -2 2048 -3 2025 -4 2031 \ 

–A gsiftp://example.org/dpm/home/biomed/heinz/selection_2048.mat-ax-

May1319-41-28 \ 

-B gsiftp://example.org/dpm/home/biomed/heinz/selection_2048_P.pco-ax-

May1319-41-28 \ 

-C gsiftp://example.org/dpm/home/biomed/heinz/selection_2048_H.tra-ax-

May1319-41-28 -i 1”;  

Stdoutput = “output.txt”;  

InputSandbox = {“/home/stockinger/AxWorker.pl”, “/home/stockinger/AxParafitB-

LAS”};  

OutputSandbox = {“output.txt”} 
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The parameters -1, -2, -3 and -4 specify the 
number of rows and columns in the association 
matrix as well as the number of rows and columns 
in the parasite and host matrices; -p represents 
the number of permutations conducted by the 
statistical test; -A, -B, and -C are used to read the 
plain-text input files; -n specifies a run ID that is 
appended to all output files (for details on the 
AxParafit program parameters please refer to the 
AxParafit manual at http://icwww.epfl.
ch/~stamatak/). The dataset we used is the afore-
mentioned (Section 2) dataset for the study of 
smut-fungi, that was used to demonstrate perfor-
mance of the stand-alone AxParafit code by 
Stamatakis et al. (2007). As already mentioned, 
this dataset represents the largest real-world co-
phylogenetic study conducted to date. While the 
sequential execution time for this dataset still 
appears to be acceptable, such studies were previ-
ously not feasible with Parafit which is between 
1-2 orders of magnitude slower than AxParafit. 
Since the host-parasite association list contains 
nz=2,362 entries, 2,362 individual tests need to 
be performed. The execution of AxParafit to 
compute global congruence of the trees returned 
an estimated run time of 3 seconds per job, i.e., 
an overall expected run time of almost two hours 
(2,362 x 3 seconds). The main goal of the first 
test is therefore to minimize the expected response 
time. We also executed the full test, as specified 
above, on a single machine and observed that the 
estimated run time of about 2 hours (7,000 seconds) 
is almost identical to the measured run time (7,200 
seconds). Therefore, we deduce that the run time 
prediction mechanism is sufficiently accurate for 
our application. In our experiments, we varied 
the number of tasks (in the range between 60 and 

162) as well as the number of parallel Grid jobs 
(in the range between 24 to 124) to experimen-
tally determine the minimal response time. How-
ever, because of varying response times of the 
Grid (i.e. the various Computing Elements and 
their job queues etc.) it was not possible to deter-
mine an optimal number of Grid jobs and tasks. 
Finally, in the experiment we used 124 Grid jobs 
and 150 tasks which have been proposed by the 
work distribution algorithm outlined in aforemen-
tioned section. The overall response time to 
produce the final output was 11 minutes and 15 
seconds (cf. Figure 4). Consequently, we observe 
a clear runtime improvement with respect to a 
single, sequential run. Note that the AxParafit.pl 
program had to be adapted to allow for parallel 
downloads of the individual results: originally, 
results were downloaded sequentially, which 
increased the overall response time by several 
minutes. By overlapping communication with 
computation, this problem was resolved.

Experiment with Synthetic Data

In another experiment, we used a larger (synthetic) 
test dataset that had been extracted from a larger 
empirical dataset to test scalability of AxParafit 
and compared the runtime of the Grid with the 
infiniband cluster at the Technical University of 
Munich equipped with 128 AMD Opteron 2.4 GHz 
CPUs. In the association list, there were nz=2,048 
non-zero entries (equivalent to 2,048 tasks) and 
we used 100 permutations. The expected runtime 
of a single task was 568 seconds, i.e., about 10 
minutes. As a result, the expected sequential re-
sponse time to finish all 2,048 tasks is about 13.4 
days. We used the wrapper as shown in Box 3.

Box 2.

AxParafit.pl -p 10 -1 413 -2 1400 -3 1390 -4 411 \ 

       -A smuts010907.mat -B smuts010907_P.pco -C smuts010907_H.tra -n RUN_1
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Note that the input files are bigger than in the 
previous experiment: they cannot be directly 
submitted with the Grid job but they are up-
loaded to a Storage Element and then dynami-
cally downloaded by Grid jobs when needed.

A direct performance comparison between the 
cluster and a Grid is not feasible since the cluster 
we used had several favorable features that a 
multi-institutional Grid does not have: a shared 
file system between all processing nodes which 
minimizes the data transfer time; homogeneous 
hardware infrastructure; pre-defined number of 
CPUs that are available which does not require 

an automatic task assignment, no overhead for 
job submission etc. However, the cluster needed 
to be reserved in advance (larger slots can only 
be obtained overnight) which means that it was 
only available at a specific time, whereas Grid 
resources are available on demand at any time. 
Intuitively, one expects a cluster to provide a bet-
ter response time to a large size application but it 
has a considerable “reservation latency”, a fact 
that should not be underestimated.

The final performance results of the experi-
ments are depicted in Figure 5. For the Grid ex-
ecution, we used between 90 and 175 parallel jobs 

Figure 4. Comparison of smut-fungi dataset on a single CPU and on a Grid using 124 Grid jobs and 150 
tasks. Note that there is a rather high redundancy in Grid jobs and not all 124 jobs really participate 
in the overall calculation because of start-up latencies. In fact, a few Grid jobs (AxWorker.pl) started, 
requested tasks and found out that there were no more tasks available and gracefully finished

Box 3.

AxParafit.pl -p 100 -1 2048 -2 2048 -3 2025 -4 2031 -A selection_2048.mat \ 

 -B selection_2048_P.pco -C selection_2048_H.tr a -n RUN_2
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(the number varied during the overall execution 
time). Given the number of parallel jobs used in 
the Grid, the cluster performed better. However, 
if the number of jobs is increased on the Grid, 
the cluster can actually be out-performed. Note 
that, the Grid response time comprises the se-
quential run time that is necessary to determine 
the number of tasks and jobs and compute the 
test for global congruence that is then used as 
input data for the nz individual tests. This initial 
part of the analysis also needs to be executed 
sequentially on the cluster. In addition, the Grid 
response time also includes the job submission 
overhead that is imposed by the gLite workload 
management systems. In order to avoid congestion 
problems at the submission server, only a certain 
number of jobs are submitted at a given time by 
AxParafit.pl. The actual processing time of the 
2,048 AxParafit tests can then be better compared 
to the cluster performance. Another interesting 
observation is the average processing time of 13.3 
min per single task on the Grid compared to the 
local execution time of 11 min on the Grid client 
machines. This indicates that distinct Computing 

Elements have CPUs with rather different CPU 
speeds and latencies.

Overall, our Grid-based approach requires 
computing times that are in the same order of 
magnitude as those of a dedicated cluster. Con-
sequently, the gridified version provides an eas-
ier to use alternative to a compute cluster with 
comparable performance.

CONCLUSION

We have demonstrated how a compute-intensive 
application for a statistical test of congruence 
between host and parasite phylogenies can effi-
ciently be distributed on the Grid. The proposed 
Grid-based implementation can greatly contribute 
to the reduction of response times for large-scale 
analyses and to the computation of a larger number 
of test permutations, which in turn improve upon 
accuracy. Moreover, we have integrated the access 
to Grid resources into an easy-to-use Graphical 
User Interface (CopyCat) which entirely hides the 
technical details related to the exploitation of Grid 

Figure 5. Performance comparison of a 128 CPU cluster with a Grid using between 90 and 175 parallel 
jobs. Note that the number of Grid job varied and was never constant
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resources from the user. Note that in particular for 
non-expert users, easy accessibility and usability 
of HPC resources represents a major criterion for 
the selection of software and systems. We thus 
believe that the proposed architecture will greatly 
facilitate access to HPC resources for real-world 
biological studies on host-parasite evolution. 
Nonetheless, the requirement to obtain access 
and accreditation to use Grid resources (valid 
X.509 proxy certificate) will possibly hinder a 
large amount of potential users to exploit these 
new possibilities offered by the Grid. Based on 
previous experience with the development of 
the freely accessible RAxML Web servers for 
phylogenetic reconstruction (Stamatakis et al., 
2008, over 8,000 job submissions in the first 8 
months of operation) that are however scheduling 
jobs to dedicated clusters instead of the Grid, we 
believe that a freely accessible Web server for this 
Grid-enabled system for co-phylogenetic analyses 
can contribute to the generation of biological in-
sights, by further simplifying the access to HPC 
resources. Thus, future work will concentrate on 
the development of such a Web server, as well as 
the integration with the aforementioned RAxML 
servers such as to provide a comprehensive phy-
logenetic and co-phylogenetic analysis pipeline.

ACKNOWLEDGMENT

This work was funded in part by the EU project 
EMBRACE Grid which is funded by the European 
Commission within its FP6 Program, under the 
thematic area “Life sciences, genomics and bio-
technology for health”, contract number LUNG-
CT-2004-512092. The Exelixis lab (AS) is funded 
under the auspices of the Emmy-Noether program 
by the German Science Foundation (DFG).

REFERENCES

Altschul, S. F., Madden, T. L., & Schaffer, A. A. 
(1997). Gapped BLAST and PSI-BLAST: a new 
generation of protein database search programs. 
Nucleic Acids Research, 25(17), 3389–3402. 
doi:10.1093/nar/25.17.3389

Charleston, M. A., & Perkins, L. (2006). Travers-
ing the tangle: Algorithms and applications for co-
phylogenetic studies. Journal of Biomedical Infor-
matics, 39, 62–71. doi:10.1016/j.jbi.2005.08.006

Chor, B., & Tuller, T. (2005). Maximum likelihood 
of evolutionary trees: hardness and approximation. 
Bioinformatics (Oxford, England), 21(1), 97–106. 
doi:10.1093/bioinformatics/bti1027

de Vienne, D. M., Giraud, T., & Martin, O. C. 
(2007). A congruence index for testing topological 
similarity between trees. Bioinformatics (Oxford, 
England), 23(23), 3119–3124. doi:10.1093/bio-
informatics/btm500

Goloboff, P. (1999). Analyzing Large Data 
Sets in Reasonable Times: Solutions for Com-
posite Optima. Cladistics, 15(4), 415–428. 
doi:10.1111/j.1096-0031.1999.tb00278.x

Gottschling, M., Stamatakis, A., & Nindl, I. (2007). 
Multiple Evolutionary Mechanisms Drive Papil-
lomavirus Diversification. Molecular Biology 
and Evolution, 24(5), 1242–1258. doi:10.1093/
molbev/msm039

Hansen, H., Bachmann, L., & Bakke, T. A. (2003). 
Mitochondrial DNA variation of Gyrodactylus 
spp. Monogenea, Gyrodactylidae populations 
infecting Atlantic salmon, grayling, and rain-
bow trout in Norway and Sweden. International 
Journal for Parasitology, 33(13), 1471–1478. 
doi:10.1016/S0020-7519(03)00200-5



236

Large-Scale Co-Phylogenetic Analysis on the Grid

Heinicke, M. P., Duellman, W. E., & Hedges, 
S. B. (2007). From the Cover: Major Caribbean 
and Central American frog faunas originated by 
ancient oceanic dispersal. Proceedings of the 
National Academy of Sci

Laure, E., Fisher, S., & Frohner, A. (2006). Pro-
gramming the Grid with gLite. Computational 
Methods in Science and Technology, 12(1), 33–45.

Legendre, P., & Anderson, M. J. (1998). DistPCOA 
program description, source code, executables, 
and documentation: http://www.bio.umontreal.
ca/Casgrain/en/labo/distpcoa.html

Legendre, P., Desdevises, Y., & Bazin, E. 
(2002). A Statistical Test for Host-Parasite Co-
evolution. Systematic Biology, 51(2), 217–234. 
doi:10.1080/10635150252899734

Meier-Kolthoff, J. P., Auch, A. F., Huson, D. H., 
& Göker, M. (2007). COPYCAT: Co-phylogenetic 
Analysis tool. Bioinformatics (Oxford, England), 
23(7), 898–900. doi:10.1093/bioinformatics/
btm027

Meinilä, M., Kuusela, J., Zietara, M. S., & Lumme, 
J. (2004). Initial steps of speciation by geographic 
isolation and host switch in salmonid pathogen 
Gyrodactylus salaris (Monogenea: Gyrodac-
tylidae). International Journal for Parasitology, 
34(4), 515–526. doi:10.1016/j.ijpara.2003.12.002

Merkle, D., & Middendorf, M. (2005). Recon-
struction of the cophylogenetic history of related 
phylogenetic trees with divergence timing infor-
mation. Theory in Biosciences, 123(4), 277–299. 
doi:10.1016/j.thbio.2005.01.003

Ricklefs, R. E., Fallon, S. M., & Birmingham, 
E. (2004). Evolutionary relationships, cospe-
ciation, and host switching in avian malaria 
parasites. Systematic Biology, 53(1), 111–119. 
doi:10.1080/10635150490264987

Ronquist, F., & Huelsenbeck, J. (2003). MrBayes 
3: Bayesian phylogenetic inference under mixed 
models. Bioinformatics (Oxford, England), 
19(12), 1572–1574. doi:10.1093/bioinformatics/
btg180

Salzberg, S. L., Kingsford, C., & Cattoli, G. 
(2007). Genome analysis linking recent European 
and African influenza (H5N1) viruses. Emerging 
Infectious Diseases, 13(5), 713–718.

Stamatakis, A. (2006). RAxML-VI-HPC: maxi-
mum likelihood-based phylogenetic analyses with 
thousands of taxa and mixed models. Bioinfor-
matics (Oxford, England), 22(21), 2688–2690. 
doi:10.1093/bioinformatics/btl446

Stamatakis, A., Auch, A. F., Meier-Kolthoff, J., 
& Göker, M. (2007). AxPcoords & parallel Ax-
Parafit: statistical co-phylogenetic analyses on 
thousands of taxa. BMC Bioinformatics, 8, 405. 
doi:10.1186/1471-2105-8-405

Stamatakis, A., Hoover, P., & Rougemont, J. 
(2008). (in press). A Rapid Bootstrapping Algo-
rithm for the RAxML Web Servers. Systematic 
Biology. doi:10.1080/10635150802429642

Stockinger, H., Pagni, M., Cerutti, L., & Falquet, 
L. (2006). Grid Approach to Embarrassingly Paral-
lel CPU-Intensive Bioinformatics Problems. 2nd 
IEEE International Conference on e-Science and 
Grid Computing (e-Science 2006), IEEE Com-
puter Society Press, Amsterdam, The Netherlands.

Thomas, P. L., & Menzies, J. G. (1997). Cereal 
smuts in Manitoba and Saskatchewan, 1989-95. 
Canadian Journal of Plant Pathology, 19(2), 
161–165. doi:10.1080/07060669709500546

Thompson, J. D., Higgins, D. G., & Gibson, T. 
J. (1994). CLUSTAL W: improving the sensitiv-
ity of progressive multiple sequence alignment 
through sequence weighting, position-specific 
gap penalties and weight matrix choice. Nucleic 
Acids Research, 22(22), 4673–4680. doi:10.1093/
nar/22.22.4673



237

Large-Scale Co-Phylogenetic Analysis on the Grid

Zwickl, D. (2006). Genetic algorithm approaches 
for the phylogenetic analysis of large biological 
sequence datasets under the maximum likelihood 
criterion. PhD Thesis, The University of Texas 
at Austin.

This work was previously published in International Journal of Grid and High Performance Computing (IJGHPC), Volume 1, 
Issue 1, edited by Emmanuel Udoh & Ching-Hsien Hsu, pp. 39-54, copyright 2009 by IGI Publishing (an imprint of IGI Global).



238

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  15

INTRODUCTION

Heterogeneous distributed systems are the 
emergent infrastructures for scientific comput-
ing. From peer-to-peer, volunteer computing 
systems to the more structured ensembles of 

scientific instruments, data repositories, clusters 
and supercomputers such as computational grids 
(Foster and Kesselman, 1999), these systems are 
heterogeneous and dynamic in availability. Fur-
thermore, the wide-area links that interconnect 
these resources are prone to transient or permanent 
failures. These dynamic characteristics introduce 

Philip Chan
Monash University, Australia

David Abramson
Monash University, Australia

Persistence and Communication 
State Transfer in an 

Asynchronous Pipe Mechanism

ABSTRACT

Wide-area distributed systems offer new opportunities for executing large-scale scientific applications. 
On these systems, communication mechanisms have to deal with dynamic resource availability and the 
potential for resource and network failures. Connectivity losses can affect the execution of workflow 
applications, which require reliable data transport between components. We present the design and 
implementation of π-channels, an asynchronous and fault-tolerant pipe mechanism suitable for coupling 
workflow components. Fault-tolerant communication is made possible by persistence, through adaptive 
caching of pipe segments while providing direct data streaming. We present the distributed algorithm 
for implementing: (a) caching of pipe data segments; (b) asynchronous read operation; and (c) com-
munication state transfer to handle dynamic process joins and leaves.
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unique challenges for executing large-scale sci-
entific applications.

This research is motivated by the need to sup-
port fault-tolerant communication within scientific 
workflows. A workflow consists of multiple pro-
cessing stages, where intermediate data generated 
in one stage are processed in subsequent stages. 
A workflow component can be a device or an 
application, which is often modified to enable 
communication. Thus, a scientific workflow is a 
computational/data-processing pipeline; with data 
being captured, processed and manipulated as it 
pass through various stages (Figure 1). Currently, 
the data transfers between component applications 
are realised by: (a) file transfers (e.g. GridFTP); 
(b) remote procedure calls (e.g. RPC-V, GridRPC, 
OmniRPC); and (c) custom mechanisms (e.g. 
Web Services).

For coupling workflow components, we pro-
pose the π-channel, an asynchronous and persis-
tent pipe mechanism. It is part of the π-Spaces/π-
channels programming model which features:

1.  Simplified application coupling using string 
channel names through π-Spaces. A π-Space 
is a name space for π-channels, enabling dy-
namic binding of channel endpoints between 
processes.

2.  π-channel data are adaptively cached to 
achieve persistence. This allows π-channels 
to be created and written to, even in the ab-

sence of the reader. Persistence also makes 
π-channels accessible even after the writer 
has terminated.

3.  Asynchronous receives are made possible 
through a communication thread; thus, an 
application is able to accept pipe segments 
even when it is busy in computation.

This article focuses on how π-channel per-
sistence relates to fault-tolerant communication 
in scientific workflows. The extended API and 
semantics for π-Space/π-channels are presented. 
We describe the design and implementation of 
π-channels, including the server that implements 
this model along with the underlying distributed 
algorithm.

This article is organised as follows: We review 
related work in the next Section § 2. Then, we 
present the π-Spaces/π-channels programming 
model in § 3, including its application program-
ming interface, semantics, and how fault-tolerance 
is achieved for workflows. In § 4, we discuss in 
detail its design and implementation, describing 
the distributed algorithm. Experimental results 
are presented in § 5, followed by the conclusions.

RELATED WORK

We briefly review the major models for commu-
nication on distributed environments highlighting 
their differences from π-Spaces/π-channels.

Pipe/Channel Models

The pipe/channel is a well-known IPC mechanism 
and appears in many forms: Unix pipes, named 
pipes, and TCP sockets (Stevens, 1998). Sockets 
with TCP, while used in network programming, 
are too low-level for scientific application pro-
gramming. In particular, since communication 
endpoints are identified using IP/host addresses 
and port numbers, it is tedious to use in a dynamic, 
failure-prone environment. In the event of a link 

Figure 1. A simple four-stage workflow applica-
tion. Arrows indicate data flow between compo-
nent applications. Application B is an n-process 
parallel application.
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failure, TCP primitives will generate a “broken 
pipe” exception, which require explicit handling.

The channel abstraction has its early begin-
nings in Kahn’s Process Networks (Kahn, 1974) 
and Communicating Sequential Processes (Hoare, 
1985). This abstraction is the basis of current 
process calculi. Many coordination languages use 
the channel model, e.g. MoCha (Guillen-Scholten 
and Arbab, 2005), POLYLITH (Purtilo, 1994), 
Programmer’s Playground (Goldman et al., 1995), 
Conic (Magee et al., 1989), and Netfiles (Chan 
and Abramson, 2001). Channels are provided in 
Grid programming environments, e.g. Ibis (van 
Nieuwpoort et al., 2005) and Vishwa (Reddy et al., 
2006). Vishwa applications communicate through 
a pipe mechanism called DP (Johnson and Ram, 
2001). However, these systems do not support 
fault-tolerance in the communication.

Communication persistence was previously 
explored by at least the following: (a) persistent 
pipes for transactions (Hsu and Silberschatz, 
1991); (b) persistent connections over TCP (Zhang 
and Dao, 1995); and more recently, (c) the per-
sistent streaming protocol (Hua et al., 2004) and 
(d) NapletSocket (Zhong and Xu, 2004). Unlike 
π-Spaces/π-channels, these lack a logical name 
space for communication endpoint coupling. For 
example, IP addresses and ports are necessary for 
configuring endpoints in (Hsu and Silberschatz, 
1991) and (Zhang and Dao, 1995). Moreover, 
π-Spaces/π-channels support asynchronous com-
munication.

Message-oriented middleware (MoM), e.g. 
IBM’s Websphere MQ (IBM Websphere MQ, 
2008) and the Microsoft Message Queueing 
System (MSMQ) (Microsoft, 2008), present a 
suite of asynchronous communication services 
suitable for general transaction processing. The 
message transfer times are in the order of minutes 
instead of seconds or milliseconds (Tanenbaum 
and Steen, 2007), reducing their applicability for 
high-performance scientific applications. Further-
more, queue management requires tedious setup 
and configuration, while the π-Spaces/π-channels 

model is designed for efficient pipe creation/
retrieval, including dynamic binding of channel 
endpoints.

π-Channels in Context with 
Netfiles and GriddLeS

Our earlier work on Netfiles (Chan and Abramson, 
2001, 2008) investigated file I/O as metaphor 
for interprocess communication. The idea was 
inspired from the Nimrod project (Abramson 
et al., 1995, 1997). Nimrod is a middleware for 
the executing large-scale parametric models (or 
sweeps) over distributed systems. These para-
metric sweep applications can be built without 
modifying the existing programs. For many such 
applications, the component programs commu-
nicate by through data files, with file transfers 
performed by the runtime.

In GriddLeS (Abramson and Kommineni, 
2004), the file I/O metaphor is extended for wide-
area environments like Grids, implemented over 
Web Services. The GriddLeS runtime provides 
an I/O multiplexer, which transparently performs 
file transfers and buffered remote I/O operations 
to couple applications that read/write files. This 
enables Grid workflows to be composed without 
rewriting any program code, a feature useful 
when existing legacy codes are executed over 
computational grids.

The π-channel abstraction extends Netfiles 
and GriddLeS with persistence and efficient 
asynchronous operations. Furthermore, GriddLeS 
offer static associations of names to process loca-
tions, while π-Spaces/π-channels provide dynamic 
π-channels binding.

Message Passing

Message Passing Interface (MPI) is widely used for 
writing parallel programs. However, Grid applica-
tions like scientific workflows require coupling 
of multiple separate applications. For this, the 
MPI-2 standard provides Unix socket-like inter-
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face for accepting and establishing connections 
between two MPI applications, enabling com-
munication with MPI_Send() and MPI_Recv(). 
Although fault-tolerance may be incorporated 
into this mechanism, current projects (Fagg and 
Dongarra, 2004; Batchu et al., 2004; Bouteiller et 
al., 2006; Gropp and Lusk, 2004) are focused on 
fault-tolerant IPC within an application.

In the MPI model, each process is identified 
by an integer rank. Elegant and simple, this model 
works very well on SPMD applications where the 
number of processes is known and fixed. Phoenix 
(Taura et al., 2003), for example, modifies the 
process naming scheme so that processes may join 
and leave the computation without the need to re-
assign ranks. When coupling multiple applications 
in a workflow, it is useful to have a user-intuitive 
convention to identify communication endpoints 
(Chan and Abramson, 2007, p. 6).

Generative Communication Models

Linda (Carriero and Gelernter, 1989) is a genera-
tive communication model that features decoupled 
communication. In Linda, processes communicate 
by posting and retrieving ordered sequences of 
values called tuples onto a logical shared space 
called tuplespace. Its elegance has inspired many 
systems such as Sun’s Javaspaces (Freeman et 
al., 1999), and IBM’s T-spaces (Wyckoff et al., 
1998). The Linda tuplespace model encourages 
decoupled communication along two dimensions. 
First, tuples are posted and retrieved anonymously 
from tuplespace, achieving space decoupling. 
Second, since tuples are persistent, temporal 
decoupling is possible, allowing non-concurrent 
processes to communicate.

Workflows require efficient data transfers, 
which is challenging to achieve in Linda. Exten-
sions have thus been proposed, e.g. WCL (Row-
stron, 1998) supports bulk transport of tuples. 
Taskspaces (Sterck et al., 2003, 2005) provide 
direct communication using the tuples to identify 
communication endpoints (IP/port) and TCP to 

connect processes. However, it lacks support for 
communication fault-tolerance.

Π-CHANNELS: A PERSISTENT 
PIPE MECHANISM

A π-channel is an enhanced unidirectional 
(MRSW) pipe that has a unique user-specified 
string name and a FIFO sequence of arbitrary-
length typed data segments, each treated as in-
divisible units. Fault-tolerant communication is 
achieved by persistence, enabling π-channels to 
be created and written to at any time, independent 
of the sink/reader, thus encouraging temporal 
decoupling.

During π-channel creation, if the matching 
reader is known, a direct connection (if possible) is 
used to efficiently transfer pipe segments. Due to 
persistence (Chan and Abramson, 2007), delivery 
of the π-channel to the π-Space continues (Figure 
2a). This enables π-channel writes to proceed even 
if the link and/or reader have failed during com-
munication. At this point, the pipe segments will 
be written to the π-Space (Figure 2b). When the 
reader resumes, a communication state transfer 
re-establishes the connections between the reader, 
the π-Space, and the writer.

π-Channels: Programming Model 
and Semantics

Table 1 summarises the API for π-channels. This 
is inspired from file-based I/O and connection-
oriented socket communication. The key dif-
ference is that a thread is employed to receive 
data asynchronously. The read/write operations 
resemble the standard Unix I/O operations, with 
specifications of the segment data type, for het-
erogeneous communication.
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THE Π-CHANNEL API

The π-channels programming interface consists 
of the following:

1.  pi_attach(str n, int s): attaches to a π-channel 
with name n on space s, does not block even if 
π-channel is absent. It initiates asynchronous 
receive, allowing segments to be buffered 
locally even before the pi_read() is issued. 
This primitive returns a descriptor represent-
ing the “read” end.

2.  int pi_create(str n, int s, int mode): creates 
a π-channel with name n on space s. The 
mode argument is used to specify if this is a 
CREATE – for new π-channels; or APPEND 
– to resume writing. On success, it returns 
a descriptor representing the “write” end of 
the created π-channel.

3.  int pi_read(int d, ptr b, int len, dtype_t1t): 
reads a segment of len elements of type t 
into buffer b from the descriptor d, blocks 
if no segments are available. It returns the 
number of elements successfully read or -1 
if end of the pipe is reached.

4.  int pi_write(int d, ptr b, int len, dtype_t t): 
writes a segment of len elements of type t 
from buffer b into the descriptor d.

5.  int pi_close(int d), int pi_detach(int d): closes 
the “write” and “read” end of the π-channel 
d, respectively.

6.  int pi_seek(int d, int seg_id): moves the logi-
cal pipe pointer for d to start reading from 
segment seg_id, with 0 as the first segment. 
This only works at the read end. On success, 
it returns 0.

7.  pi_tell(int d): returns the segment ID of the 
logical pipe pointer of the π-channel.

Figure 2. Dual π-channel behaviours: (a) when reader-to-writer link is available; and (b) during a 
link failure, writer continues transmitting data to the space, delivery to the reader resumes upon link 
restoration.

Table 1. A brief overview of the key π-channels primitives 

π-channel Primitive Brief Description

pi_create() Creates a new π-channel.

pi_attach() Attach and retrieve a given π-channel.

pi_write() Writes a pipe segment.

pi_read() Reads a pipe segment.

pi_seek() Seek to a new read segment position.

pi_tell() Return the segment ID of upcoming segment.

pi_close() Closes a π-channel that is opened for writing.

pi_detach() Detach from reading a π-channel.

pi_unlink() Marks a closed π-channel for deletion.



243

Persistence and Communication State Transfer in an Asynchronous Pipe Mechanism

8.  pi_unlink(str n): marks the π-channel n for 
deletion, returns -1 for open π-channels.

With persistence, a π-channel behaves as 
both: (a) an archival file – writes can proceed 
without readers; and (b) an online pipe – when 
the reader/s and the writer are concurrent. This 
duality makes pi_seek() possible, when such an 
operation would be meaningless on conventional 
pipes. All π-channels are immutable, so pi_seek() 
is disabled at the “write” end.

SEMANTICS OF Π-CHANNEL 
OPERATIONS

Figure 3 shows a state-transition diagram for 
π-channels. The top three states show the life-
cycle of a π-channel as it is created, written-to, 
closed, and deleted. The remaining states show 
the transitions when there is a concurrent reader. 
In particular, the Read/Write applies when the 
π-channel has one active writer and at least one 
active reader. At the Reading state, the π-channel 

behaves like a stored file object, with data seg-
ments retrieved from π-Space.

This simple semantics facilitates a straightfor-
ward failure recovery mechanism. The key is to 
enable the application to resume π-channel op-
erations upon recovery, without affecting its cor-
rectness. During writer recovery, pi_create() and 
pi_write() operations are “redone.” If segments 
are already cached, the sequence of pi_write() 
operations are replayed, without changing 
π-channel segments that are already on π-Space. 
Eventually, a new segment is written marking to 
start of normal operation. During reader recovery, 
all pi_attach() and pi_read() are performed on 
cached π-channels, with pipe segments delivered 
from the cache. Processes are assumed to be 
piecewise deterministic, thus able to repeat the 
results it generated in a previous failed execution.

π-Spaces: Abstraction of 
Shared Space for π-Channels

Process coordination is through one or more 
π-Spaces. Similar to Linda tuplespace, a π-Space 
is a shared space abstraction for π-channels, which 

Figure 3. The states of a π-channel
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are explicitly posted and retrieved by processes 
(Figure 4). A π-Space is a logical name space for 
π-channels, providing dynamic binding of chan-
nel endpoints.

Persistence fits elegantly with the model of 
shared spaces. When a π-channel is created, a 
copy is automatically posted on the π-Space. 
During a pi_attach(), the π-Space is accessed to 
retrieve the named π-channel. Within a single 
π-Space, a name is bound to at most one π-channel. 
To reuse an existing name, the π-channel has to 
be marked for deletion. The programming model 
includes operations to create, access, and close 
π-Spaces, enabling the use of multiple spaces 
within a single application.

Support for Fault-Tolerance 
and Application Migration

During a workflow execution, the following 
events may occur:

1.  The source application (writer) leaves the 
workflow. Unless the downstream compo-
nents do not require any further data from this 
writer, the entire workflow may be stalled. 
This also occurs when all outstanding data 
segments has been consumed.

2.  The sink application (reader) leaves the 
workflow. The writer continues streaming 
to the cache (π-Space), ignoring the loss of 
the reader. When the reader recovers, it can 
resume reading from the π-Space.

3.  The link between applications is severed. 
Assuming that the π-Space is implemented 
as a reliable service; this is considered as 
a combination of source failure – from the 
perspective of the sink; and sink failure – 
from the perspective of the source.

An application may leave a workflow vol-
untarily or involuntarily. A voluntary departure 
occurs when it migrates to another resource. 
Communication state transfer is employed to re-
establish connections with migrated applications. 
An involuntary departure may be due to machine 
failure and/or application crash. We assume the 
fail-stop failure model, i.e., the process crashes 
and performs no further communication. A con-
nection loss is treated as a component failure 
and is detected when a communication operation 
cannot be completed.

Figure 4. Shared space communication in π-Space/π-channels
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DESIGN AND IMPLEMENTATION

The π-Spaces/π-channels model is implemented 
as an API with a runtime system, and a multi-
threaded server that provides the dynamic lookup 
and storage of π-channels. A π-Server manages 
a single π-Space, which encourages deploying 
multiple servers to improve the distribution of 
load. Furthermore, a π-Server may execute at the 
cluster head node, serving as a communication 
gateway to processes on remote clusters.

Basic Components and General 
Functional Description

Figure 5 (right) presents the π-Server components. 
The server maintains a thread pool for incoming 
and outgoing transmissions, providing a non-
archival pipe storage service. The thread count 
is configurable to support different application 
loads. The in-bound threads handle incoming data 
streams from sources, while out-bound threads 
forward/push π-channel data to sinks. Data streams 
are transported using a TCP protocol, while look-
ups are implemented using a lightweight UDP 
protocol with retransmission capability.

Figure 5 (left) shows the client-side compo-
nents. Each π-Spaces/π-channels application is 
capable of accepting incoming transmissions 

asynchronously. During a pi_attach(), the reader 
informs the server of its identity. This allows data 
streams to be forwarded to the reader while it is 
busy performing computations. A single event-
driven in-bound thread stores incoming segments 
into a buffer (by the data store component). When 
buffer capacity is reached, data segments are 
stored into a local file, identified by the pipe_id. 
During a pi_read(), this buffer/file is accessed to 
retrieve the requested segment.

General Description of the 
Distributed Algorithm

Table 2 presents the distributed algorithm for 
the π-Spaces/π-channels. We adopt the Python 
convention to indicate block structure (i.e., the 
statement alignment determines a block). The 
notation (#line_no) is used in-text when referring 
to the algorithm.

The pair (pipe_id, space_id) represents a 
system-wide π-channel identifier, and pipe_id is 
unique within each π-Space. Since the algorithm 
assumes a single π-Space, we remove reference 
to the space_id.

Each participating application maintains the 
following variables:

Figure 5. Client-side components and design of the π-server
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Table 2. Distributed algorithm for π-spaces/π-channels 

Client API 39 check_restore (pipe_id):

1 pi_attach (n): 40    query π-Server for status of migrated reader

2    send 〈 get, n, my_id 〉 to π-Server 41    if migrated reader found:

3    recv 〈 get, &pipe_id 〉 from π-Server 42       fd ← connect to migrated reader

4    id ← free entry on local id_tab 43       update fd_list with new fd

5    if buffer for pipe_id does not exist: 44       remove reader from hold_list

6       create buffer for pipe_id

7    associate pipe_id & buffer with id Algorithm of the π-server

8    return id 45 On 〈 get, &n, &src 〉:

46    entry ← find n on π-table

9 pi_create (n): 47    if entry does not exist:

10    send 〈 put, n, my_id 〉 to π-Server 48    entry ← create n on π-table

11    recv 〈 get, &pipe_id, &dest_list 〉 from π-Server       entry.reader ← src

12    foreach dest in dest_list: 50    entry.has_reader ← true

13       fd_list [dest] ← connect to dest 51    pipe_id ← entry.pipe_id

14    id ← free entry on local id_tab 52    send 〈 get, pipe_id 〉 to src

15    associate fd_list & pipe_id with id 53    if entry.is_cached:

16    return id 54       initiate forwarding to src

17 pi_read (id, m, len): 55 On 〈 put, &n, &src 〉:

18    off ← compute offset 56    entry ← find n on π-table

19    buffer ← retrieve buffer for id 57    if entry does not exist:

20    block until seg [ off, len ] in buffer || eoc 58       entry ← create n on π-table

21    if segment was found: 59    dest_list ← ()

22       get seg [ off, len ] from buffer 60    if entry.has_reader:

23       store segment into m 61       append entry.reader to dest_list

24       return len 62    append my_id to dest_list

25    return –1 /*end of channel */ 63    pipe_id ← entry.pipe_id

64    entry.is_cached ← true

26 pi_write (id, m, len): 65    send 〈 put, pipe_id, dest_list 〉 to src

27    pipe_id ← map pipe_id from id

28    fd_list ← retrieve fd_list for id Algorithm of the in-bound thread

29    off ← compute offset 66 On CON 〈 &src, &pipe_id 〉:

30    success_count ← 0 67    fd ← accept inbound connection

31    foreach dest in fd_list: 68    buffer ← retrieve buffer for pipe_id

32       write SEG 〈 pipe_id, m, off, len 〉 to dest 69    if buffer does not exist:

33       if write successful: 70       create buffer for pipe_id

34          success_count++ 71    associate fd with pipe_id

35    if success_count < len(fd_list):

36       check_restore(pipe_id) 72 On SEG 〈 &pipe_id, &m, &off, &len 〉:

37    update status of pipe_id 73    buffer ← retrieve buffer for pipe_id

38    return len 74    store m at offset off

continued on following page
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1.  my_id – unique ID, implemented as an IP/
port pair. The port number is dynamically 
generated during application startup.

2.  id_tab – a local table (#4, #14) associating 
the pipe_id with open file descriptors fd_list, 
channel read-write pointers, and other local 
state information. This table corresponds to 
the π-channel internal state component in 
Figure 5.

During a pi_create(), a put request (#10) is 
sent to the π-Server, which creates (#58–#65) an 
entry for this π-channel on a hash table and re-
turns a unique pipe_id. It replies (#58, #61, #62) 
with a list (possibly empty) of destinations. If the 
reader’s identity is known, the reader’s address 
appears first, followed by the server’s address. 
The pi_create() establishes (#12, #13) a connec-
tion with the destinations and associates the pipe 
with the file descriptors. It returns as descriptor 
(#14, #16) the position of the π-channel on id_tab.

The pi_attach() sends a get request to the server 
(#2), which replies (#51, #52) with the unique 
pipe_id for the π-channel, even if non-existent. The 
server creates an entry for this π-channel, storing 
the reader’s address for use in channel creation.

A pi_read() does not read directly from the open 
connection with the source. Instead, incoming 
data segments are handled by the in-bound thread 
(#66–#74), which listens and accepts TCP opera-
tions on behalf of the application. The π-Server 
manages a thread pool for the same purpose of 
enabling asynchronous read operations. When the 
in-bound thread accepts a π-channel, it allocates 
a buffer (#70) for pipe segments. Each segment 
(#72–#74) contains type information, length, 
offset, and pipe_id. The received segments are 

stored in a shared buffer, so that pi_read() can 
retrieve (#19, #22) them. The out-bound thread 
pushes π-channels to sinks (#54, #75–#78). Dur-
ing reader recovery, these threads send missed 
segments to the reader.

We only outline the migration mechanism 
(Table 3), showing when application state is saved 
and restored after migration. The idea (#79–#86) 
is to attempt a graceful connection shutdown 
before migrating. Since pipes are cached, unde-
livered data segments can be retrieved from the 
π-Server. The hold_list (#89, #44) identifies the 
migrating processes.

Communication state migration, similar to 
(Chanchio & Sun, 2004), performs a connection 
hand-over with the migrated reader (#39–#43). 
In Figure 6, the migrated peer re-establishes con-
nection with the writer so that: (1) Seg 2 is retrieved 
from the π-Server; and at the same time (2) Seg 
3 is streamed from the writer.

EXPERIMENTAL RESULTS

Two aspects of the implementation are evaluated. 
First, we measure the rate in which π-channel 
lookup operations are handled by the π-Server 
under two scenarios: (a) π-Server and clients are 
on one cluster; and (b) clients perform lookups 
over a wide-area network. Second, we measure 
the throughput when communication takes place 
between two applications over our WAN testbed. 
This test shows how asynchronous read operations 
improve the bandwidth utilisation. Table 4 lists the 
resources we used. VPAC (Victorian Partnership 
for Advanced Computing) is an HPC consortium 

Algorithm of the out-bound thread

75 if forwarding π-channel pipe_id to dest:

76    fd ← open connection to dest

77    foreach segment ∈ local buffer:

78       send segment to fd

Table 2. continued
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of universities in Victoria, Australia. Our wide-area 
testbed uses both Monash and VPAC resources.

π-Server Lookup Performance

We evaluate the request-handling rate of the 
π-Server, with up to 32 clients concurrently gen-

erating lookup requests. Table 5 presents results 
conducted over mahar, measuring the execution 
time of all clients when looking up 25 366 unique 
but randomly generated π-channel names. Each 
client performed 40 000 lookups, without chan-
nel read/write operation. Clients were assigned 
on execute nodes, with the π-Server on the head 
node. At least 12 runs were performed for each 
test case, using only the timings from the middle 
10 runs.

On Table 6, we present the timings for lookups 
on a WAN between Monash and VPAC. Clients 
ran on mahar compute nodes with the π-Server 
running on wexstan’s head node, using the same 
parameters as in the LAN tests. These results 
indicate that the bottleneck for grid applications 
will most likely be the high latencies between the 
π-Server and the clients.

Table 3. The communication migration protocol 

79 if I am migrating:

80 disable sending acks for heartbeats

81 migrating ← true

82 foreach open π-channel:

83 save offset into checkpoint

84 flush and close all connections

85 perform local state checkpoint

86 send checkpoint to the new location

87 if a peer is migrating:

88 /* reject connections from this list */

89 add peer_addr to hold_list

Figure 6. Time diagrams showing concurrent reading of a π-channel from π-Server and writer. In (a), 
the migrated reader resumes reading from cache. In (b), it also resumes connection with the writer.

Table 4. Participating systems in our experiments 

Name Location Processor OS #CPUs

mahar.infotech.monash.edu.au Monash Intel P4 Linux 2.4.27-3 50

edda.vpac.org VPAC IBM Power5 SLES 9 Linux 80

wexstan.vpac.org VPAC AMD Opteron Red Hat Linux 246

tango.vpac.org VPAC AMD Opteron CentOS 5 Linux 760
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π-Channel Throughput on a Multi-
Cluster Testbed

We evaluate and compare the data transfer through-
put using π-channels under three scenarios: (a) 
matched create/attach operations; (b) create first, 
then attach; and (c) asynchronous read opera-
tions. Two processes are executed, using a pair 
of π-channels for communication.

For scenario one, processes use paired pi_at-
tach() and pi_create() operations, i.e., when one 
process is writing, the other is reading. For 
the second scenario, each process executes all 
π-channel writes first, followed by reads. The 
π-Server caches most of the pipe segments during 
the write phase. Once the processes perform the 
pi_attach(), the pipe segments are retrieved from 
the π-Server rather than the writer.

In the third scenario, processes initiate a non-
blocking pi_attach() on an inbound channel first, 
before a pi_create(), followed by the write and 
then read operations. This notifies the π-Server of 
a pending request for a channel, providing writers 
with the destination addresses and encouraging 

direct streaming. The performance results show 
a reduced dependence on the π-Server to store 
pipe segments.

Figure 7 shows the segment send rates while 
Figure 8 presents the measured bandwidth. The 
π-Server executed on edda, one application on 
tango and another on wexstan. The best perfor-
mance is achieved under asynchronous operation 
(scenario three). The detailed results are presented 
on Table 7. The tests were conducted with at least 
12 trials per case. Of these, the mean is computed 
using ten results, discarding the highest and 
lowest values. The standard deviation given is 
for the throughput, i.e., the mean message send 
rates for each of the segment sizes. Note the 
absence of observable performance differences 
for Scenario 1 and 2. This means that matching 
pi_attach() with pi_create() operations does not 
lead to any improvement in data transfer rates. 
Thus, π-Space/π-channels applications may be 
written without using an odd-even rule to match 
reads and writes.

In Scenario 3, the use of pi_attach() notifies 
the π-Server of a pending request to retrieve a 

Table 5. UDP request-reply performance within a cluster 

Number of Clients 2 4 8 16 32

Number of Requests Served 80 000 160 000 320 000 640 000 1 280 000

Mean Execution Times (s) 21.99 25.51 38.72 44.65 96.58

Standard Deviation 0.822 0.813 0.741 0.430 0.170

Request Rate (per second) 3 642.6 6 277.6 8 267.1 14 335 13 390

Standard Deviation 138.89 200.85 162.38 137.58 23.82

Table 6. UDP request-reply performance on a WAN 

Number of Clients 2 4 8 16 32

Number of Requests Served 10 000 20 000 40 000 80 000 160 000

Mean Execution Times (s) 10.58 11.02 11.52 12.34 24.74

Standard Deviation 0.518 0.340 0.285 0.122 0.268

Request Rate (per second) 946.4 1 815.6 3 473.8 6 480.8 6 467.6

Standard Deviation 46.32 56.53 86.53 64.07 70.39
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π-channel. This makes it possible for the writer 
of that π-channel to transmit the channel segments 
directly to the reader, showing a substantial im-
provement in the data transfer performance over 
that of the first two scenarios. Furthermore, the 
overlap of sends and receives results in better 
utilisation of the available bandwidth.

CONCLUSION

We have presented π-Spaces/π-channels, a com-
munication mechanism for scientific workflows 
on dynamic environments, where resources 
may fail and network links may be disrupted. 
The key feature of π-channels is persistence, 
enabling communication despite process failures 
or departures. This article presents its design and 
implementation. In particular, we describe the 
distributed algorithm showing how persistence 

Figure 7. Measured message-send rates with a ping-pong benchmark

Figure 8. Measured bandwidth with a ping-pong π-Space/π-channels application. The horizontal bar 
shows the measured bandwidth using iperf2
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is achieved with the caching mechanism and the 
asynchronous operation using the in-bound thread. 
A communication state transfer mechanism is 
employed, which re-establishes connections with 
migrated components to improve the data stream 
transfer time. Experimental results show that the 
caching mechanism is able to buffer channel data 
segments and when asynchronous operation is 
employed, throughput is substantially increased. 
With asynchronous operation, sending and receiv-
ing of messages can be overlapped, resulting in 
improved message sending rates than normal 
non-asynchronous operation.
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INTRODUCTION

Foster (2002) offers a checklist for recognizing a 
“grid”. A grid allows

• Coordination of resources that are not sub-
ject to centralized control;

• Use of standard, open, general-purpose 
protocols and interfaces; and

• Delivery of nontrivial qualities of service.

The emergence of the Wireless Grid meets 
all these criteria and is fueled by technological 
advances in grid computing and wireless technol-
ogy. The ultimate vision of the grid is that of an 
adaptive network offering secure, inexpensive, 
and coordinated real-time access to dynamic, 
heterogeneous resources, potentially traversing 
geographic boundaries but still able to maintain 
the desirable characteristics of a simple distributed 
system, such as stability, transparency, scalability 
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Amar Gupta
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Self-Configuration and 
Administration of Wireless Grids

ABSTRACT

A Wireless Grid is an augmentation of a wired grid that facilitates the exchange of information and 
the interaction between heterogeneous wireless devices. While similar to the wired grid in terms of its 
distributed nature, the requirement for standards and protocols, and the need for adequate Quality of 
Service; a Wireless Grid has to deal with the added complexities of the limited power of the mobile 
devices, the limited bandwidth, and the increased dynamic nature of the interactions involved. This 
complexity becomes important in designing the services for mobile computing. A grid topology and 
naming service is proposed which can allow self-configuration and self-administration of various pos-
sible wireless grid layouts.
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and flexibility. The technologies originally de-
veloped for use in a wired environment are now 
being augmented to operate in wireless situations. 
The development of the wireless technologies 
such as 802.11, GPRS, and 3G has extended the 
reach of wireless services to all the individuals. 
With the ubiquity and indispensability of wireless 
technologies established, these technologies are 
now making inroads into grids.

A wireless grid has to face added complexity 
due to the limited power of the mobile devices, 
the limited bandwidth, and the increased dynamic 
nature of the interactions involved. This added 
complexity has to be considered while designing 
service oriented architecture for mobile devices 
(Oliveira et al, 2006). This article highlights the key 
characteristics of the wireless grids and suggests 
various possible grid layouts. A grid topology and 
a naming protocol have been proposed to address 
the self-configuration and self-administration 
requirements of these grid layouts. This article 
is organized as follows. Section 2 describes the 
key characteristics of the wireless grids. Section 
3 describes various possible grid layouts. Section 
4 mentions the technical challenges associated 
with these layouts. Section 5 introduces a grid 
topology and a naming protocol to address the self 
configuration and self administration challenges. 
Section 6 concludes the article.

KEY CHARACTERISTICS

The development of the wireless grid technologies 
is governed by three driving forces:

• New User Interaction Modalities and 
Form Factors: Traditional applications 
that can exist on the Wired Grid need to 
expand their scope by extending the inter-
actions to mobile devices through adapting 
the user interface to small screens, small 
keyboards, and other I/O modalities such 
as speech. The mobile access interface 

needs to address the issue of connectivity 
of mobile devices.

• Limited Computing Resources: Wireless 
applications need to share the resources 
and to provide access to additional com-
putational resources to mitigate the con-
straints imposed by limited storage, com-
putational capability, and power of mobile 
devices.

• Additional New Supporting 
Infrastructure Elements: New applica-
tions, especially ones involving dynamic 
and unforeseen events, need to be ad-
dressed through the rapid provisioning of 
major amounts of computational and com-
munications bandwidths. For example, the 
occurrence of an urban catastrophe could 
trigger a dynamic adaptive wireless net-
work to alert people to organize remedial 
actions in a coordinated fashion, and to 
provide better control of available resourc-
es and personnel.

Grid Resources

A Wireless Grid must provide a virtual pool of 
computational and communications resources 
to consumers at attractive prices. Various grid 
resources are described below:

• Computing Power: Wireless devices pos-
sess limited computation power. Wireless 
grids can overcome this limitation by dis-
tributing the computational tasks across 
multiple power-constrained devices. But 
this raises the need for establishing ap-
propriate collaborative processes between 
these geographically distributed tasks.

• Storage Capacity: Wireless devices pos-
sess limited storage capability. Grids can 
overcome this limitation by distributing the 
data storage over multiple devices. Data 
can be recombined into a single entity and 
then made available to the users. However, 
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this creates the need to enable data access 
and update to occur simultaneously and to 
avoid contention through the application of 
advanced synchronization techniques.

• Communications Bandwidth: Wireless 
grids can harness the power of wireless 
technology to allow remote access. At the 
same time, the grid infrastructure should 
be robust enough to ensure high Quality of 
Service (QoS).

• Multiplicity of Applications: Wireless 
Grids should allow the users ubiquitous 
access to a wide variety of applications. 
However, one needs to overcome the need 
to install these applications on separate 
mobile devices.

GRID LAYOUT

Drawing upon the paradigm of the wired grids 
(Gentzsch, 2001; Ong, 2003 and Tiang, 2003), 
various layouts of the wireless grids are possible. 
The classification schemes can be based on the 
architecture or on the function of the grids.

Classification by Architecture

One way to characterize the architecture of the 
wireless grid is by the degree of heterogeneity 
of the actual devices and the level of control 
exercised by those who own and administer the 
devices (figure 1). It can vary from a simple net-
work of homogeneous devices bound by a single 
set of policies and rules to a complex network 
of heterogeneous devices spread across multiple 
organizational, political and geographical bound-
aries, as categorized below:

• Local Cluster or Homogeneous Wireless 
Grid: This simplest form involves a local 
collection of identical or similar wireless 
devices that share the same hardware ar-
chitecture and the same operating systems. 
Because of the homogeneity of the end 
systems, the integration of these devices 
into the wireless grid, as well as the conse-
quent sharing of resources, becomes a 
much easier task. Today, this type of orga-
nization is more likely to be found in a 
single division of an organization where 
one single administrative body exercises 
control over all the devices. An example 

Figure 1. A simplified depiction of the 3-tier wireless Grid architecture (adapted from Ong, 2003)
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would be a network of mobile handheld 
devices for coordinating medical person-
nel in the hospital. A local cluster can be 
used to coordinate field personnel engaged 
in collaborative tasks such as construction, 
mining, or repair services. It can also be 
used in a remote sensor network for moni-
toring crops or seismic activities. It re-
mains to be seen whether market forces 
will result in convergence of hardware 
(virtual or real) and software and the emer-
gence of a dominant design, which can ex-
ploit resource-sharing strategies that are 
more intimately bound to the device.

• Wireless Intra-Grids: An intra-grid en-
compasses wireless devices that belong to 
multiple divisions or communities within 
an actual organization (AO). The divisions 
may be located in different geographies 
and maybe governed by a separate set of 
policies, but there exists a level of trust and 
oversight so that “ground truth” may be 
known with respect to identity and charac-
teristics. AOs are the point where resolu-
tion can occur between the virtual presence 
of a wireless entity and its actual name and 
location. AOs also tend to be persistent in 
time, and become the point of composition 
among other AOs. An example of an intra-
grid would be a wireless grid that simul-
taneously supports the mobile sales force 
of a company and the networks of wireless 
sensors used by the manufacturing division 
for tracking inventory. Similarly, an intra-
grid can be used by a facilities management 
company to monitor its facilities and to co-
ordinate its personnel to address service re-
quests from the facilities. One can expect a 
detailed interaction among the constituents 
of an intra-grid due to tighter interaction 
in the business processes. A salesperson 
can request the status of inventory for his 
or her customer through the intra-grid that 

connects the sales network to the inventory 
tracking system.

• Inter-Grid: An inter-grid encompass-
es multiple AOs and transcends greater 
amounts of geographical, organizational, 
and other types of differences, such as ones 
related to intellectual property rights and 
national laws. Multiple AOs may come 
together to form Virtual Organizations 
(VOs) where they can collaborate and 
share resources such as information, 
knowledge, and even market access to 
exploit fast-changing market opportuni-
ties. The relationship can be long or short 
term (Ong, 2003). Resource management 
and policy integration (security, authenti-
cation and data management tasks) attain 
greater complexity due to the scalability 
requirements. To move beyond mere ad 
hoc composition of AOs, a (potentially) 
universal composition of declarative poli-
cies must be proposed and accepted. An 
example of an inter-grid interaction would 
be a scenario involving an American tour-
ist visiting Japan and trying to conduct a 
local e-commerce transaction using his/her 
cell phone. The transaction would involve 
a handshake between the traveler’s cell 
phone service provider, traveler’s credit 
card company, the Japanese wireless ser-
vice provider and the e-commerce vendor. 
Mobile devices with internet access are 
another example an inter-grid implementa-
tion. Each device has a unique id associat-
ed with an IP address. It allows the device 
to access web pages from any other node 
connected through the internet using the 
internet protocols. The scope of such inter-
actions would be limited due to the loose 
connections between the constituents of an 
inter-grid.
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Classification by Usage Pattern

Wireless grids can be classified by usage patterns 
as summarized in Table 1.

• Computational Grid: In a computational 
grid, the need for creating the wireless grid 
is driven primarily by the need to borrow 
computational resources from others. This 
arises, in part, because of the power con-
straints on mobile devices, which in turn 
limits their computational capability. The 
computational grid may be cooperative or 
parasitic (Barabasi et al, 2001). In a coop-
erative setup, inputs from multiple nodes 
are needed to analyze a particular scenario. 
For example, sensor network deployed in 
the battlefield would present the enemy’s 
position. Similarly, a wireless sensor net-
work will be used to monitor conditions for 
predicting natural calamities like earth-
quakes or volcanoes. In a parasitic setup, 
the nodes would rely on each other to man-
age the power constraints. Any remote 
setup, will allow for this possibility due to 
lack of other power resources. Some kind 
of redundancy would be built in such a 
setup.

• Data Grid: In this case, the need for creat-
ing the wireless grid is dictated primarily 
by the need to provide shared and secure 
access to distributed data. Since data can 
be presented in various contexts on vari-
ous systems, reconciling the underlying 
semantics continues to challenge evolv-
ing technology. One example involves an 

urgent search for donors with a rare blood 
type. A hospital would issue a query to the 
medical history databases in the region 
through its mobile network. The mobile 
service providers will notify potential do-
nors through the alert messages transmit-
ted to their respective mobile devices, and 
the resulting responses would be processed 
and reconciled. Internet serves as a mas-
sive data grid where the information re-
sides on multiple servers and such infor-
mation can be accessed using portals and 
search engines or by directly request to a 
particular IP address.

• Utility Grid: Here the motivation for the 
wireless grid is derived from the need to 
provide ubiquitous access to specialized 
pieces of software and hardware. Users 
can request resources when needed (on-de-
mand) and only be charged for the amount 
being used. This model can subsume both 
Computational and Data grids. For exam-
ple, users might tap Wireless Utility grids 
for information such as the traffic condi-
tions and routing, and for making instan-
taneous transactions related to commercial 
products and services.

TECHNICAL CHALLENGES

Among the many challenges wireless grids face, 
these grids must overcome the following set of 
initial technical challenges:

• Dynamic Configurability: Wireless grids 
are characterized by changing topology 

Table 1. Wireless Grid usage patterns 

Grid Type Possible Architecture Mainly Provides

Computational Cluster, Intra, Inter Computational Power

Data Cluster, Intra, Inter Data Access and Storage

Utility Intra, Inter On-demand Access various of Resources
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due to the mobile nature of the grid com-
ponents. Grids should provide self-config-
uring and self-administering capability to 
allow these dynamic changes for all pos-
sible grid layouts.

• Routing Plasticity: Efficient routing pro-
tocols are required to address the power 
limitation of the end devices along with 
the consideration for stable wireless con-
nectivity, route optimization and efficient 
use of the limited bandwidth.

• Discovery Semantics and Protocols: 
Service description protocols are needed to 
describe the services provided by various 
components of the wireless grid. Once the 
services are published, a discovery proto-
col is needed to map the mobile resources 
to the services.

• Security: Because of the inherent nature 
of the wireless connection, the diversity of 
the link quality, the potential unreliability 
of the end-devices, the power constraints 
of the mobile device, and the enforcement 
of security and privacy policies all present 
major challenges in the wireless grid en-
vironment. Effective security requires ad-
equate computational power to execute the 
security algorithms in acceptable times. In 
addition, sufficient radio power is required 
to achieve an effective signal-to-noise ratio 
(in the face of encrypted signaling streams) 
and to close the link. This suggests a care-
ful husbanding of access points and the 
hand-over to ensure that the minimum pos-
sible power is required from each of the 
wireless devices.

• Policy Management: Grid architecture 
designers need to address policies that 
govern the usage, privileges, access to re-
sources, sharing level agreements, quality 
of service, and the composability and the 
automated resolution of contradictory poli-
cies among organizations; as well as other 
technical issues mentioned above.

SELF-CONFIGURING AND SELF-
ADMINISTERING DYNAMIC 
ADDRESS SERVICES ACROSS 
VIRTUAL ORGANIZATIONS

To flourish, grids must exist for the benefit of the 
members and users. To add tangible value, infra-
structures that support wireless grids must address 
the issue of dynamic updates to the grid to account 
for network node failure, and the entry or exit of 
nodes. Previous work on Self-Configuring and 
Self-Administering Domain Name Service (DNS) 
has led to a reliable, intelligent and distributed 
lightweight protocol for automatically adapting to 
the changes in the networks (Huck et. al., 2002); 
this protocol can be modified and extended for 
use in the wireless grid environment.

Grid Topology

Several researchers have evaluated the topology 
and configuration of mobile networks (Nesargi 
and Prakash, 2002; Vaidya, 2002; Mohsin and 
Prakash, 2002; Weniger and Zitterbart, 2004). 
However, these ad hoc systems are standalone 
in nature. We believe that the commercial grids 
will possess some access to the wired Internet 
infrastructure and thereby follow a hybrid model 
(figure 2). It will consist of Mobile Ad-hoc Net-
works (MANET) type systems with multiple-hop 
paths between mobile nodes and access points 
to the wired network. An application of this hy-
brid setup has been the Mesh Networks (Bruno 
et al. 2005). Data will need to flow across the 
grid using a combination of Mobile IP (Perkins, 
2002) or the new Mobile IPv6 and Ad-Hoc rout-
ing protocols such as Dynamic Source Routing 
Protocol (DSR) (Hu, Perrig and Johnson, 2005) 
and Ad hoc On-Demand Distance Vector Routing 
(AODV) (Perkins and Royer, 1999; Papadimitra-
tos and Haas, 2005).At a high level, one needs to 
support the critical role of the management and 
composition of subnets and arbitrary collections 
of wireless members. There must be a Root Sta-
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tion (RS) present in some form as well as a Base 
Station (BS). The RS maintains cognizance over 
a set of wireless devices and serves as the final 
mapping of logical to physical devices. The BS 
manages and enforces policy within and among 
groups. A grid layout can include a root station 
for a community or an actual organization (AO) 
of wireless nodes (figure 3). A root station will 
maintain up-to-date information about its own 
network and the associated nodes as well as 
serve as the gateway to the wired network. Mul-
tiple organizations may come together to form a 
virtual organization (VO). An AO can belong to 
multiple VOs. A base station (BS) can be envis-
aged for a VO. A BS will maintain information 
about networks for various organizations and the 
associated root stations. For a homogeneous grid, 
the same server can perform both the RS and BS 
functions. In case of an inter-grid, which can span 
multiple virtual organizations, several BSs are 
needed to coordinate to maintain the inter-grid 
information. Redundancy can be maintained by 
having secondary servers to perform the RS and 
BS functions. Both RS and BS should not be 
resource-constrained devices. Instead, the RS 
and the BS could be a simple PC, workstation, or 
server equipped with an appropriate interface to 
communicate with the edge nodes such as sensor 
nodes or other mobile nodes.

Self-Configuration and 
Administration of Wireless Grid

As previously stated, wireless grids possess a 
unique dynamic quality that is not found readily 
in the wired grids. Therefore, technologies that 
support self-configuration and self-administration 
are critical to the continued growth of the wire-
less grid paradigm. Wireless grids should allow:

• Configuration of addresses for the grid 
components: nodes, RS and BS

• Name- to- address resolution for the grid 
components

• Maintenance of the state information for 
the grid

The address for the nodes can be obtained in 
several different ways. It is possible that the ad-
dress may not be an IP address in case the device 
is a sensor with no IP stack. We envision that an 
IP incapable node could use, as its own address, 
either the MAC address of the system chip or 
a unique serial number provided at the time of 
manufacturing the device. A name, unique to the 
AO domain, can be assigned to the device through 
an automatic handshake process between the de-
vice and the RS. RS and BS are connected to the 
wired infrastructure and can obtain IP addresses 
using the DHCP protocol (Droms, 1997).

Figure 2. A hybrid wireless network
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RS and BS provide the naming service for 
resource discovery across the AOs and VOs. 
The notion of grid service (Foster et. al, 2001) 
can be extended to the wireless grids. In such a 
scenario, the RS can provide a naming service for 
resource discovery based on service description 
(Winoto et. al., 1999; Zhu et al, 2003, Sharmin et 
al., 2006)) at the node level. Resource discovery 
can be extended to a virtual organization where 
a BS can provide a naming service for resource 
discovery within various actual organizations. 
Multiple BSs can coordinate to provide service 
discovery across multiple VOs.

Each node maintains information about itself 
and the AO it belongs to. The RS maintains infor-
mation about its AO such as the name and address 
pairs for its nodes, number of nodes, name of its 
AO, names of the VOs to which its organization 
belongs and the associated base stations. The BS 
maintains information about its VO, the names 
of associated AOs, names and addresses of as-
sociated RSs, and also the names and addresses 
of other BSs. Note that the root stations and the 
base stations can be part of the existing cellular 
and internet infrastructure; they can be configured 
to handle communication for one or more grids. 

In such a case, the grid owners pay a fee to the 
internet and cellular service providers to handle 
their specific communication requests.

• Messages: Messages are used for commu-
nication between the grid components and 
are a mechanism for resource discovery. 
Figure 4 shows the structure of a message. 
It consists of a three-field header followed 
by a payload section. The header fields are 
explained in Table 2. The payload holds 
the data from the message specific to each 
Opcode. Table 3 lists the possible opcode 
values.

• Message Behavior: Enter and leave mes-
sages are used by the grid components to 
announce their entry or exit from the over-
all system. Discover messages are used to 
discover the grid resources. Hello messag-
es are used to validate the existence of the 
grid components.

Figure 3. Wireless Grid spanning multiple virtual organizations



263

Self-Configuration and Administration of Wireless Grids

GRID OPERATION

Node Management

Node Entry or Exit

Mobile nodes register <address, name> tuple with 
the Root Station (RS) as they enter the network 
under the RS coverage. Node sends an enter_node 
message. If the node cannot directly establish con-
nection with the RS, it uses multiple hops to pass 
on the registration information. This can happen in 
a setup where the wired node (RS) is out of opera-
tion or when reach and wireless signals are weak 
in strength. When the RS receives the request, it 
sends enter_node response to the node and adds 
the information related to the node. The response 
includes the information about RS and AO. For 
example, in an emergency situation, appropriate 
personnel such as police or fire workers may ar-
rive or leave the site. A local cluster can be formed 
to handle both voice and data communications. 
Entry and exist messages can help to maintain the 

status of the emergency workers, to efficiently 
distribute critical data they may possess, and to 
better coordinate the activities.

Node Discovery

A chain-of-responsibility pattern (Gamma et. al., 
1995) is used for node discovery. A node No sends 
a discover_node request to RSo seeking connec-
tion to a different node Na. The request contains 
the name of the requested node. RSo looks up its 
AOo information to locate the node and sends 
a discover_node response to node No with the 
address information of Na. If node Na does not 
exist in the AOo then RSo sends the discover_node 
request to the BSo. This request includes the RSo 

Figure 4. Message format

Table 2. Message header fields 

Header Field Description

Message Id The unique message id for the message

Opcode The operation code for the message.

S/R flag Send/Response Flag. A flag indicating whether the message is a send request or response to a 
send request

Table 3. Opcode values 

Opcode Values Brief Description

Enter_node Informs members of the entry of the node

Leave_node Informs member of the exit of the node

Enter_RS Informs members of the entry of the RS

Leave_RS Informs member of the exit of the RS

Enter_BS Informs members of the entry of the BS

Leave_BS Informs member of the exit of the BS

Discover_node Used to discover node

Hello Used to verify if the members exist
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information. BSo in turn broadcasts the request to 
all the RSs associated with its VOo. If RSa locates 
the node in its AOa then it notifies the BSo about 
the availability of the node. BSo in turn sends the 
discover_node response to the requesting RSo 
with the address of Na., which is then forwarded 
to No. For example, a taxi dispatch service may 
be designed to respond to a customer request by 
broadcasting messages to all the taxis. These can 
be routed through root stations associated with 
different localities. An empty taxicab nearest to 
the customer location picks up the message and 
sends a confirmation back. The same mechanism 
can work if the nodes belong to different virtual 
organizations. In this case, the request will be 
routed to all other base stations by the BSo when 
it fails to hear back from the RSs in its VO. The 
broadcast request to the BS will include informa-
tion about the requested node Na, requesting node 
No and the associated RS and the BS. Each BS 
will route this request to its own set of RSs. In the 
previous example, the customer request is routed 
to the taxi service through the customers cellular 
provider which connects both the customer and 
the taxi service.

RS Management

Business partners can engage in a dynamic rela-
tionship to form a virtual organization (Walton and 
Whicker, 1996). This can lead to ad hoc creation 
of a VO, dynamic changes to the VO and the 
need for resource discovery across several AOs 
within a VO. For example, during a disaster event, 
several agencies can come together for purposes 
of disaster management. In such a situation, one 
can envisage a VO being formed between several 
agencies to facilitate communication. The rules of 
engagement are pre-determined. A central agency 
may coordinate activities of several agencies. De-
pending on the requirement, new agencies can be 
called upon to deal with the situation. Once their 
work is done, these agencies leave. An appropri-
ate RS management protocol can ensure that the 

VO structure is transparent at all times and that 
the process of exchange of is efficient.

VO Creation

Several AOs will come together to form a VO. 
An assumption is that a BS will be available to 
create a VO with a unique name and address. 
Each RS will send an enter_RS message to the 
BS with the information about AO such as AO 
name, RS name and RS address. In its response, 
BS will send the VO information such as the VO 
name, BS name and BS address. BS will maintain 
a list of all AOs and the associated RS names and 
addresses. RS Entry or Exit

It is possible that a new AO can join a VO, or 
an existing AO can leave a VO. Any AO can be 
associated with multiple VOs at the same time. In 
such a scenario, we need to provide a capability 
to dynamically configure the RS. Entry mecha-
nism and registration will be the same as the VO 
creation. In case an AO is leaving the VO, the RS 
will broadcast exit_RS message to the associated 
base stations and delete information about the VO. 
On receiving the message, the BS will delete the 
RS and AO information from its record.

BS Management

In dynamic markets, two or more virtual organiza-
tions can come together to conduct business. This 
will lead to dynamic associations between the VOs 
and the need for resource discovery across several 
VOs. In the example for disaster management, it is 
possible that the concerned agencies are grouped 
under different VOs which in turn coordinate with 
each other. So a virtual organization can handle the 
relief work for people affected. This can include 
coordinating food supplies, shelter, and medicine 
for the victims through different agencies. Another 
virtual organization can deal with the reconstruc-
tion work that involves activities like assessing the 
magnitude of damage and managing the process 
of repairs. Coordinating activities across multiple 
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VOs will require the protocol to enable dynamic 
access to multiples AOs with each VO.

BS Entry or Exit

It is possible that two or more BS discover one 
another. In that case, they will send broadcast mes-
sages describing their VO. Each BS will receive an 
acknowledgement in response and the information 
about other BS. Through such interactions each 
BS will be able to generate a list of existing VOs 
and the names and addresses of the associated BSs. 
A BS will broadcast its entry or exit. Remaining 
BSs will update their lists accordingly.

Multiple RS and BS

In the description so far, we have assumed that 
there is only one RS for each AO and only one 
BS for each VO. However, depending on the 
size of the network and the distances between 
the components, there could be several RSs per 
AO and several BSs per VO to facilitate address 
assignment and resource discovery.

Nodes

Within an AO, the nodes will register with the 
nearest RS. Each RS will maintain information 
about all other RS within an AO. It is possible 
that registration request for a node is sent to more 
than one RS. In this case, the first RS to receive 
the information will send an enter_node response 
to all other RSs within the AO in order to avoid 
duplicate registration. For the node discovery, 
the RS will first check with the local RSs before 
forwarding the discover request across the VO.

RS

When a new RS is added to the grid, it will send 
enter_RS message to all the existing RSs within 
an AO, as well as to the associated VOs and BSs. 
In response, the RSs will send their information 

to the new RS. BS will update its list of RSs and 
send the VO information back to the RS.

BS

In case of multiple BSs within a VO, the entry of 
a new BS will be broadcasted to all the existing 
BSs. In response, the BSs will send their informa-
tion to the new BS. This will include information 
about their AOs. For the node discovery, a BS will 
first check with the BSs within the VO before 
forwarding the request across multiple VOs.

Addressing Transient 
Nature of Wireless Grid

Wireless networks are characterized by weak 
transmission signals and message losses. Power 
constrained nodes may suddenly crash. These 
types of events can create inconsistencies in the 
information maintained by the grid components

Node Failure: In order to detect the node fail-
ure, the RS can periodically send hello requests to 
the registered nodes. In case of no response from 
the node, the RS will send the hello requests to 
the specific node. After a threshold number of 
requests, the RS assumes that the node has failed 
and deletes the node information.

Message Losses: Message losses can manifest 
themselves in the same fashion as the node failure. 
The message initiator, i.e., node, RS or BS, will 
make multiple attempts to elicit a response from 
others. One of the retries will succeed in obtaining 
the response. There may be cases where the mes-
sages are lost only for a set of recipients. A RS or 
a BS can lookup its organization information and 
send messages to only the set of the recipients that 
did not respond to the previous attempts. A leav-
ing node or a RS may not wait for a confirmation 
from all the recipients. Existing members in the 
network can periodically send hello messages to 
confirm their individual presence. When a RS 
or BS does not receive a response to the hello 
messages from certain members, they make an 
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assumption that the members are no longer part 
of the network.

Other Considerations

Redundancy: We have assumed that there is 
only one RS per AO and only one BS per VO. 
However, depending on the size of the network 
and the distances between the components there 
can be several RSs per AO and several BSs per 
VO to facilitate address assignment and resource 
discovery. This will also be important in order to 
increase the throughput capacity of the network 
(Liu et. al., 2003). The concept of electing a new 
leader when the group DNS server leaves the 
group (Huck et. al., 2002) could be extended to 
the network of RS or BS nodes that communicate, 
share and manage hand-offs across boundaries. In 
the case where one RS or BS leaves the group, a 
pre-configured secondary BS can take over the 
concerned responsibility automatically.

Security Issues: Throughout our discussions 
we have assumed that nodes or the stations do not 
operate in a malicious. A rogue node or a station 
can manipulate the configuration of the network. 
By such actions, the rogue node can corner a 
number of addresses, making them unavailable 
for other nodes that may wish to join the AO. 
Subsequently, the rogue node can also respond on 
behalf of the phantom nodes making it difficult 
to clean up their addresses. If IP addresses are in 
short supply, such an action can prevent some 
bona-fide nodes from joining the AO. Also, the 
rogue node can significantly overload the system 
by generating several requests within a short time. 
It is also possible for a malicious node to gener-
ate exit messages for nodes that are still part of 
the network.

Many approaches assume the existence of a 
Security Association (SA) between the end hosts, 
which choose to employ a secure communication 
scheme and, consequently, need to authenticate 
each other (Papadimitratos and Haas, 2002). This 
SA could have been established via a secure key 

exchange (Asokan and Ginzboorg, 2000), or 
through initial distribution of credentials.

The attacks mentioned above can be thwarted 
by the use of digital certificates that the nodes may 
have obtained a priori from some trusted Authen-
tication Servers (ASs). Using such certificates and 
knowledge of the AS public key, the grid nodes 
and stations can authenticate each other and sign 
their messages even when the AS is not reachable. 
Further work is needed to evaluate all possible 
security mechanisms.

Policy Management: Since the end-devices 
or nodes can be power constrained, one cannot 
assume that the devices are capable of running 
complex protocols such as Lightweight Direc-
tory Access Protocol (LDAP) or Common Open 
Policy Service (COPS). The technical aspects of 
policy management, such as privileges and access 
to resources, can be potentially handled through 
the root stations and the base stations. The RS 
should be capable of not only handling the resource 
intensive protocols but also maintaining the latest 
information on the nodes in the network and their 
capabilities. RS could maintain the policy database 
that could be populated manually or through a 
messaging mechanism between the nodes and the 
RS. When a node leaves the local grid, the policies 
relevant to the node are discarded. Similarly, when 
a new node enters the local grid, it can configure 
its policies on the RS through lightweight mes-
saging. Alternatively, the policies could be pre-
configured on the RS based on a classification of 
the resources into one of several classes, i.e., low 
power resource class, highly secure class, etc. This 
means that the devices, when they register must 
also communicate their capabilities.

Similar to the RS, a base station (BS) for 
centralized control can be envisaged for the en-
terprise or the virtual organization with intra-grid 
architecture. For an inter-grid, two or more BSs 
need to interact in order to conform to end-to-end 
Quality of Service guarantees while traversing 
across multiple enterprises.
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CONCLUSION

In the real world, a grid environment is usually 
heterogeneous at least for the different comput-
ing speeds at different participating sites. The 
heterogeneity presents a challenge for effectively 
arranging load sharing activities in a computational 
grid. This article develops adaptive processor al-
location policies based on the moldable property 
of parallel jobs for heterogeneous computational 
grids. The proposed policies can be used when a 
parallel job, during the scheduling activities, can-
not fit in any single site in the grid. The proposed 
policies require users to provide estimations of job 
execution times upon job submission. The poli-
cies are evaluated through a series of simulations 
using real workload traces. The results indicate 
that the adaptive processor allocation policies 
can further improve the system performance of 
a heterogeneous computational grid significantly 
when parallel jobs have the moldable property. The 
effects of inexact runtime estimations on system 
performance are also investigated. The results 
indicate that the proposed adaptive processor 
allocation policies are effective as well as stable 
under different system configurations and can 
tolerate a wide range of estimation errors.
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INTRODUCTION

The rapid developing of Internet has boosted 
the bloom of network computing technology. As 
typical systems, cluster computing, peer-to-peer 
computing, grid computing, as well as cloud com-
puting, commonly focus on the goal of sharing 
various resources distributed in a certain network 

environment, and provide services for a large 
number of users. The resources to be shared in 
such systems include CPU cycles, storage, data, 
and, as particularly discussed in this work, the 
memory.

As one of the most important resources in 
computer architecture, memory plays a key role 
in the factors impacting the system performance. 
Especially for the memory-intensive applications 
that have large work sets, or the I/O-intensive appli-
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Push-Based Prefetching in 
Remote Memory Sharing System

ABSTRACT

Remote memory sharing systems aim at the goal of improving overall performance using distributed 
computing nodes with surplus memory capacity. To exploit the memory resources connected by the 
high-speed network, the user nodes, which are short of memory, can obtain extra space provision. The 
performance of remote memory sharing is constrained with the expensive network communication cost. 
In order to hide the latency of remote memory access and improve the performance, we proposed the 
push-based prefetching to enable the memory providers to push the potential useful pages to the user 
nodes. For each provider, it employs sequential pattern mining techniques, which adapts to the charac-
teristics of memory page access sequences, on locating useful memory pages for prefetching. We have 
verified the effectiveness of the proposed method through trace-driven simulations.
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cations that massively access the disk, the memory 
capacity may dominate the overall performance. 
The ultimate reason is that there exist large gaps 
on performance and capacity between memory 
and disk (Patterson, 2004), thus the traditional 
computer systems have to supplement the memory 
capacity using the low-speed disk based virtual 
memory, or improve the disk performance using 
the limited memory based cache. Accordingly, an 
intermediate hierarchy between memory and disk 
is needed to relax such restrictions.

Remote memory sharing, which aggregates a 
large number of idles nodes in the network en-
vironment, and exploits their memory resources 
for fast storage, could meet the requirements of 
intermediate hierarchy with adequate performance 
and capacity (Feeley, et al., 1995; Hines, Lewan-
dowski, et al., 2006; Newhall, et al., 2008; Pakin, 
et al., 2007). The memory-intensive applications 
can swap obsolete local memory pages to remote 
memory instead of local disk (Feeley, et al., 
1995), or the I/O-intensive applications can also 
benefit from the large data cache with better hit 
ratio (Vishwanath, et al., 2008). Various remote 
memory sharing schemes were proposed in the 
past decades. Their difference mainly exists on 
the underlying network environments. The net-
work memory or cooperative caching stands on 
a single cluster (Deshpande, et al., 2010; Wang, 
et al., 2007), while our previous work named 
RAM Grid devotes to the memory sharing in the 
high-speed wide-area network such as a campus 
network (Chu, et al., 2006; Zhang, et al., 2007), 
and the recently proposed RAM Cloud also tries 
to aggregate the memory resources in the data 
center (Ousterhout, et al., 2010). Their common 
ground is to boost the system performance with 
shared remote memory.

In order to study the potential performance 
improvement of remote memory sharing system, 
we will use our previous work RAM Grid as an 
example, to compare the overheads of data access 
for an 8KB block over local disk, local network 
file system and remote memory resource across 

the campus network with average 2ms round-
trip latency and 2MB bandwidth. From Table 1, 
we can observe that the remote memory access 
only reduces the overhead by 25%~30%, and the 
major overhead mainly comes from the network 
transmission cost (nearly 60%). Therefore, the 
performance of remote memory sharing can be 
obviously improved if we reduce or hide some 
of the transmission cost. Prefetching is such an 
approach to hide the cost of low speed media 
among different levels of storage devices (Shi, et 
al., 2006; Vanderwiel, et al., 2000; Yang, et al., 
2004). In this work, we will employ prefetching 
in remote memory sharing in order to reduce the 
overhead and improve the performance. Differing 
from traditional I/O devices, the remote nodes 
providing memory resources often have extra 
CPU cycles. Therefore, they can be exploited 
to decide the prefetching policy and parameters, 
thus releasing the user nodes, which are often 
dedicated to mass of computing tasks, from the 
process of prefetching. In contrast to traditional 
approaches, in which the prefetching data are 
decided by a rather simple algorithm in a user 
node, such a push-based prefetching scheme can 
be more effective.

To facilitate later description, we will classify 
the nodes in RAM Grid into different categories. 
The user node is the consumer of remote memo-
ry, while the corresponding memory provider is 
called the memory node. Before that, there also 
exist manager nodes which act as information 

Table 1. Data access overhead in different ways 

  remote 
memory

  local 
disk

  LAN file 
system

  memory ac-
cess   <0.01ms

  net latency   2ms   0.68ms

  net transmit   4ms   0.06ms

  disk latency   7.9ms   7.9ms

  disk transmit   0.1ms   0.1ms

  total   ≈ 6ms   8ms   8.74ms
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directories. In later sections, the system architec-
ture and the prefetching design will be discussed 
among these nodes distributed in a high-speed 
wide-area network environment.

OVERVIEW

In traditional systems, an actual disk I/O op-
eration only occurs when it misses the local file 
system cache in the operating system. Sarkar 
et al. mentioned that the cache must be large 
enough otherwise the costly disk accesses will 
dominate the system performance (Sarkar, et al., 
1996). The effect of RAM Grid, as well as other 
remote memory sharing systems, is that it provides 
abundant memory resources, which serves as an 
intermediate cache hierarchy between the local 
file system cache and local disk.

Another problem of the traditional file system 
cache comes from the mechanism of read ahead. 
The system often read several sequential blocks 
when accessing just the first block of the sequence. 
We can take the read ahead as a “blind” pull based 
prefetching; the shortcoming of such prefetching 
is two-fold. Firstly, the user node should decide 
the number of blocks that it needs to read ahead, 
which will unnecessarily take extra CPU cycles. 
Secondly, read ahead on sequential blocks with-
out pattern analysis may have the risk of wasting 
disk or network bandwidth and memory buffers 
for the fact that not all of the applications will 
access sequential blocks, which is usually called 
“cache pollution”. In this paper, we propose a 
push-based prefetching to solve the first problem, 
and a “smart” prefetching based on the pattern 
analysis instead of a “blind” one to address the 
second problem.

In order to study the operations of traditional 
file system cache, we collect disk access traces 
from a very busy running web server with about 2 
million page views per day. The server configura-
tion includes 2 Intel Pentium4 3.0GHz CPU with 
2GB physical memory and 80GB SCSI hard disk, 

running Windows 2003 Enterprise Edition operat-
ing system and IIS 6.0. We collect the disk access 
trace using the DiskMon toolkit. Note that the web 
server is providing contents for real users, thus 
the disk I/O also comes from the real browsing 
activities. After record 2,380,370 disk accesses in 
50 hours, including all of the hits and misses in 
the local cache, we can observe from the collected 
traces that many of the disk accesses have specific 
patterns, which results from the hyperlink relation-
ships and the fact that the users often have their 
browsing habits. For a generic example, the access 
on sector 76120651 has 1,295 occurrences in our 
traces, and most of them are near to the access on 
sectors 76120707 and 76120735. Although they 
are not sequential numbers and there are often 
several outlying accesses between them, we can 
infer that 76120651…76120707…76120735 is 
a pattern. In most of cases, the access on sector 
76120651 indicates that the access on 76120707 
and 76120735 will come soon.

Therefore, we can design a prefetching algo-
rithm based on pattern forecasting, which is ex-
ecuted by the memory nodes in RAM Grid. After 
a number of accesses fall into the remote caching 
provided by a memory node, it can forecast the 
most probable disk blocks referred by sequential 
accesses, and actively pushes these probable 
disk blocks to the user node. Such a push-based 
prefetching algorithm will make time overlapping 
in network communication and boost the system 
performance, as illustrated in Figure 1.

Compared with the traditional read ahead 
mechanism, the advantages of the push-based 
prefetching can be listed as follows. Firstly, the 
user nodes in RAM Grid are usually burdened 
with heavy workloads, while the memory nodes 
often have extra CPU cycles. Thus the latter fit 
for the forecast process of prefetching much bet-
ter than the former, and a consumptive but precise 
prefetching algorithm can be employed. Sec-
ondly, besides the computational overhead, a 
prefetching algorithm may have considerable 
space consumption, and the memory nodes have 
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plenty resources to do that instead of the user 
nodes with limited available memory. Moreover, 
since the prefetching algorithm is executed by the 
memory node, the potential used data blocks can 
be pushed without a prefetching command comes 
from the user node, and the extra communication 
cost can also be prevented.

The basic operations of the remote caching are 
“put page” and “get page” upon the basic element 
“memory pages”, which correspond to write or 
read operations on local disks upon disk blocks. 
In most cases, the “write” or “put page” can be 
overlapped by an asynchronous operation, thus, 
their access latency can be ignored. As a conse-
quence, we only consider the “read” or “get page” 
operations and do not distinguish between them.

SYSTEM DESIGN

VanderWiel et al. concluded that a data prefetching 
mechanism should address three basic questions 
(Vanderwiel, et al., 2000): 1) When is prefetch-
ing initiated, 2) where are prefetched data placed, 
and 3) what is prefetched? In this section, we will 
mainly discuss these questions.

Prefetching Buffer

For each prefetched disk block, memory pages 
must be allocated to hold it before the actual 

reading starts. If the free physical memory is not 
enough, the operating system has to evict some 
of the obsolete memory pages. However, the 
prefetched memory pages may not be used at 
all. In this case, the allocated memory pages are 
wasted. Therefore, we need to design a prefetch-
ing algorithm to maximize the possibility that a 
user node will use the prefetched memory pages 
pushed by a memory node.

We will firstly propose a system policy that 
a user node determines whether a prefetched 
memory page should be accepted. The policy is 
important because not all of the pushed memory 
pages should be accepted, otherwise the cache 
will be polluted, while the network bandwidth will 
also be wasted if the user node rejects too much 
pushed pages. In our scheme, a prefetching buffer 
is assigned for each user node. The prefetching 
buffer is a queue of free memory pages with the 
maximal size of k (0 < k < F), and F is the number 
of free memory pages in the user node. The system 
should maintain the prefetching buffer as follows:

• If the prefetched page can be found in the 
file system cache, just reject it; else accept 
it when k > 0;

• Else if the size of the current prefetching 
buffer is less than k, allocate memory for 
the accepted page and add the page to the 
tail of queue;

Figure 1. Time overlapping in network communication
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• Otherwise, the length of the queue equals 
k, it means that the size of the prefetching 
buffer has reached the maximum limit. 
Discard the oldest page at the head of the 
queue, and add the accepted page to the 
queue tail;

• When a page in prefetching buffer is actu-
ally accessed, it will be read into the file 
system cache, then remove it from the 
prefetching buffer.

The parameter k is a key factor for the prefetch-
ing buffer and it is related to the free physical 
memory of the system. If a user node lacks physical 
memory, its k should be set to a smaller value to 
minimize the memory waste, while k should be set 
larger to hold more prefetched pages when the free 
memory is larger. The relationship between k and 
free memory will be studied in the simulations.

Access Trace

In our prefetching policy, the memory node 
selects the memory pages to be pushed through 
the access patterns of a user node, which can be 
analyzed from the historical traces of the user. The 
memory node should also record current access 
traces for future analysis. Every “get page” opera-
tion from a user node contains the ID of the disk 
block corresponding to a desired memory page, it 
seems appropriate to record each disk block ID as 
historical trace data and analyze request patterns 
from it. Unfortunately, in most file systems, a file 
corresponds to a certain number of disk blocks; 
while their relationship may be changed at any 
moment. This means that a block may belong to 
different files in different time once the file was 
moved or deleted. Therefore, instead of disk block 
ID, we consider a file ID and an offset in the file 
for trace recording. When a user node gets a page 
from a memory node, it also sends the file ID 
(supported by the file system, such as the inode 
in Unix-like file systems) and offset within the 

file. The memory node will record and analyze 
both of the file ID and offset in the historical trace.

There is another problem in the access trace. 
When multiple applications are accessing the file 
system in parallel, the access pattern of one appli-
cation can be interblended by other applications. 
For example, an application A may read block 
A1, A2, A3, and application B will read B1, B2, B3. 
While their access trace may be considered as A1, 
A2, A3, B1, B2, B3, or A1, B1, A2, B2, A3, B3,. We can 
also observe this occasion in the real web server 
traces described in last Section. The accesses on 
sectors 76120651, 76120707 and 76120735 can 
be taken as a pattern, but there are many outlying 
traces between every two of them. Therefore, the 
prefetching algorithm should recognize each of the 
patterns in a mixed access sequence, as explained 
later in the prefetching algorithm.

Trace Recording Process

When a memory node is recording the access 
trace of the user node, it maintains a sequence of 
file IDs and offsets which is ordered by their ac-
cess timestamp. The sequence can be denoted as
S o o o on= 1 2 3, , , ..., , where each o i ni ∈ 


( )1,  

is a combination of file ID and offset.
Each sequence should be partitioned into some 

small ones when recording. If the difference of 
access time for two neighboring items oi and oi+1 
in a sequence is longer than a threshold t, we can 
split the sequence into two halves between the 
neighboring items. The rationale for splitting is 
that if the memory node pushes oi+1 when oi is ac-
cessed, oi+1 will stay in the prefetching buffer for 
a long time and may possibly be discarded by the 
user node before it is actually accessed. In other 
words, prefetching for oi+1 is useless because its 
intended access time is too late. Therefore, we 
can partition a sequence into small sequences 
through a parameter t and find access patterns in 
each small sequence. We will call a partitioned 
small sequence a “trace item”. Indeed, the selec-
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tion of t can have an impact on the performance 
of prefetching. We will analyze this parameter in 
the simulations.

Besides of the memory nodes and user nodes, 
we also exploit the manager nodes, which often 
have idle CPU cycles and less churn, to collect 
and merge the trace items from each memory node 
and compose a trace library from the accumulated 
trace items. The manager nodes should also dis-
patch the trace library to new memory nodes for 
prefetching. There is a maximum number for the 
trace items in a trace library, denoted as M. It is 
related with the system performance. Indeed, the 
larger M means more user patterns and more ac-
curate results in the prefetching algorithm, while 
the larger M also needs more memory space to 
hold the trace library and more transmission cost 
between manager nodes and the memory nodes. 
We will evaluate the impact of M later.

PREFETCHING ALGORITHM

The goal of the prefetching algorithm is to pre-
dict the most likely pages of future requests that 
start with the current request issued by the user 
node. The memory node needs to determine those 
pages based on the user patterns derived from 
the trace library and other necessary parameters, 
such as the maximum prefetching buffer length 
of the user node, k. In order to reduce the network 
communication cost, we want the predicted and 
prefetched memory pages to have the highest 
probability to be used by the user node. In fact, 
selecting proper pages is a data mining problem, 
which can be defined as follows.

Let o o on1 2, , ...,{ }  be a set of all possible items, 
where each item is a recorded access. A sequence 
S, which can be denoted as S o o on= 1 2, , ..., , 
is an ordered list of items. The number of items 
in sequence S, denoted as length(S). A sequence 
α = a a an1 2, , ...,  is contained in another se-

quence β = b b bm1 2, , ..., , denoted as α β⊆ , iff 

there exist integers 1 1 2≤ < < < ≤i i i mn... , 
such that a bi1 1

= , a b a bi n in2 2
= =, ..., . A se-

quence can be appended to another sequence 
using a concatenation operator ‘+’. For example, 
α β+ = a a a b b bn m1 2 1 2, , ..., , , , ..., . The first 
occurring position of an item a in a sequence S is 
denoted as first S a( , ) , thus first b nn( , )β =
(b b b b b bn n n n1 2 1≠ ≠ ≠−, , ..., ). A trace library L is 
an ordered set consisting of multiple sequences, 
that is, L S Sn= S1 2, , ..., .

For a given sequence S, if there exists a trace 
library L S Sn= S1 2, , ..., , and S S i ni⊆ ∈ 


( )1, , 

then we say that L supports S, and the support of 
S in trace library L is the number of Si in L which 
satisfies S SiÍ . The problem of mining prefetch-
ing sequences can be described as follows.

For a given access oc, search S o o o oc n= , , , ...,1 2  
with the maximum support in the trace library, 
where length S( )³ 2 . S is called the prefetching 
list. The memory node obtains the prefetching list 
S and sequentially pushes pages in the list to the 
user node, when the latter performs a “get page” 
operation with an access oc.

According to the definition ofα β⊆ , the com-
mon items in a and b is not necessary to be con-
secutive. Supposing S B A B A B1 1 2 2 3 3= A1, , , , , , 
S A A2 2 3= A1, , , then we have S S2 1Í . This 
definition solves the problem mentioned in last 
section.

In fact, the background of the prefetching 
algorithm is inspired by the traditional sequential 
pattern mining (Agrawal, et al., 1995, 1996). Al-
though the there exist similarities, the problem is 
quite different. Firstly, an item in sequential pat-
tern mining can be composed by several numbers, 
while for prefetching it is just a single number 
that indicates the block identification. Moreover, 
the output of sequential pattern mining is the se-
quence whose support is higher than a threshold 
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H, in prefetching, however, the problem focuses 
on the maximum support among the sequences. 
Such differences make the prefetching algorithm 
much more efficient. Furthermore, for practical 
usage, we design some additional constraints for 
mining prefetching pages:

• length S k( )≤ +1, where S is the prefetch-
ing list and k is the maximum prefetching 
buffer size of the user node. Supposing we 
push more than k pages to the user node 
each time, some of the pushed pages may 
be discarded due to the limit of the prefetch-
ing buffer size.

• We can add a constraint in the definition of 
α β⊆  that i i dx x+ − ≤1 , where 
x n∈ −[ , ]1 1  and d is a given integer 
threshold. Because the prefetched pages 
should not be far away from the accessed 
pages in a sequence of the trace library, 
otherwise its may be discarded before 
accessed.

Our prefetching algorithm named PrefixSpan-
Prefetching (PSP) can be described as Algorithm 1.

The algorithm PSP is efficient since it has no 
recursion. The time cost of PSP primarily comes 
from the iteration from step 4 to step 26, the 
condition to stop this iteration is that length(S)>k+1 
or it cannot find possible item P when spanning 
S in step 16. In other words, in the worst case this 
iteration should run k times for a prefetching list 
of length k. In each iteration, steps 5-17 need to 
scan the trace library, whose maximum size is M. 
Suppose that the maximum length of sequences 
in the trace library is m, in order to perform a 
binary search in each sequence, we build a sorted 
index in advance for the first occurrence of each 
item in the sequence. Therefore, for each item in 
the prefetching list, the time cost of PSP is 

O(Mlog2m) in the worst case, and the extra space 
cost from each sorted index is O(m) in the worst 
case.

The correctness of PSP is discussed as follows.

Lemma. The support of a sequence α+β is always 
not greater than the support of α.

Proof. Assuming that {Si} is the set of sequences 
whereα β+ ⊆ Si , it is obvious that for each 
Si, we have α ⊆ Si , which indicates the 
support of α+β is always not greater than α. 
■

From the lemma, we have the corollary as 
follows:

Corollary. If the support of a sequence α is not 
the maximum, the support of a sequence α+β 
cannot be the maximum either.

Based on the lemma and the corollary, the 
following theorem proves the correctness of 
algorithm PrefixSpan-Prefetching:

Theorem. After algorithm PrefixSpan-Prefetch-
ing, the support of sequence S is the maxi-
mum for  a l l  poss ib le  S ,  where
2 1≤ ≤ +length S k( ) .

Proof. Step 14 in PSP is only executed in the first 
iteration and it can get a sequence S=<oc,P>, 
which has the maximum support; step 16 is 
executed after the first iteration, it only ac-
cepts item P if the support of S+<P> is equal 
to that of S. Before step 19, if the support of 
any sequence T is less than that of S, then 
there is no sequence that has the maximum 
support, with the prefix of T (due to the 
corollary). Thus, T should not be spanned 
in step 19. Hence, the support of sequence S 
is always the maximum in each iteration. ■
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PERFORMANCE EVALUATION

Simulation Methodology

Our application scenario is composed of abundant 
PCs and several server stations loosely coupled in 

a high-speed wide-area network. Some PCs are 
idle and have free memory resources, whereas 
servers are usually busy for tasks with mass 
non-consequence data accesses (such as a web 
server or DBMS), whose local physical memory 
is intended to be utilized as much as possible. A 

Algorithm 1. PrefixSpan-Prefetching (PSP)

  Input: Current access o
c
, the trace library L, factor k and d.

  Output: Prefetching list S, where 2 1≤ ≤ +length S k( ) .

1  As an initial sequence, let S oc=< > ;

2  let L L' = . L ' is a copy of L and will prevent the latter from any modifies 
during the algorithm; 

3  let last oc= { } . The set last will contain all possible postfix items in the 
prefetching list; 

4  while length S k( )≤ +1 do
5       for each S Li Î ', do

6            if ∀ ∈ ⇒ ∈P P last P Si( ) then

7                 select P lastx Î  where first S Pi x( , )  is the minimal;

8                 supposing first S P ni x( , )= , trim the first n items 

of S
i
;

9            else
10                 delete S

i
 in L '

11            end
12       end

13       if S oc=< >  then

14       scan L '  once, find all possible items P, where 
( ) ( ') ( , )P S S L first S P di i i∈ ∧ ∈ ∧ ≤ , and <P> has the maximum support in L ' ;
15       else
16       scan L '  once, find all possible items P, where
∀ ∈ ⇒ ∃ ∈ ∧ ≤S S L P P S first S P di i i i( ' ( ( , ) )) ;
17       end
18       let last = ϕ ;
19       for each possible items P in steps 13-17, do
20            let S S P= + < > ;

21            let last last P= ∪ { };
22       end
23       if last = ϕ  then
24            terminate the algorithm; 

25       end
26  end
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typical example of this configuration is a campus 
or enterprise network with many heterogeneous 
computers. In order to simulate such scenario by 
the disk I/O traces of the very busy running web 
server that we have collected, we assume that 
servers in our scenario are all web servers with 
many users. The disk I/O traces in our simulation 
have already been mentioned before.

We have built a discrete event based simulator 
of the environment with 1000 different nodes. The 
simulation topology of 1000 nodes is generated 
using the ASWaxman model through the topol-
ogy generator BRITE (Medina, et al., 2001). We 
use the TopDown method in BRITE to generate 
a 2-level network topology, which includes 10 
ASes and each AS has 100 router-level nodes 
respectively, the nodes placement follows the 
heavy-tailed distribution. The generated topology 
is a DAG, where vertices are simulation nodes 
and each edge is an overlay path between two 
vertices. The routing between any two vertices 
is the shortest path between them computed by 
Dijkstra’s Algorithm.

We define parameters of hard disks and the 
remote memory to calculate local and remote I/O 
overheads. When performing a disk read with n 
successive blocks, the overhead is given by:

T T n T n
S
BS L W
p

d

+ + − × + ×( )1  

where TS is the seeking time, TL the latency time, 
TW the waiting time between two successive read-
ings, Sp the block size, and Bd the disk bandwidth. 
Typical values of these parameters are TS =4.9 
milliseconds, TL =3.0milliseconds, TW =0.2 mil-
liseconds, Sp =4KB, and Bd =80MB/s.

For the remote memory, the read overhead for 
n successive block readings is given by:

T T n
S
BU RTT
p

N

+ + ×  

where TU is the start-up time, TRTT the round-
trip time, and BN the network bandwidth. In our 
simulation, TU is set to 5 microseconds, TRTT varies 
from 1 millisecond to 4 milliseconds following a 
uniform distribution, and BN varies from 0.5MB/s 
to 3MB/s following a uniform distribution. These 
parameters are from the actual testing of our 
campus network.

Results

Simulation 1. The effect of proportion of user 
nodes

In this set of simulations, we test the effect of the 
proportion of user nodes on average overheads. 
The proportion of user nodes is set to around 
c c( )0 1£ £  in our simulation. Both overheads 
of RAM Grid without or with prefetching would 
change when the proportion of user nodes chang-
es. As illustrated in Figure 2. When the proportion 
of user nodes is within the range from 20% to 
30% the overhead changes rapidly. When the 
proportion falls out of this range, curves become 
flat. This is reasonable, since when the proportion 
of user nodes is less than 20%, most of them can 
obtain sufficient memory resources, and if it is 
more than 30%, the number of user nodes that 
can capture resources becomes smaller and curves 
thus change little with the increasing proportion 
of user nodes. Therefore, bounds 20% and 30% 
can be considered as critical proportions. In Fig-
ure 3, we compare three types of hit ratios in the 
proposed scheme: 1) the hit ratios of local and 
remote memory, which means the percentage of 
all accesses except the ones that do not hit any 
type of cache and cause the actual disk I/O op-
erations; 2) the hit ratios of local buffer cache, 
meaning the percentage of all accesses which hit 
the local cache of file system, or hit the prefetch-
ing buffer in our scheme; 3) the hit ratios of 
prefetching buffer only, that is, the probability of 
hitting the prefetching buffer if the access does 
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not hit the local cache of the file system. It is 
interesting that the hit ratios of remote and local 
memory decease rapidly with the increasing of 
user nodes proportion, however hit ratios of the 
local buffer cache and prefetching buffer are 
slightly increasing. We can infer that the increas-
ing overhead in Figure 2 is mainly due to the 
insufficient memory in the entire environment. 
However, the performance of our prefetching 
algorithm would not decease in this case.

Simulation 2. The effect of prefetching buffer 
size

The prefetching buffer is one of key factors in 
our scheme. It shares the free memory capacity 
with the file system cache, and its maximum size 
is restricted. In this set of simulations, we let the 
upper bound of prefetching buffer to be from 1/2 
to 1/128 of the free physical memory capacity. 
The overhead and hit ratio with prefetching are 
reported in Figure 4 and Figure 5, respectively. 
Similarly, there exists a critical proportion range 
for the prefetching buffer. When the proportion 
of the prefetching buffer is within the range from 
1/4 to 1/16, the performance of the algorithm 
changes rapidly. The proportion of 1/3 is close 
to the optimal, since it does not take much local 
memory, and thus has the good performance of 

prefetching. We can also see from Figure 5 that 
the hit ratio of prefetching buffer decreases rapidly 
with the decreasing prefetching buffer, whereas 
that of the local cache and the prefetching buf-
fer does not change very much. This lies on the 
fact that the free local memory is constant. The 
decreasing prefetching buffer causes the increase 
of the local cache, which reduces the effect of 
prefetching buffer.

Simulation 3. The effect of trace library size

The effectiveness of the PSP algorithm is re-
lated to the amount of user patterns contained in 
the trace library. We set a maximum trace library 
size and the old traces should be discarded. By 
default, the trace library contains at most 3000 
traces. Indeed, it is near optimal value in Figure 
6 and Figure 7. Obviously, when trace library 
becomes small, the performance of PSP drops 
rapidly. This is because there are not enough 
training data to get the right prefetching list. 
However, the larger size of the trace library can 
also decrease the performance of the algorithm. 
Both the overhead and hit ratio in the case of 8000 
traces of the trace library are the worst in Figure 6 
and Figure 7. This situation is true with not only 
the transmission overhead of large trace library, 

Figure 2. Reading overhead with different user 
node proportion

Figure 3. Hit ratio with different user node pro-
portion
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but also old traces that are kept in the large trace 
library for a long time, which would not help 
improve the accuracy of the algorithm. Therefore, 
the desired algorithm should either wash out the 
old traces in time, or reduce their impact, which 
are interesting topics for our future work.

Simulation 4. The effect of splitting threshold

According to the trace recording process, a se-
quence is split into small ones when the recording 

time interval of two neighboring items is greater 
than a threshold. In the last set of simulations, we 
vary this time interval threshold from 10ms to 
150ms (the default value is 30ms), and illustrate 
the overhead and hit ratio with prefetching in 
Figure 8 and Figure 9, respectively. We observe 
that here also exists an optimal value for this 
threshold. In particular, short traces would miss 
some long sequences during the trace collecting 
process, while a large time interval threshold that 
may keep longer traces would take a long time to 
collect enough traces for prefetching, resulting in 
the slow increase of the trace library size and thus 
less accuracy of the algorithm.

RELATED WORK

The history of remote memory sharing system 
can be retrospect to 1990s. As an initial work, 
several memory sharing schemes, which are 
usually called network memory systems, have 
been proposed. We can category these systems 
into three major types based on the objectives, 
which are high-speed paging device (Feeley, 
et al., 1995; Hines, Lewandowski, et al., 2006; 
Hines, Wang, et al., 2006; Markatos, et al., 1996; 
Oleszkiewicz, et al., 2004), data cache for local 

Figure 4. Reading overhead with different maxi-
mum prefetching buffer proportion

Figure 5. Hit ratio with different maximum 
prefetching buffer proportion

Figure 6. Reading overhead with different maxi-
mum trace library size
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or networked file systems (Chang, et al., 1999; 
Dahlin, et al., 1994; Jiang, et al., 2006; Sarkar, et 
al., 1996; Voelker, et al., 1998), or remote RAM 
disk respectively (Flouris, et al., 1999). Unlike 
network memory schemes, RAM Grid tries to 
share the plentiful memory resources distributed 
in a wide area network (Chu, et al., 2006). It ag-
gregates resources in a large scale and avoids the 
inadequate idle memory resources problem within 
a single cluster, while it must also deal with the 
dynamic and heterogeneous resources effectively 
using a decentralized architecture.

The effect of prefetching mainly depends on 
the prediction of the data access. For magnetic 
disk I/O, the prediction is restricted in millisec-
ond level. It means that the prediction algorithm 
should output a result in milliseconds; otherwise 
the prefetching cannot speed up the I/O access. 
Griffioen et al. build a directed probability graph 
among the files (Griffioen, et al., 1994), a directed 
edge means that the files are opened very closely. 
Using the probability graph, the system can predict 
the next opened file with slight overhead, while 

Figure 7. Hit ratio with different maximum trace 
library size

Figure 8. Reading overhead with different trace 
time interval threshold

Figure 9. Hit ratio with different trace time interval threshold
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the prediction has a coarse granularity. Choi et al. 
present a prediction based on disk blocks(Choi, 
et al., 2000). The algorithm classifies disk ac-
cess into several predefined patterns, and predict 
current pattern when accessing disk blocks. The 
work of Gniady et al. predicts I/O access using 
the program counter (Gniady, et al., 2004). The 
system maintains a hash table from the program 
counter to the access pattern and predict the pat-
tern. Different with those previous works, our 
system predict the I/O access using a data mining 
method, which usually has finer granularity and 
better precision.

Our algorithm for collecting the trace and infer-
ring the pattern of users is based on the problem of 
sequential pattern mining. Agrawal et al. first de-
fined the problem of sequential patterns (Agrawal, 
et al., 1995, 1996). However, their algorithms are 
not applicable to for very long sequences which 
are often the case in grid environments. Pei et 
al. proposed PrefixSpan algorithm (Pei, et al., 
2001), which improves upon Apriori and reduces 
the overhead. These algorithms are based on the 
general problem of sequential pattern mining in 
very large databases (Ayres, et al., 2002); while 
the background of our algorithm is quite specific, 
some of the restrictions in traditional sequential 
pattern mining can be released and the algorithm 
is also more effective.

CONCLUSION

With the rapid development of the network 
technology, several remote memory sharing sys-
tems have been proposed to aggregate memory 
resources through definite network environment. 
Our previous work, RAM Grid, made use of the 
remote memory to boost the performance of 
memory-intensive and I/O-intensive applications. 
In this paper, in order to reduce the network com-
munication cost of accessing the remote memory, 
based on a push strategy and inspired by traditional 
sequential patterns mining techniques, we propose 

a prefetching algorithm to push more pages to a 
user node. By mining the historical information, 
a memory node can push the required data to user 
nodes efficiently. We demonstrate the efficiency 
and effectiveness of the proposed prefetching 
scheme through comprehensive trace-driven 
simulations.
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Chapter  18

INTRODUCTION

Recently, grid computing is one of attractive 
architectures for high-performance computing. 
The grid computing system is an Internet-scale 
distributed computing system for sharing distrib-
uted resources across the traditional organization 

boundary. In grid systems, the most important 
issues include how to integrate the dynamically 
heterogeneous distributed resources, and how 
to improve the utilization of these integrated 
resources (Dandamudi, 1995). Although these 
various grid projects aim at sharing distributed 
resources from different virtual organizations 
(VOs), it is still difficult to share distributed 
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resources due to the different goals in building 
different VOs.

The peer-to-peer (P2P) computing system is 
another Internet-scale computing model where 
computers share distributed resources via ex-
changes among the participating computers (An-
droutsellis-Theotokis et al., 2004; Li et al., 2006). 
The widespread deployment of P2P computing 
systems offers great potential for resource sharing. 
The P2P system has the similar objective of the 
grid system to coordinate large sets of distributed 
resources. Therefore, many projects attempt to 
integrate these two complementary technologies 
to form an ideal distributed computing system 
(Amoretti et al., 2005; Shan et al., 2002; Shudo 
et al., 2005)

In this chapter, we propose a P2P-based mecha-
nism to form a P2P Grid platform for achieving 
load balancing of distributed computing resources. 
In general, the job submission in grid systems is 
carried out by a global resource broker to distrib-
ute load. Here, we propose a campus-to-campus 
Uni-P2P communication model to integrate the 
Taiwan UniGrid (Taiwan UniGrid, 2009) and 
the Taiwan TIGER system (Yang et al., 2005) by 
using a P2P communication mechanism which 
builds the communication pipes among sites in 
different grid systems. This campus-to-campus 
Uni-P2P communication model also supports a 
P2P resource monitoring system that captures the 
dynamic resource usage. In the P2P Grid platform, 
super peers are employed to manage grid sites. 
The concept of super peers, which exhibit more 
powerful computing ability, bandwidth and hard-
ware capacity, is also considered in this Uni-P2P 
communication model to improve the efficiency 
of searching distributed resources. Moreover, we 
propose a dynamic distributed load balancing 
policy to improve the idle resource utilization in 
the P2P Grid platform.

The rest of this chapter is structured as follows: 
related works are discussed in section 2 followed 
by the discussion of the system architecture in 
sections 3. Experimental results are shown in 

section 4. Section 5 describes conclusions and 
future research directions.

RELATED WORKS

There are many middlewares (e.g., Globus Toolkit, 
Unicore, gLite, etc.) which have been developed 
for grid systems. Most of them focus on providing 
the core middleware services for supporting the 
development functionality of high-level applica-
tions. However, they usually depend on special-
ized servers to maintain the distributed resource 
information. On the other hand, P2P systems 
adopt decentralized resource discovery approaches 
and thus do not rely on any specialized servers 
to capture distributed resource information. In 
this section, we present the related works of grid 
information systems and load balancing policies.

Resource Monitoring Systems

There are resource monitoring software for cap-
turing the resource information, such as Ganglia, 
Gstat (LCG), MDS, NWS and REMOS. Ganglia 
is a distributed resource monitoring system; it 
monitors system performance and system infor-
mation such as CPU load, memory usage, hard 
disk usage, I/O load, and network bandwidth. 
Gstat is the resource monitoring tool developed by 
ASGC in order to support the members of EGEE 
in handling global grid resources. Gstat supports 
information such as the number of CPUs and their 
load, the number of waiting/running jobs, and 
the response time from GIIS. MDS (Monitor and 
Discovery System) is one of the Globus Toolkits; 
it supports information services and monitors/
searches grid resources. NWS (Network Weather 
Services) is also a distributed resource monitoring 
system. It monitors the performance of networks 
and computing resources periodically, and then 
predicts future system performance by real time 
information. REMOS (REsource MOnitoring 
System) allows the application to capture the 
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shared resource information in the distributed 
computing environment. However, the above 
resource monitoring systems do not support the 
P2P mechanism for sharing resource information 
among sites, and result in the system bottleneck 
in the hierarchical architecture. Therefore, we 
propose a dynamic, distributed resource monitor-
ing systems in the Uni-P2P communication model 
for the P2P Grid platform to capture the dynamic 
distributed resource status.

Resource Broker

The load balancing mechanisms in grid systems 
can be classified into the global approach and 
the local approach. The global load balancing 
approach usually adopts the resource broker to 
distribute load. Resource brokers consider the 
usage information of grid resources, e.g., CPU 
load, hard disk usage, memory load, etc., to 
make decisions in order to achieve better system 
performance. gLite is the middleware developed 
by the E-Science project (Enabling Grids for 
E-Science and Industry in Europe). The global 
resource broker takes charge of distributing jobs 
to different VOs in the gLite middleware. These 
distributed jobs are sent to the job queues in each 
VO for execution. After job submission, the global 
resource broker cannot dynamically adjust the 
load in each job queue, i.e., the global resource 
broker does not support the function of dynamic 
job migration.

In previous studies (Hu et al., 2006; Xia et al., 
2006; Xu et al., 2006), authors propose distributed 
load balance mechanisms for computational grids 
with the unstructured P2P architecture. In their 
systems, every computing node has a job queue to 
manage the job execution. These studies demon-
strate that their model always converges to a steady 
load balancing state without complete knowledge 
about other nodes. However, they assume that the 
computational grid is a homogeneous unstructured 
P2P network where computing nodes in the grids 
are homogeneous. It is not practical under the as-

sumption that different computing nodes have the 
same processing speed, memory size, and storage 
space. These studies also assume that the process 
of load balancing is relatively short, during which 
there are neither new tasks submitted nor old 
tasks finished. They claim that they could solve 
the problem of archiving perfect load balance in 
decentralized architecture. However, load balanc-
ing is a time-consuming process even when new 
jobs are submitted or submitted jobs are migrated. 
In this paper, our Uni-P2P communication model 
can support dynamic job migration to balance 
loads among different grid sites.

Process Migration

Process (or Job) migration is the action which 
transfers a process between two computing nodes. 
A process migration (Tanenbaum, 2007) involves 
data, stacks, register contents, and the state for the 
underlying operating system, such as parameters 
related to process, memory, and file management 
information. Process migration could improve the 
load balance (Eager et al., 1986; Eager et al., 1988; 
Hu et al., 2006, Iyengar et al., 2006) and the reli-
ability of distributed computing systems. Recently, 
some migration technology has been raised by 
adopting the checkpoint/restart technology in the 
migration process. A previous study (Milojičić et 
al., 2000) mentions about many process migration 
algorithms in distributed computing systems. Ea-
ger copy is the simple and most common process 
migration algorithm. Many previous studies (e.g., 
Lazy copy and Pre-copy) (Richmond et al., 1997) 
also focus on how to enhance the effectiveness of 
process migration, such as the information state 
transfer, the transfer order, the process resumption, 
and the network traffic reduction.

Load Balance Policy

To fully exploit the P2P Grid computing system, 
load balancing is one of the key issues in achiev-
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ing high performance. There are three goals of 
the load balancing policy shown in the following:

• To distribute the workload from high-load-
ing sites to low-loading sites.

• To maximize the resource utilization.
• To minimize the job execution time.

According to the decision making approach, 
load balancing policies can be categorized into 
two types.

Static Policy

The static load balancing policy (Pan et al., 
2007) makes the balance decision by the resource 
information before executing jobs. It is easy to 
implement the static load balancing policy, and 
the overhead of implementing the static policy 
is lower than that of implementing the dynamic 
policy. However, it is more difficult for the static 
policy to obtain the optimal performance due to 
that it can not adjust the decision at runtime. In 
the high variation system, the performance of the 
static policy is very poor.

Dynamic Policy

The dynamic load balancing policy (Chen et al., 
2008; Duan et al., 2008) makes decisions of the 
resource allocations by the runtime information. 
Although the dynamic policy (e.g., JRT (Wu et 
al., 2008), Max-Min (Ali et al., 1999), Min-Min 
(Ali et al., 1999) and RESERV (Vincze et al., 
2008)) brings better performance, it is difficult 
to be implemented due to that it needs to collect 
the dynamic information for making the optimal 
decision. In general, the dynamic policy has the 
better performance than that of the static policy. 
In addition, the dynamic policy can maximize 
the system performance in the high variation 
environment.

On the other hand, according to the manage-
ment approach, load balance policies could also 
be categorized into two types.

Centralized Policy

The centralized load balancing policy adopts one 
computing node to be the resource manager and 
makes the load balance decision. The centralized 
resource manager manages global resource infor-
mation by collecting information from all sites. 
The global resource information facilitates the 
resource manager to allocate resources. Therefore, 
the centralized policies manage resources easily 
and achieve better performance. However, central-
ized resource manager could be the bottleneck of 
the system; moreover, it may become the single 
point of failure.

Distributed Policy

The distributed load balancing policy allows every 
computing site in the distributed system to make 
load balance decisions. In addition, the computing 
site only needs to collect the information from its 
linked sites. Although the cost of obtaining and 
maintaining the dynamic system information is 
very high, the distributed policy still could make 
the decision successfully when one or more sites 
join or leave the system. Therefore, the stability 
of the distributed policy is better than that of the 
centralized policy. The distributed policy is usu-
ally used in distributed system. Shah et al. (2007) 
propose a decentralized load balancing algorithm 
which employs the job arrival rates and the job 
response for making load balancing decisions. Lei 
et al. (2007) make the load balancing decisions 
according to the CPU and memory status. Tang 
et al. (2008) improve the system stability through 
the resource-constrained load balancing control-
ler. Liang et al. (2008) propose an adaptive load 
balancing algorithm which makes the workload 
of all nodes as evenly as possible. Subrata et al. 
(2008) propose a decentralized game-theoretic 
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approach which not only provides the similar 
performance with centralized approach, but also 
remain the advantage of distributed approaches. 
Li et al. (2009) propose a hybrid strategy to bal-
ance the workload according to the average-based 
and immediate resource information. Moreover, 
the hybrid strategy improves the performance of 
sequential tasks.

This paper proposes a Uni-P2P communication 
model to connect grid sites and also proposes a 
P2P resource monitoring system to collect the 
resource information. A preliminary load balanc-
ing prototype (Huang et al., 2010) for P2P Grid 
systems is also implemented. It employs limited 
system information to achieve the load balanc-
ing and improve the resource utilization. In this 
chapter, we integrate the proposed load balancing 
prototype into the Uni-P2P communication model 
to make P2P Grid systems more efficient.

SYSTEM ARCHITECTURE

P2P Grid System

The P2P Grid computing system is a distributed 
computing systems based on the grid computing 
system, which employs the P2P approach to ex-
change information. In the P2P Grid system, each 

site consists of one super node and several general 
nodes. Super nodes exchange the site information 
with each other by adopting the P2P approach 
and manage resources and jobs in general nodes. 
General nodes are responsible both for job execu-
tion and for supplying the resource information 
of the general node to the super node. The P2P 
Grid system architecture is shown in Figure 1.

Uni-P2P Communication Model

The Uni-P2P communication model is developed 
by JXTA. The JXTA project (Gong et al., 2002) 
was proposed to enable P2P routing services which 
locate and communicate with peers.

In our system architecture, we build the Uni-
P2P communication model on the Globus Toolkit 
as shown in Figure 2.

Uni-P2P communication model includes five 
modules, as shown in Figure 3: the configuration 
module, the information service module, the file 
transfer module, the load balance module, and 
the execution management module.

The functions of the configuration module 
include the basic parameters setup, P2P pipe 
startup, and the initialization of peers. This mod-
ule is fundamental in the Uni-P2P communication 
model. The file transfer module supports the 
universal pipes among computing nodes to trans-
fer job files, data files, command messages, and 
the job description files. The information service 
module includes three sub-modules: the resource 
discovery, the resource collection and the resource 
aggregation. The information service module 
manages the global resource information among 

Figure 1. P2P Grid system Figure 2. P2P Grid system architecture
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sites and the local resource information among 
computing nodes. The load balance module takes 
charge of load measurement, best cost site deci-
sion, job queue check and job description gen-
eration. The execution management module is 
responsible for job execution. Jobs waiting in the 
Condor queue can be handled in this module.

Because security is not a major concern in 
P2P systems, we omit the security consideration 
and instead focus on research issues about job 
migration in this study.

In this chapter, the computing nodes in each site 
are classified into super peers and general peers. 
The general peer that starts with JXTA RDV and 
Relay Service becomes a super peer, and then 

the super peer starts up the resource load balance 
module. The attributes and resource information 
of computing nodes for general peers are sent to 
the super peer. In our Uni-P2P communication 
model, there are six function modules to handle 
P2P communication, as shown in Figure 4.

The P2P communication mechanism first 
configures the basic setting before starting the 
Uni-P2P services. Then, the resource discovery 
module searches and records the peer information 
in the host table. The resource loading module 
collects the resource usage (e.g., CPU and mem-
ory load) of general peers and records the infor-
mation in the resource table. The message receiv-
ing/sending module listens to the services at any 

Figure 3. System architecture of the Uni-P2P communication model

Figure 4. P2P communication mechanism
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time for receiving and sending messages. The 
pipeline module establishes the pipeline between 
peers. The input-pipe and output-pipe are used in 
message passing or file transferring. After estab-
lishing the pipeline between peers, the P2P com-
munication mechanism delivers messages, files, 
and tasks via the socket module.

In order to measure the resource load, the 
resource loading module is also built in the super 
peer. When the member peer sends a request to 
the super peer, the super peer will actively search 
for the appropriate resources, and the super peer 
selects the suitable resources according to the load 
balance policy. The pipeline and socket modules 
start the job migration. And then, the overloaded 
jobs would be migrated to other super peers which 
have enough (or suitable) computing resources.

P2P Resource Monitoring System

Basing on the above P2P communication mecha-
nism, we propose a dynamic distributed resource 
monitoring system named the P2P-Grid smart 
monitor, which captures the dynamic distributed 
resource status in the Uni-P2P communication 
model for the P2P Grid platform. The snapshot 

of the P2P-Grid smart monitor system is shown 
in Figure 5.

Load Balance Policy

In this section, we present the proposed Self-
Adaptive Load Balance (SALB) policy for P2P 
Grid systems. SALB is a distributed dynamic load 
balance policy by applying the sender-initiated 
strategy. The sender-initiated strategy means that 
when the node becomes overloaded, it starts to find 
out other nodes to migrate jobs. SALB consists 
two phases: the neighbor selection phase and the 
job migration phase. Therefore, when the grid 
site is overloaded, it picks several low-loading 
neighbors from neighbors in the neighbor selec-
tion phase, and then selects the neighbor with the 
shortest job completion time for migrating jobs 
in the job migration phase.

Neighbor Selection Phase

In the P2P Grid system, each grid site only con-
nects with some neighbor grid sites. According 
to the small world theory (Six Degrees of Separa-
tion), the minimal number of neighbors of one 

Figure 5. P2P-Grid smart monitor system
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site should be greater than six square root of the 
number of all the grid sites. We denote the num-
ber of all the grid sites by N, and the minimal 
number of neighbors should be greater than or 
equal to N6 . Therefore, each grid site maintains 
at least N6  neighbors to ensure the network 
connectivity. In addition, in order to improve the 
load balancing, SALB estimates the remaining 
resources capability of each neighbor site and 
selects the neighbors with more remaining capa-
bilities for migrating jobs. Suppose that a grid site 
has m kinds of resources, and each resource’s 
remaining capability of site s is denoted by RCi(s), 
where i = 1 … m. The weight of each resource is 
denoted by Wi(s). Assume that DRC(l, r) is the 
difference of remaining capability between the 
local site l and the remote site r. Then,

DRC l r W l
RC l

RCi ri
i

m
i( , ) ( )
( )

( )
=

=

∑
1

 (1)

When a gird site joins the P2P Grid system, it 
randomly selects 2 N6  sites as the candidates of 
neighbors and picks the first N6  sites with the 
smaller DRC as its neighbors. Thus, these neigh-
bors have more remaining resources capability 
for load balancing. To avoid the out-of-date in-
formation, we also set a time interval t for each 
grid site to re-select neighbor sites periodicity. In 
addition, SALB estimates the relative loading 
(RL) and the absolute loading (AL) of grid sites 
to determine whether the local site is sendable 
and which neighbor sites are receivable. We define 
the utilization of resource i in site s by Ui(s). 

Besides, the average utilization, the maximum 
utilization and the minimum utilization of resource 
i of site s are defined by U_AVGi(s), U_MAXi(s) 
and U_MINi(s) respectively. Therefore, the RL of 
site s is defined as
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while the AL of site s is defined as

AL s W s U s
i i

i

m

( ) ( ) ( )=
=

∑
1

 (3)

Moreover, SALB predefines the high threshold 
of RL by RL_H, the low threshold of RL by RL_L, 
the high threshold of AL by AL_H, and the low 
threshold of AL by AL_L. The status of different 
combinations of RL and AL are described as fol-
lows: When RL is greater than or equal to RL_H, 
the status is set to be “High”. When RL is less than 
RL_H and is greater than RL_L, the status is set 
to be “Moderate”. When RL is less than or equal 
to RL_L, the status is set to be “Low”. When AL 
is greater than or equal to AL_H, the status is set 
to be “High”. When AL is less than AL_H and is 
greater than AL_L, the status is set to be “Moder-
ate”. When AL is less than or equal to AL_L, the 
status is set to be “Low”. The statuses of different 
combinations of RL and AL are shown in table 1.

According to the statuses of RL and AL, we 
classify the status of local sites to be “Sendable” 

Table 1. States of RL and AL 

RL status AL status

RL ≧ RL_H High AL ≧ AL_H High

RL_H > RL > RL_L Moderate AL_H > AL > AL_L Moderate

RL ≦ RL_L Low AL ≦ AL_L Low
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or “Unsendable”, and the status of its neighbor 
sites to be “Receivable” or “Unreceivable”. In 
order to further improve the load balancing per-
formance, we refine the definition of the status 
set. As long as the status of one of RL or AL is 
“High”, the grid site becomes “Sendable”. More-
over, when the status of only one of RL or AL is 
“High”, the grid site becomes “Unreceivable”. 
When a grid site becomes “Sendable”, it means 
that the grid site is overloaded. Therefore, the 
sendable site starts to pick out its neighbors which 
are “Receivable”, and enables the job migration 
phase. The statuses of different combinations in 
gird sites are shown in table 2.

Job Migration Phase

In the job migration phase, the sendable site cal-
culates the possible job turnaround time for each 
receivable neighbor site if this neighbor site is the 
candidate site. And then, the job is migrated to the 
neighbor site which has the minimal job turnaround 
time. The job turnaround time is the sum of the 
forecasted waiting time, the execution time and the 
migration time which are respectively denoted by 
Tw, Te, and Tm. Tw is the forecasted waiting time of 
the migrated job J in the destination site s. SALB 
forecasts the total remaining execution time, Tr, 
of the running jobs and the total execution time, 
Ti, of the idle jobs in the destination site s. Then, 

assume that the number of CPU in the site s is NCPU. 
Then, the forecasted waiting time is defined as

T
w

T T

N
CPU

r i=
+  (4)

Te is the executing time of job J in the site s. Tm 
is the migration time of job J which is migrated 
from the local site to the destination site. The 
migration involves the job’s program code and 
some required data files. Thus,

T
m
=

The size of program code file and data file
The bandwidthh between the local site and destination site  

(5)

Denoting the job turnaround time by Tjt, then

Tjt = Tw + Te + Tm.  (6)

Figure 6 shows the algorithm of SALB. Each 
grid site changes their neighbors periodically to 
improve the global load balancing. In addition, due 
to that SALB applies the sender-initiated strategy, 
only when the grid site becomes “Sendable”, the 
load balancing policy is enabled. The sendable site 
picks out the neighbors which are “Receivable” 
according to the statuses of RL and AL. Then, the 
neighbor’s job turnaround time (Tjt) is calculated 
and the neighbor which has the minimal job turn-

Table 2. The status of grid sites 

RL status AL status Local site’s status Neighbor site’s status

High High Sendable Unreceivable

High Moderate Sendable Unreceivable

High Low Sendable Unreceivable

Moderate High Sendable Unreceivable

Moderate Moderate UnSendable Receivable

Moderate Low UnSendable Receivable

Low High Sendable Unreceivable

Low Moderate UnSendable Receivable

Low Low UnSendable Receivable
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around time is chosen to be the destination site r. 
Finally, Tjt for each site is compared. If Tjt of site 
r is less than that of the site l, site l will migrate 
job J to site r, otherwise site l retains job J until 
the next time interval.

EXPERIMENTAL RESULTS

This section introduces the experimental environ-
ment and results of SALB. In our discussion of 
the experimental results, we particularly focus on 
the efficiency of load balancing.

Experimental Environment

In this experiment, we adopts JXTA with version 
2.5.1, Java with version 1.6.0 and Condor with 
version 6.7.20 to implement SALB in Taiwan 
UniGrid for evaluating load balancing. In addition, 
we construct five grid sites, and each site consists 
of one super node and some general nodes. Super 
nodes are responsible for the communication with 
other neighbor sites, assigning jobs to their general 
nodes and executing SALB strategy. General nodes 
are responsible for executing the jobs assigned 
by the super nodes. Moreover, SALB can be 
extended to larger scale systems. Table 3 shows 
the specification of the experimental platform.

Figure 6. SALB algorithm

Table 3. System specification 

Site Hosts Peer Types CPU clock Memory

1 Host201 Super node Intel P-D 3.40GHz x 2 512M

1 Host204 General node Intel P-D 3.40GHz x 2 512M

2 Host205 Super node Intel P-4 3.40GHz x 2 512M

2 Host208 General node Intel P-4 3.40GHz x 2 512M

3 Host206 Super node Intel P-4 3.40GHz x 2 512M

3 Host207 General node Intel P-4 3.40GHz x 2 512M

4 Host221 Super node Intel P-4 3.40GHz 256M

4 Host223 General node Intel P-4 3.40GHz 256M

5 Host222 Super node Intel P-4 3.40GHz x 2 512M

5 Host224 General node Intel P-4 3.40GHz x 2 512M
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This experiment employs five benchmarks, 
including f77split, fd_predator_prey, fd1d_heat_
explicit, satisfiability and linpack_bench. Because 
each benchmark consumes different computing 
resources, we employ these five benchmarks as 
five different jobs. All the jobs are firstly submit-
ted to site 5. In addition, we compare the load 
balancing performance of SALB with those of 
FIFO (Fist In First Out) strategy and JRT strategy 
when the numbers of jobs are 50, 100, 150 and 
200 respectively. We employ CPU, memory and 
bandwidth to represent the computing resources, 
and their weights are denoted as WCPU, WMemory 
and WBandwidth respectively. Table 4 shows the 
definitions of related arguments.

Evaluation of SALB

Figure 7 shows the average execution time of 
each strategy with different numbers of jobs. We 
can observe that SALB spends a little more time 
than JRT. This is because SALB spends more 
time in picking out neighbors and calculating the 
job turnaround time. Therefore, the time SALB 
spends for load balancing is longer than those 
other strategies spend when the number of jobs 
is small. However, SALB performs better with 
the increasing number of jobs.

Figure 8 shows the average CPU utilization 
of each strategy with different numbers of jobs. 
It shows that SALB has the maximum average 
CPU utilization. This is because SALB picks the 

neighbors with the most remaining resources for 
migrating jobs. Therefore, the average utilization 
of computing resources could be improved.

Figure 9, 10, 11 and 12 show the average CPU 
utilization of each strategy with different numbers 
of jobs. In these figures, we can observe that 
SALB is steadier than other strategies. This is 
because it is more possible for the grid sites with 
more remaining resources to be the candidates 
for migrating jobs. Therefore, the CPU utilization 
keeps steadily until finishing all the jobs.

CONCLUSIONS AND FUTURE 
RESEARCH DIRECTIONS

In this chapter, we propose a Uni-P2P communica-
tion model which supports the resource discovery, 

Table 4. Definitions of relate arguments 

RL_H 20%

RL_L -20%

AL_H 60%

AL_L 40%

WCPU 60%

WMemory 30%

WBandwith 10%

t 60 second

Figure 7. Average execution time

Figure 8. Average CPU utilization



295

Distributed Dynamic Load Balancing in P2P Grid Systems

Figure 9. Average CPU utilizations of executing 50 jobs

Figure 10. Average CPU utilizations of executing 100 jobs

Figure 11. Average CPU utilizations of executing 150 jobs
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loading balance and job migration functions to 
establish a P2P Grid platform. Basing on this P2P 
Grid platform, we propose a load balancing policy 
named SALB. SALB picks out the neighbors with 
more remaining resources to be the candidate 
sites in the neighbor selection phase, and then 
migrates jobs to the candidate neighbor with the 
minimal job turnaround time in the job migration 
phase. In addition, experimental results show that 
SALB indeed improves the resource utilization 
and achieves effective load balancing.

In the future, we plan to improve the neighbor 
selection mechanism and deploy the policies to 
UniGrid to verify its performance. On the other 
hand, we will adopt the grid simulator, such as 
GridSim, as the experiment environment for our 
load balancing strategy to enlarge the experi-
mental scale.
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INTRODUCTION

In recent years, the use of context information has 
attracted a lot of attention from researchers and 
industry participates in ubiquitous and pervasive 
computing. Users and applications are often inter-
ested in searching and utilizing widespread context 
information. Context information is characterized 
as an application’s environments or situations 

(Dey et al., 2000). With the vast amount of context 
information spread over multiple context spaces 
and the increasing needs of cross-domain context-
aware applications, how to provide an efficient 
context search mechanism is challenging in the 
context-aware research community.

One approach is to use a centralized search 
engine to store context data and resolve search 
requests. Although this approach can provide fast 
responses to a context query, it has limitations 
such as scalability, a single processing bottle-
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An Ontology-Based P2P 
Network for Semantic Search

ABSTRACT

This article presents an ontology-based peer-to-peer network that facilitates efficient search for data in 
wide-area networks. Data with the same semantics are grouped together into one-dimensional semantic 
ring space in the upper-tier network. This is achieved by applying an ontology-based semantic clustering 
technique and dedicating part of node identifiers to correspond to their data semantics. In the lower-tier 
network, peers in each semantic cluster are organized as Chord identifier space. Thus, all the nodes in 
the same semantic cluster know which node is responsible for storing context data triples they are look-
ing for, and context queries can be efficiently routed to those nodes. Through the simulation studies, the 
authors demonstrate the effectiveness of our proposed scheme.
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neck and a single point of failure. Peer-to-peer 
(P2P) approaches, on the other hand, have been 
proposed to overcome these obstacles and are 
gaining popularity in recent years. P2P systems 
such as Gnutella (Gnutella) and Freenet (Freenet) 
allow nodes to interconnect freely and have low 
maintenance overhead, making it easy to handle 
the dynamic changes of peers and their data. 
The past years have seen an increased focus on 
decentralized P2P systems (Han, et al., 2006, 
Li, et al., 2006, Liu, et al., 2004, Morselli, et al., 
2005). However, a query has to be flooded to all 
the nodes in a network including the nodes that do 
not have relevant data. The fundamental problem 
that makes search in these systems difficult is that 
data are randomly distributed in the network with 
respect to their semantics. Given a search request, 
the system either has to search a large number of 
nodes or run a risk of missing relevant data. Other 
P2P systems such as Chord (Stoica, et al., 2001), 
CAN (Ratnasamy, et al., 2001), Pastry (Rowstron, 
et al., 2001) and Tapestry (Zhao, et al., 2004) typi-
cally implement distributed hash tables (DHTs) 
and use hashed keys to direct a search request to 
the specific nodes by leveraging a structured net-
work. In these systems, a data object is associated 
with a key which can be produced by hashing the 
object name. A node is assigned with an identifier 
which shares the same space as the keys. Each 
node is responsible for storing a range of keys and 
corresponding objects. When a search request is 
issued from a node, the search message is routed 
through the network to the node responsible for 
the key. They can guarantee to complete search 
in a logarithmic number of steps. Over years, 
many applications have been developed, such as 
file sharing (LimeWire) and content distribution 
(Castro, et al., 2003).

In this article, we propose a two-tier semantic 
P2P network to search for context information in 
wide-area networks. The basic idea is to construct a 
two-level semantic P2P network based on metadata 
(i.e., context ontologies), which is essentially a 
semantic approach, to facilitate efficient search. 

In this system, context data are represented by 
a collection of RDF (RDF) triples. Peers with 
the same semantics are grouped together into a 
semantic cluster in the upper-tier network. All 
the semantic clusters are constructed as a one-
dimensional semantic ring space. This is achieved 
by dedicating part of hashed node identifiers to 
correspond to their data semantics. Data semantic 
is extracted according to a set of schemas. Peers 
in each semantic cluster can be organized as a 
structured P2P network such as Chord identifier 
space in the lower-tier network. Thus, all the 
nodes in the same semantic cluster know which 
node is responsible for storing context data triples 
they are looking for, and context queries can be 
efficiently routed to those nodes.

The rest of the article is organized as fol-
lows. Section 2 presents the detail of the two-tier 
semantic P2P network. Section 3 evaluates the 
performance of our system using simulation and 
presents the results. Section 4 reviews related 
works, and finally Section 5 concludes our work.

THE TWO-TIER SEMANTIC 
P2P NETWORK

In this section, we first present an overview of 
the two-tier semantic P2P network, followed 
by a description of technical details. For ease 
of discussion, we use the terms node and peer 
interchangeably for the rest of the article.

OVERVIEW

In this network, a large number of nodes storing 
context data are grouped and self-organized into 
a two-tier semantic P2P network, in accordance 
with their semantics. A node can act as producer, 
consumer or both. Producers provide various 
context data for sharing whereas consumers obtain 
context data by submitting their context queries 
and receiving results. Each node maintains a lo-
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cal data repository which supports RDF-based 
query using RDQL (RDQL). Upon creation, each 
producer will first go through the ontology-based 
semantic mapping process to extract the seman-
tics of its local data. It will then join a semantic 
cluster by applying the SHA1 hash function to 
the semantics of its main data. These semantic 
clusters logically form the upper-tier network in 
which each node builds its routing index based 
on the small world network model (Kleinberg, 
2000). In the lower-tier network, nodes in each 
semantic cluster are organized as Chord for storing 
context data and routing context queries in a loga-
rithmic number of hops. Upon receiving a context 
query, the node first pre-processes it to obtain the 
semantic cluster associated with the query, and 
then routes it to an appropriate semantic cluster. 
In the lower-tier, the node routes the query using 
its finger table. Nodes that receive the query do 
a local search, and return results.

ONTOLOGY-BASED 
SEMANTIC CLUSTERING

In this section, we describe how to use ontology-
based metadata to extract the semantics of both 
RDF data and queries, and map them into appro-
priate semantic clusters. In our system, context 
data are described as RDF triples based on a set 
of context ontologies. We adopt a two-level hi-
erarchy in the design of context ontologies. The 
upper ontology defines common concepts in a 
computing domain, e.g., context-aware comput-
ing, and it is shared by all peers. Each peer can 
define its own concepts in its lower ontologies. 
Different peers may store different sets of lower 
ontologies based on their application needs. The 
upper ontology can be extended with new concepts 
and properties upon the agreement among all the 
peers in the network.

To illustrate the semantic mapping process, we 
use an example of ontology as shown in Figure 
1. All the leaf nodes in the upper ontology are 

used as semantic clusters, and denoted as set E = 
{Service, Application, Device, ...}. The mapping 
computation is done locally at each peer. For the 
mapping of RDF data, a peer needs to define a 
set of lower ontologies and store them locally. 
Upon joining the network, a peer first obtains the 
upper ontology and merges it with its local lower 
ontologies. Then it creates instances (i.e., RDF 
data) and adds them into the merged ontology 
to form its local knowledge base. A peer’s local 
data may be mapped into one or more semantic 
clusters by extracting the subject, predicate and 
object of an RDF data triple. Let SCnsub, SCnpred 
and SCnobj where n = 1, 2, ... denote the semantic 
clusters extracted from the subject, predicate and 
object of a data triple respectively. Unknown 
subjects/objects (which are not defined in the 
merged ontology) or variables are mapped to E. 
If the predicate of a data triple is of type Object-
Property, we obtain the semantic clusters using 
(SC1pred ⋃ SC2pred ⋃ ... SCnpred) ⋂ (SC1obj ⋃ SC2obj 
⋃ ... SCnobj). If the predicate of a data triple is of 
type DatatypeProperty, we obtain the semantic 
clusters using (SC1sub ⋃ SC2sub ⋃ ... SCnsub) ⋂ 
(SC1pred ⋃ SC2pred ⋃ ... SCnpred). Examples 1 and 
2 in Figure 2a show the RDF data triples about 
the location and light level in a bedroom provided 
by a producer peer. In Example 2, we first obtain 
the semantic clusters from both the subject and 
predicate, and then intersect their results to get 
the final semantic cluster – IndoorSpace.

A context query follows the same procedure 
to obtain its semantic cluster(s), but it needs all 
the sets of lower ontologies. In real applications, 
users may create duplicate properties in their 
lower ontologies which conflict with the ones in 
the upper ontology. For example, the upper ontol-
ogy defines the rdfs:range of predicate locatedIn 
as Location whereas the lower ontology defines 
its rdfs:range as IndoorSpace. To resolve this 
issue, we create two merged ontologies, one for 
clustering peers and the other for clustering que-
ries. If such a conflict occurs, we select the af-
fected properties defined in the lower ontology 
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to generate the merged ontology for clustering 
peer and select the affected properties defined in 
the upper ontology to generate the merged ontol-
ogy for clustering queries. With this scheme, a 
peer can extract the semantics of its data triples 
more precisely without losing generality for con-
text queries. For example, predicate locatedIn 
may have the rdfs:range of IndoorSpace in the 
merged ontology for clustering peers (see Figure 
2a) and have the rdfs:range of Location in the 
merged ontology for clustering queries (see Fig-
ure 2b). Data triple <socam:John socam:locatedIn 
socam:Bedroom> will be mapped to IndoorSpace; 
and query <socam:John socam:locatedIn ?x> 
will be mapped to both IndoorSpace and Out-
doorSpace rather than only IndoorSpace. This is 
most likely the case of real life applications.

THE UPPER-TIER NETWORK

In this section, we describe the process of con-
structing the two-tier semantic P2P network. After 
obtaining the semantics from its local context 
data, a node needs to participate in the network. 
It will first join an appropriate semantic cluster 
in the upper-tier network, and then store its data 

triples and participate in the lower-tier network. 
As a node may obtain multiple semantics from 
its local data, we choose the semantic cluster 
corresponding to the largest set of data to place 
the node. We call this semantic cluster the major 
semantic cluster of this node. The remaining se-
mantic clusters which a node’s data corresponds 
to are called minor semantic clusters of this node.

A node is assigned with an ID upon joining the 
network. We use SHA1 hash function to generate 
nodes’ identifier space. To incorporate semantic 
information associated with a node, we dedicate 
part of hashed node identifiers to correspond to 
the semantic cluster. More specifically, in a k-bits 
identifier space, we allocate m-bits for semantic 
cluster information and n-bits for its IP address, 
where k = m + n. An example of a node’s ID gen-
erated by hashing its semantic cluster Person and 
its IP address “137.132.81.235” is given below.

node id = [hashm(“Person”)]
[hashn(“137.132.81.235”)]

With this encoding scheme, we are able to 
construct the two-tier network and identify a node 
in the network, i.e., the first m-bits of a node’s ID 
(called semantic cluster ID or sid in short) cor-

Figure 1. An example of ontology for illustration
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responds to the semantic cluster in the upper-tier 
and the last n-bits represents the node’s ID in the 
lower-tier.

We follow the small world network model to 
construct the upper-tier network. The small net-
work model is characterized as small average path 

length between two nodes in the network and large 
cluster coefficient defined as the probability that 
two neighbors of a node are neighbors themselves. 
Studies show that searches can be efficiently routed 
in small world networks when: Each node in the 
network knows its local neighbors (called short 

Figure 2. An example of semantic cluster mapping
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range contacts); and each node knows a small 
number of randomly chosen distant nodes (called 
long range contacts), with probability proportional 
to 1/d where d is the distance (Kleinberg, 2000). 
The constant number of contacts and small aver-
age path length serve as the motivation for us to 
build the upper-tier network using the small world 
network model.

To construct the upper-tier network, each node 
maintains a set of short range contacts to a peer in 
its neighboring semantic clusters and a number of 
long range contacts. As shown in Figure 3, Peer 
1 maintains Peer 2 as its left short range contact 
and Peer 3 as its right short range contact; and 
that results all the semantic clusters are linked 
linearly in a ring fashion. The long range con-
tacts are obtained by randomly choosing a node 
in the upper-tier based on a distribution function 
with its probability proportional to 1/d, where d 
is the semantic distance (e.g., can be represented 
as Euclidean distance). The long range contacts 
aim at providing shortcuts to reach other semantic 
clusters quickly. Via short range and long range 
contacts, search in the upper-tier network can be 
guided greedily by comparing sids of the desti-
nation and the traversed nodes. In addition, if a 
peer has context data corresponding to its minor 

semantic clusters, it needs to register the indices 
of these data to a random node in each of its minor 
semantic clusters, e.g., Peer 1 registers its data 
indices to a random node – Peer 5 in SC2 since 
it has data corresponding to semantic cluster – 
OutdoorSpace. This ensures that a context query 
is able to reach all the relevant nodes that store the 
keys responsible for the query. The registration 
process of data indices is similar to the storing 
process of data triples in the lower-tier network, 
and it will be described in the next section.

THE LOWER-TIER NETWORK

In the lower-tier network, peers in each semantic 
cluster are organized as Chord for storing data 
triples and routing context queries. This approach 
divides the one-dimensional Chord identifier space 
into multiple Chord identifier spaces. The number 
of neighbors maintained per node is logarithmic 
to the number of nodes in its semantic cluster. 
Hence, the maintenance cost can be reduced as 
compared to the original Chord.

A peer is organized into Chord based on the 
randomly chosen node identifier by applying the 
SHA1 hash function to its IP address. To facili-

Figure 3. The construction of the upper-tier network (note: the sign “+” represents appending)
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tate efficient context query, we build distributed 
indices for each data triple. Each data triple is in 
the form of subject, predicate, and object. Since 
the predicate of the triple is always given in a 
context query, we store each data triple two times 
in Chord. We apply the hash function to the <sub 
pred> and <pred obj> pairs to generate the keys 
for storing each data triple. Each data triple will 
be stored at the successor nodes of the hashed 
key values of <sub pred> and <pred obj> pairs. 
We define the Store procedure to perform the 
above storing process for each data triple. Figure 
4 illustrates the process that node N2 stores the 
following data triples in a 3-bit Chord identifier 
space of 6 nodes.

<socam:John socam:homeAddress “XYZ”>
<socam:John socam:age “30”>
<socam:John socam:favoriteSport 

socam:baseball>

To register the indices of data corresponding 
to the minor semantic cluster(s), a node first sends 
a Register message to a random node in each of 
its minor semantic clusters, and then it follows 
the same procedure as above to store the indices.

QUERY ROUTING

The query routing process involves two steps: 
inter-cluster routing and intra-cluster routing. A 
context query will be first forwarded to the ap-
propriate semantic cluster and routed to destina-
tion peers in the lower-tier network. When a node 
receives a context query, the destination semantic 
cluster can be extracted from the query using the 
ontology-based semantic mapping technique (de-
scribed in Section 2.2). First, we obtain the search 
key by hashing the destination semantic cluster. 
We then compare the search key with the most 
significant m-bits of its neighbors’ identifiers, and 
forward the query to the closest neighboring node. 

Figure 4. An example of 3-bit Chord identifier space of 6 nodes (could hold up to 8 nodes) for the il-
lustrating of storing data triples and query routing
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This forwarding process is recursively carried out 
until the destination semantic cluster is reached.

When the query reaches a node in the des-
tination semantic cluster, the node will use its 
finger table to route the query in the lower-tier 
network. An example of the finger table of node 
N5 is shown in Figure 4. If a context query in the 
form of SELECT ?x WHERE (<socam:John> 
<socam:homeAddress> ?x) reaches node N5, 
node N5 will look up the hashed <sub pred> pair 
using its fingers. Finally, node N6 and the result 
<socam:John socam:homeAddress “XYZ”> will 
be returned.

For a given network with N nodes and M se-
mantic clusters, a query can be first routed to any 

semantic cluster in O( 1
s

log2M) hops where s is 

the total number of long range contacts, and then 
routed to the destination in log(N/M) hops.

EVALUATION

We move on to evaluate our system using simula-
tion and compare its performance to the original 
Chord. We first describe our simulation model 
and the performance metrics. Then we report the 
results from a range of simulation experiments. 
We also report the measurement results from the 
prototype system we developed.

Simulation Model and Metrics

We use the AS model to generate network topolo-
gies as previous studies (Saroiu, et al., 2002) have 
shown that P2P topologies follow both small world 
and power law properties. The simulation starts 
with having a pre-existing node in the network 
and then performing a series of join operations 
invoked by new coming nodes. A node joins its 
major semantic cluster based on its local data, and 
then stores its data triples and registers its data 
indices. After the network reaches a certain size, a 
mixture of node joining and leaving operations is 

invoked to simulate the dynamic characteristic of 
the network. Each node is assigned with a query 
generation rate, which is the number of queries 
that it generates per unit time. In our experiments, 
each node generates queries at a constant rate. If 
a node receives queries at a rate that exceeds its 
capacity to process them, the excess queries are 
queued in its buffer until the node is ready to read 
the queries from the buffer. Queries are selected 
randomly among various semantic clusters. We 
set the same number of nodes for each semantic 
cluster in our experiments; however, in reality 
they can be different.

We use the following metrics to measure 
the performance of our system: the search path 
length measured as the average number of hops 
traversed by a query to the destination; the cost 
of node joining/leaving measured as the average 
number of messages incurred when a node joins 
or leaves the network.

Simulation Results

First, we evaluate the efficiency of query routing 
in our system and compare it to Chord. We built 
the two-tier network by defining a number of 
semantic clusters in the upper-tier. In this experi-
ment, we fix the number of semantic clusters to 16 
and vary network size from 25 to 213. Hence, each 
semantic cluster in the lower-tier has a number 
of nodes ranged from 2 to 29. Figure 5 plots the 
average search path length of our system with 1 
to 5 long range contacts on a logarithmic scale 
in comparison with Chord. The result shows that 
the two-tier network with 2 or more long range 
contacts has shorter search path as compared to 
Chord for a network size of 213 nodes or less. 
It also shows that the search path length of the 
two-tier network is logarithmic to the number of 
nodes with a fixed number of semantic clusters.

In this experiment, we evaluate the impact of 
semantic clustering in our system. We fix the 
semantic cluster size to 8 (i.e., 8 nodes in each 
semantic cluster) and vary the number of seman-
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tic clusters in the upper-tier from 24 to 211. Since 
the number of nodes in each semantic cluster is 
fixed in this experiment, the average search path 
length in the lower-tier is a constant. Figure 6 
plots search path length vs. number of semantic 
clusters in our system in the various settings of 
numbers of long range contacts. The result shows 
that increasing the number of long range contacts 
reduces search path length significantly. Figure 

6 also reveals that search path length in the upper-
tier matches the small world phenomenon.

We compare the cost of node joining and leav-
ing between our system and Chord in this ex-
periment. We vary network size from 25 to 214. In 
reality, the number of semantic clusters may in-
crease when the network size increases. To simu-
late this behavior, we increase the number of 
semantic clusters with proportional to cccccccccc 
by making the number of semantic clusters equal 

Figure 5. Average search path length vs. number of nodes for the various numbers of long range contacts

Figure 6. Average search path length vs. number of semantic clusters in the various settings of numbers 
of long range contacts
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to the number of nodes in each semantic cluster. 
Figure 7 plots the average number of messages 
incurred when a node joins or leaves the network. 
The results show that our system reduces the cost 
of node joining/leaving significantly as compared 
to Chord whose update cost of node joining/leav-
ing is O(log2N), where N is the total number of 
nodes in the network. This is also the effect of 
clustering, i.e., the number of nodes in a semantic 
cluster is much smaller than the number of nodes 
in the whole network. Hence, each node needs 
maintain a smaller size of finger table in our 
system as compared to Chord.

PROTOTYPE MEASUREMENT

Aim to explore practical issues in our proposed 
system, we develop a prototype system. We are 
interested in finding the bootstrapping behavior 
and dynamic characteristic of the network.

In the prototype, peers run on Pentium 800MHz 
desktop PCs with 256MB memory. The network is 
constructed when peers randomly join the network. 
We test the bootstrap process by connecting all the 
peers to the network in different joining sequences; 
hence, the structure of the network obtained may 

differ from one to another. When a peer starts, it 
first goes through the semantic clustering mapping 
process to identify which semantic cluster to join. 
The mapping process is done by iterating each of 
the RDF data triples and identifying its correspond-
ing semantic cluster. Then the peer chooses the 
major semantic cluster to join. On average, the 
program initialization process takes about 4.26 
seconds, and the mapping process for each RDF 
data triple takes about 0.251 ms. The initialization 
process involves reading and merging the ontol-
ogy files stored locally and generating internal 
data structures for mapping. It is done only once 
when a peer starts and is only repeated if there 
is a change in these ontologies. Upon joining the 
network, each node creates and maintains a set 
of peers in its routing table. The joining process 
involves initiating the Join message, connecting 
to those nodes in the JoinReply message received 
and registering its reference if needed. The results 
for different steps in the bootstrap process are 
summarized in Table 1.

We evaluate the dynamic characteristic of the 
network in our prototype by forcing peers to join 
and leave different semantic clusters randomly. 
Cluster splitting/merging may occur when the 
cluster size is greater/lower than the default size. 

Figure 7. Cost of node joining/leaving
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For testing the dynamic characteristic of the net-
work, we introduce a parameter: Time-to-Stabil-
ity (TS). We define the steady state of a peer as 
the state in which a peer maintains live connec-
tions to the peers in its routing table. The steady 
state of a peer may collapse if one of the follow-
ing events occurs:

• Its short range contacts or long range contacts 
leave the network or some of these peers 
change their major semantic clusters (due 
to their local data change).

• Its reference peer(s) leave the network or their 
major semantic clusters change.

Queries routing may be affected when peers 
are not in the steady state. The TS parameter is 
measured from the time when the steady state of 
a peer collapses until it reaches the steady state 
again. We measure the TS of the affected peers 
for different test cases and the results are sum-
marized in Table 2 (note that no backup links are 
used in these cases).

In a highly dynamic network, peers leave and 
join frequently; this may result in high relapse 
rate. A high relapse rate may affect query routing 
in the network. To prevent this, we use a backup 
link for each type of connections. Once the steady 
state collapses, a peer can switch to the backup 

link immediately for the affected connection. With 
this backup scheme, we can minimize the disrup-
tion to query routing in the highly dynamic network 
where peers frequently leave and join.

RELATED WORK

Centralized RDF repositories and lookup systems, 
such as RDFStore ([RDFStore) and Jena (Jena 2), 
have been implemented to support the storing and 
querying of RDF documents. These systems are 
simpler to design and reasonably fast for low to 
moderate number of triples. However, they have 
the common limitations of centralized approaches, 
such as single processing bottlenecks and single 
points of failure.

Schema-based P2P networks, such as Edutella 
(Nejdl, et al., 2003), are proposed to combine 
P2P computing and the Semantic Web. These 
systems build upon peers that use explicit schemas 
to describe their contents. They use super-peer 
based topologies, in which peers are organized 
in hypercubes to route queries. However, cur-
rent schema-based P2P networks still have some 
shortcomings: queries have to be flooded to every 
node in the network, making the system difficult to 
scale. Crespo, et al. (2003) proposed the concept 
of Semantic Overlay Networks (SONs) in which 
peers are grouped by semantic relationships of 
documents they store. Each peer stores additional 
information about content classification and route 
queries to the appropriate SONs, increasing the 
chances that matching objects will be found 
quickly and reducing the search load. However, 
queries still need to be flooded in each overlay 

Table 1. The results for the bootstrapping process 

Processes Average Time Taken

Program Initialization 4.26 s

Semantic Clustering Mapping 0.251 ms/RDF triple

Joining Process 2.56 s

Table 2. Results on TS 

Test Cases (without backup links) Average TS

Case 1: The short range contacts or long range contacts leaves the network or changes its 
major cluster or cluster splitting/merging occurs 271 ms per connection

Case 2: Reference hosting nodes leave/change 87 ms per reference
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network resulting in redundant query messages in 
the network. Cai, et al. (2004) proposed a scalable 
and distributed RDF repository called RDFPeers 
based on a structured P2P system. RDFPeers or-
ganize into a multi-attribute addressable network 
(MAAN) (Cai, et al., 2003) which extends Chord 
to efficiently answer multi-attribute and range 
queries. When an RDF triple is inserted into the 
network, it will be stored three times by applying 
a globally-known hash function to its subject, 
predicate, and object. We take a similar approach 
to deploy Chord as the substrate for the lower-tier 
network, however, we store the <sub pred> and 
<pred obj> pairs for each data triple as the predi-
cate is always known in a context query. Thus, the 
cost of inserting RDF triples into the network can 
be reduced. In addition, the identifier space of the 
lower-tier in our network is much smaller than the 
one in RDFPeers. Hence, the maintenance cost is 
lower as compared to RDFPeers since each peer 
maintains fewer neighbors. Tang, et al. (2003) 
applied classical Information Retrieval techniques 
to P2P systems and built a decentralized P2P 
information retrieval system called pSearch. The 
system makes use of a variant of CAN to build 
the semantic overlay and uses Latent Semantic 
Indexing (LSI) (Deerwester, et al., 1990) to map 
documents into term vectors in the space. Li, et 
al. (2004) built a semantic small world network in 
which peers are clustered based on term vectors 
computed using LSI. They proposed an adaptive 
space linearization technique for constructing link 
structures. While we take the semantic approach 
which is conceptually similar to (Tang, et al., 
2003) and (Li, et al., 2004), we propose the use of 
schema-based metadata to extract data semantics. 
The formal design of ontologies minimizes the 
problems of synonyms and polysemy incurred by 
VSM, and incurs a lower overhead than LSI does. 
Kleinberg (Kleinberg, 2000) proposed the small 
world network model where every node maintains 
four links to each of its closest neighbors and one 
long distance link to a node chosen from a prob-
ability function. He has shown that a query can 

be routed to any node in O(log2n) hops, where n 
is the total number of nodes in the network. We 
build the upper-tier network based on the small 
world network model. The small world model has 
many advantages, such as it is easy to construct 
and the number of state information that each 
node maintains is fixed and not proportional to 
the number of semantic clusters. In our earlier 
work (Gu, et al., 2005), we have proposed a se-
mantic P2P network for context search by using a 
Gnutella-like network as the substrate. However, 
the flooding-based routing mechanism is not very 
efficient in terms of search path and scalability. 
This article proposes a more efficient and scal-
able semantic network based on a structured P2P 
network (i.e., Chord).

CONCLUSION

In this article, we present an ontology-based 
semantic P2P network for searching context 
information in wide-area networks. The prelimi-
nary results have shown that our system has good 
search efficiency and low cost of node joining 
and leaving, and our system can scale to a large 
number of peers. The use of our system is not 
limited to the context-aware computing domain; 
in fact, it applies to any P2P searching system 
where schemas are explicitly defined.
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INTRODUCTION

Wireless mesh networks are an attractive field for 
several research labs, and they were the subject of 
many papers in the few last years. These intensive 
works try to solve different open issues which 
concern mainly the capacity of the wireless mesh 
network protocols, and especially MAC protocols 
capacity (Akyildiz, Wang and Wang, 2005).

MAC protocols for wireless networks suffer 
from many problems such as scalability; data 
throughput degrades significantly when increas-
ing the number of nodes or hops in the network. 
Furthermore, many other MAC problems persist 
for example the interference effect and radio 
channel allocation strategies. These problems are 
caused by using advanced radio technologies such 
as directional antenna, omnidirectional antenna 
and multi-channel/multi-radio systems. Thus, 
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ABSTRACT

In this article, the authors propose a new hybrid MAC protocol named H-MAC for wireless mesh net-
works. This protocol combines CSMA and TDMA schemes according to the contention level. In addition, 
it exploits channel diversity and provides a medium access control method that ensures the QoS require-
ments. Using ns-2 simulator, we have implemented and compared H-MAC with other MAC protocol 
used in Wireless Network. The results showed that H-MAC performs better compared to Z-MAC, IEEE 
802.11 and LCM-MAC.
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all existing MAC protocols must be improved 
or reinvented.

Researchers have started revising the design 
of wireless networks MAC protocols, especially 
MAC protocols of ad hoc and sensors networks. 
The international standard groups are also work-
ing on the specification of new technologies for 
wireless mesh networks that includes IEEE 802.16, 
802.11s, 802.15.5, and ZigBee. Several researches 
issues still exist and need to be solved. In par-
ticular, the interesting research problem related 
to the scalability issue of existing IEEE 802.11 
networks. The most addressed solution intends 
to develop a hybrid MAC protocol that combines 
the strength of TDMA and CSMA while offsetting 
their (Akyildiz, Wang and Wang, 2005). In the 
wireless mesh network, it is important that the 
underlying MAC schemes could be able to provide 
high bandwidth by exploiting channel diversity 
and support QoS requirements. It must have the 
capacity of self-organizing, self-configuring, and 
self-healing.

In Wireless MAC protocols, using hybrid 
schemes outperform random-based and schedule-
based schemes. In case of random-based schemes, 
throughput drops significantly when increasing 
traffic intensity, number of nodes, or hops in the 
network. In addition, random-based schemes can-
not guarantee contention-free transmission. The 
one hop packet loss probability increase when the 
number of nodes trying to transmit simultaneously 
increase. This probability cumulates across mul-
tiple hops. Schedule-based schemes provide for 
contention-free transmission slots to each node. 
The schedule comprising of these transmission 
slots is based on the network traffic and topology. 
To derive and propagate the schedule, traffic and 
topology information needs to be collected, which 
involves network overhead. Thus, the frequent 
changes in the network conditions results in high 
overheads, and leading to poor performance of 
schedule-based schemes.

In this article, we study the problems which 
persist at wireless MAC layer in multi-hop wireless 

Network. In addition, we propose a new hybrid 
MAC scheme, called H-MAC (Hybrid MAC) 
for wireless mesh network that combines the 
strengths of TDMA and CSMA. H-MAC extends 
the hybrid multi-hops scheme defined in Z-MAC 
(Rhee, Warrier, Aia, and Min, 2005) to support 
channel diversity and QoS requirements for wire-
less mesh network. The main feature of H-MAC 
is its adaptability to the level of contention in the 
network. In fact, under low contention, H-MAC 
behaves like CSMA, and under high contention, 
it behaves like TDMA.

H-MAC uses two contention modes: Low 
Contention Level (LCL) and High Contention 
Level (HCL). It also implements two allocation 
algorithms. The first Receiver Based Channel 
Assignment Algorithm (RBCA) is used for chan-
nel allocation and the second Sender Based Slot 
Assignment Algorithm (SBSA) is used for slot 
allocation. We have evaluated the performances of 
our protocol by comparing it to other used MAC 
protocols. In this evaluation, we have used the 
ns-2 simulator and we have conducted several 
simulation scenarios. The obtained result showed 
that H-MAC performs better compared to Z-MAC, 
IEEE 802.11 and LCM-MAC.

This article is organized as follows. In the 
second section we describe the related works 
and discuss the different protocols proposed for 
wireless MAC. We present and detail H-MAC 
protocol in section 3. In section 4, we present our 
simulation and the obtained results. We conclude 
our work in section 5.

RELATED WORKS

We classify MAC solutions in three main classes. 
The first class is the hybrid protocols that combine 
CSMA and TDMA. The second class contains 
multi-channel MAC protocols, and the third class 
includes MAC protocols with QoS support. In the 
next sections, we will outline the strengths and 
weaknesses of these classes.
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HYBRID MAC PROTOCOLS

Based on the access strategy used, MAC protocols 
can be sorted into three categories: random-access 
or contention-based, schedule based and hybrid.

A random-access scheme like CSMA works 
well with low contention and provides better 
throughput. However, the data throughput de-
grades significantly when increasing the number 
of contending nodes. A scheduled scheme like 
TDMA does not provide good throughput with 
low contention. But, the network throughput 
progresses proportionally according to the number 
of contending nodes (Krishna Rana, Hua Liu, 
Nyandoro and Jha, 2006; Chlamtac, Farago, My-
ers, Syrotiuk and Zaruba, 2000; Henderson, Kotz 
and Abyzov, 2004).

Some approaches combining the strength of 
random and schedule based schemes have been 
developed. In the schema described in (Koubias 
and Haralabidis, 1996), the default transmission 
is random-based. However, when detecting a 
collision, a round of token passing (contention-
free) transmission mode is initiated. Thus, when-
ever collision probability increases, the scheme 
shifts to schedule-based contention-free transmis-
sion. PTDMA is a hybrid protocol presented by 
Emphremides and Mowafi (Ephremides and 
Mowafi, 1982). In this protocol the probability 
of collision is controlled by programming nodes 
to transmit with different probability. ADAPT 
(Myers, 2002) is another protocol that employs 

similar approach like PTDMA, but is much sim-
pler.

Z-MAC (Rhee, Warrier, Aia and Min, 2005) is 
also an hybrid scheme based on the same approach 
as ADAPT. It has been optimized for multi-hop 
scenario and adapted to perform in sensor net-
work. Z-MAC uses STDMA scheduling to reduce 
collision probability of CSMA based scheme 
(Gronkvist, 2004). Like ADAPT, by combining 
CSMA and TDMA, Z-MAC delivers a robust 
scheme which even in worst case, performs as 
well as CSMA scheme.

Bandwidth Aware Hybrid MAC (Krishna Rana, 
Hua Liu, Nyandoro and Jha, 2006) is another pro-
tocol similar to Z-MAC. It improves the hybrid 
schemes of ADAPT and Z-MAC by proposing 
an algorithm that allocates slots to the nodes in 
proportion to their bandwidth requirements.

MULTI-CHANNEL MAC PROTOCOLS

A large number of multi-channel MAC protocols 
and TDMA scheduling algorithms have been 
proposed in the literature (Kyasanur, Jungmin, 
Chereddi and Vaidya, 2006). Multi-channel MAC 
protocols have extended the DCF (Distributed 
Coordination Function) function of IEEE 802.11 
protocol (IEEE 802.11 Working Group, 1997) and 
use certain type of control messages for frequency 
negotiation (So and Vaidya, 2004; Fitzek, Ange-
lini, Mazzini and Zorzi, 2003; Li, Haas, Sheng 

Figure 1. Throughput comparison between CSMA and TDMA
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and Chen, 2003; Jain, Das and Nasipuri, 2000; 
Tzamaloukas and Garcia-Luna-Aceves, 2001). 
MMAC (So and Vaidya, 2004) assumes time 
synchronization in the network and time is divided 
into fixed-length beacon intervals. Each beacon 
interval consists of a fixed-length ATIM (Ad-hoc 
Traffic Indication Message) window, followed 
by a communication window. During the ATIM 
window, each node listens to the same default 
channel and negotiates which channel to use for 
data communication. After the ATIM window, 
nodes that have successfully negotiated channels 
with their destinations send out data packets us-
ing 802.11 DCF for congestion avoidance (IEEE 
802.11 Working Group, 1997).

Multi-channel MAC protocols in Wireless 
Sensor Networks (WSNs) are also studied (Zhou 
et al., 2006). Due to the limited size of the data 
packets used in WSNs, authors have proposed to 
use static frequency assignment to avoid the over-
head of control packets for frequency negotiation. 
There are also many TDMA scheduling algorithms 
proposed for ad hoc networks (Chlamtac and Kut-
ten, 1985; Chlamtac and Farago, 1994; Bao and 
Garcia-Luna-Aceves, 2001; Rajendran, Obraczka 
and Garcia-Luna-Aceves, 2003). These algorithms 
are mainly designed for sharing a single channel 
in the network and providing collision free access. 
For example, the TMMAC protocol presented in 
(Zhang, Zhou, Huang, Son and Stankovic, 2007) 
is one these algorithms that combines TDMA 
scheme and channel diversity to improve the 
network throughput. It is proved that TMMAC 
achieves 84% more aggregate throughput than 
MMAC (Zhang, Zhou, Huang, Son and Stankovic, 
2007). MMSN (Zhou et al., 2006) is another 
MAC protocol that exploits channel diversity 
in sensors networks. MMSN omits exchanging 
RTS/CTS, because in WSN, the packet is very 
small, 30~50Bytes.

MAC PROTOCOLS WITH QOS

In the design of MAC protocols with QoS support, 
two basic approaches can be employed. The first 
approach is to assign different priority levels to 
packets (IEEE Std 802.11e, 2004; Ying, Ananda 
and Jacob, 2003; Qiang, Jacob, Radhakrishna 
Pillai and Prabhakaran, 2002). The major issue 
with this approach is how to assign these priori-
ties. This is typically done by defining different 
intervals for both the random backoff period and 
AIFS (Arbitration Inter Frame Space) period, 
such as the EDCA (Enhanced Distributed Chan-
nel Access) function of IEEE 802.11e. In a single 
hop environment, EDCA offers better average 
delay and throughput than the usual DCF. The 
IEEE 802.11s working group plans to extend the 
802.11e scheme for the multi-hop wireless mesh 
network (Conner, Kruys, Kim and Zuniga, 2006).

The second approach to support QoS is 
to reserve resources for a particular real-time 
traffic flow. For example, each node between 
particular source and destination nodes allocates 
some dedicated time slots for this flow before 
the actual transmission starts. This improves the 
end-to-end throughput. However, this reservation 
mechanism is much more complex than a priority 
mechanism. Typically, it adds signaling overhead 
to coordinate the nodes (all nodes between source 
and destination must agree in distributed manner 
on the reserved resources).

H-MAC PROTOCOL

In this section, we present our H-MAC protocol. 
This protocol extends the hybrid multi-hops sche-
ma defined in Z-MAC (Rhee, Warrier, Aia, and 
Min, 2005), which combines TDMA and CSMA 
according to the contention level. Compared 
to Z-MAC, H-MAC uses multi-channel hybrid 
schema which guarantees the QoS requirements 
for a multi-hop wireless mesh network.
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The Network Model

In our protocol, we assume that each node is 
assigned a unique identifier. The network inter-
face is equipped with a single half duplex radio 
transceiver. We also assume that the network 
card is capable to send either unicast or broadcast 
packets. The network topology is represented by 
an undirected graph G = (V;E), where V is the 
set of nodes, and E is the set of links between 
nodes. The existence of a link (u; v) ∈ E implies 
that (v; u) ∈E, and that node u and v are within 
the transmission range of each other. In this case, 
u and v are called one-hop neighbors of each 
other. The set of one-hop neighbors of a node i 
is denoted by Ni

1. Two nodes are called two-hop 
neighbors of each other if they are not adjacent, 
but have at least one common one-hop neighbor. 
The neighbor information of node i refers to the 
union of the one-hop neighbors of i itself and 
the one-hop neighbors of i’s one-hop neighbors, 
which is equal to:

This set contains the entire one hop and two 
hops neighbors of a node i.

PROTOCOL DESCRIPTION

H-MAC uses the two contention modes LCL and 
HCL similar to that of Z-MAC. It also imple-
ments two allocation algorithms. The first one is 
a Receiver Based Channel Assignment Algorithm 
(RBCA). In this algorithm, each node is assigned 
a unique channel in which it will receive all its 
packets. The second is the Sender Based Slot 
Assignment algorithm (SBSA) where each node 
is assigned a set of slots of which it will become 
the owner. These algorithms are an extension of 
NCR (Neighbor-aware Contention Resolution) al-
gorithm defined in (Bao and Garcia-Luna-Aceves, 
2003), which does not require any control message 
exchange. H-MAC uses a medium access function 
similar to the IEEE 802.11e EDCA techniques 

that support the QoS requirements (IEEE Std 
802.11e, 2004).

H-MAC operates in two phases: initializa-
tion phase and communication phase. In the 
initialization phase, the following operations 
run in sequence: neighbor discovery, channel 
assignment, slot assignment, and finally global 
time synchronization. These operations run only 
once during the setup phase and does not run again 
until a significant change in the network topol-
ogy (such as HELLO joining, or QUIT message) 
occurs. In the communication phase, each node 
performs channel negotiation and runs the LCL 
or HCL mode according to the contention level.

THE INITIALIZATION PHASE

a. Neighbor Discovery

At the initialization, each node broadcasts its ID. 
After that, it periodically broadcasts a ping mes-
sage to its one-hop neighbors to build its one-hop 
neighbors list. A ping message contains the current 
list of its one-hop neighbors Ni

1. This message 
is sent at a random time in each second for 30 
seconds. Through this process, each node gathers 
the information received from the pings from its 
one-hop neighbors which essentially constitutes 
its two-hop neighbor information (See Figure 2).

b. Channel Allocation Algorithm 
RBCA

The Receiver Based Channel Assignment (RBCA) 
is an implicit Consensus algorithm. Each node is 
assigned a unique channel in which it will receive 
all its packets. This algorithm uses pseudo-random 
generator similar to that used by the NCR algorithm 
(Bao and Garcia-Luna-Aceves, 2003). It solves a 
special election problem where an entity decide 
its leadership among a known set of contenders in 
any given contention context. Each node calculates 
a hash using its ID as a seed, and if its hash is 
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the biggest among its two-hop neighbors it wins 
the channel. Otherwise, it chooses the channel in 
which it has obtained its max hash. Then, it broad-
casts this information to its two-hop neighbors. 
The RBSA algorithm has the following structure:

Let Hash(x) be a fast message digest generator. 
Cmax: number of channels, V2: two-hop neighbors, 
α a node, Cα: the channel number affected to α 
and ‘⊕’ is the concatenation of two operands.

c. Slot Allocation Algorithm SBSA

The Sender Based Slot Assignment (SBSA) is 
also an implicit consensus algorithm. Each node 
is assigned a set of transmission slots of which it 
will become the owner. Thus, the node will have 
the highest priority to send during these slots. 
SBSA works in the same way as RBCA where a 
node determines for each channel its slot using 
the distributed election algorithm. We denote the 
set of contenders of an entity i by Mi, and thus 
its contention context by ti= (ci,, si), where ci is 
the channel i and si is the slot i in channel i. To 
decide the leadership of an entity without incurring 
communication overhead among the contenders, 
we assign each node a priority that depends on 
the identifier of the node and the current conten-
tion context. Equation (1) provides a formula to 

derive the priority, denoted by Hi, for node i and 
contention context ti

Hi = Hash (i ⊕ ti) ⊕ i, where ti = (ci ⊕ si)  
(1)

Where the function Hash is a fast message 
digest generator like MD4 or MD5 that returns a 
random integer in a predefined range, and the sign 
‘⊕’ is the concatenation of two operands. Note 
that, although the Hash function can generate the 
same number on different inputs, each number is 
unique because it is appended with the identifier 
of the node. The set of contexts is showed by the 
following matrix || T ||C * S.

A node α wins the slot tij = (ci⊕ sj) if it has the 
highest hash value, i.e. the inequality presented 
below must be verified for a node α, and that the 
Hi are calculated using the equation (2):

argmax Hi = α 
i ∈ Mi ∪ { α }  (2)

argmax provides the argument of the maximum, 
that is to say, the value of the given argument for 
which the value of the given expression reaches 
its maximum value. The SBSA algorithm has the 
following structure:

Figure 2. Neighbor discovery process
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Let H be a pseudo-random hash function. Smax: 
number of slots, V2: two-hop neighbors, α: a node 
and Listα is a list of slots.

SBSA algorithm (α, Listα);

 { Listα = Ø; j=0;

   repeat 

   { i=1; found = false; 

     repeat

     { for (k ∈ V2 ∪ {α})  Hk = H(k ⊕ 

Si ⊕ Cj) ⊕ k;

        if (∀k ∈ V2, Hα > Hk)  

         then  

          found = true; Listα = Listα 

∪ Sij; break;

        else

            i++; 

      } while (i< Smax); 

      if (found == false) 

       then i = arg max Hα ;  Listα = 

Listα ∪ Sij;

       j++; 

    } while (j< Cmax);

  } 

Broadcast Listα to 2-hop neighbors.

THE COMMUNICATION PHASE

In H-MAC, a slot 0 of each local frame is re-
served to broadcast packet transmission (access 
by CSMA). The channel negotiation is done in a 
dedicated Control Channel (CC); this channel can 
be used for transmission after the control period. 

After the initialization phase, all nodes switch 
to the control channel CC at slot start, and they 
must be ready to run the transmission control. In 
H-MAC, a node can be in one of two modes: low 
contention level (LCL) or high contention level 
(HCL). A node is in HCL only when it receives 
an explicit contention notification (ECN) mes-
sage from a two-hop neighbor within the last 
frame tECN. Otherwise, the node is in LCL. A slot 
is divided into:

•  Control period: to negotiate the slot i on 
different channels using RTS/CTS with 
priority (QoS), and the first which succeed 
its CTSjn (j: channel j, n: destination node) 
wins slot Sij.

•  Transmission period: the winners and their 
destination nodes switch to the appropriate 
channel to exchange unicast packets (Figure 
3).

a. The LCL mode

In LCL, any node can compete to transmit in any 
slot. The control phase is divided into 3 periods 
in this mode:

•  High priority THP: it is reserved to owners or 
to high priority packets (real time traffic).

•  Medium priority TMP: it is reserved to one-
hop neighbors or to medium priority packets 
(audio, video).

Figure 3. H-MAC slot structure
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•  Low priority TLP: it is reserved to two-hop 
neighbors or to low priority packets (best-
effort, background).

The transmission rule: according to Figure 
4, as a node i acquires data to transmit, it checks 
whether:

•  It is the owner of the current slot on its 
destination’s channel or it has a high prior-
ity packet.

•  It is the one-hop neighbor of the owner of 
the slot on its destination’s channel or it has 
a medium priority packet.

•  It is the two-hop neighbor of the owner of 
the slot on its destination’s channel or it has 
a low priority packet.

b. The HCL Mode

In HCL, we have only the first and the second 
period. Consequently, a node can compete in the 
current slot if and only if:

•  It is the owner of the slot on its destination’s 
channel or it has a high priority packet.

•  It is the one-hop neighbor of the owner of 
the slot on its destination’s channel or it has 
a medium priority packet.

After the control phase, all nodes that have 
already succeed their negotiation switch to the 
channel of their destination nodes and start the 
data packet transmission for the rest of the slot.

c. The Priority Queues 
and QoS Support

H-MAC protocol uses the priority queue concept 
inspired from the IEEE 802.11e protocol to sup-
port the QoS requirements. Each node maintains 
3 priority queues:

•  High priority queue: contains real time pack-
ets (we can also integrate transient traffic i.e. 
not originated form the current node).

•  Medium priority queue: contains audio and 
video packets.

•  Low priority queue: contains best-effort and 
background packets.

d. Explicit Contention 
Notification (ECN)

ECN messages notify two-hop neighbors not to 
act as hidden terminals to the owner of each slot 
when contention is high. Each node makes a lo-
cal decision to send an ECN message based on 
its local estimate of the contention level (Figure 
5). The estimation is obtained by the noise level 
of the channel. ECN is similar to RTS/CTS in 
CSMA/CA. But the difference is that HCL uses 
topology information (i.e., slot information) to 
avoid two hop collision. The cost of ECN is also 
far less than RTS/CTS since it is triggered only 
when contention is high.

Figure 4. The structure of the control period
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e. Local Time Synchronization

The protocol adopts the same synchronization 
technique used in Z-MAC. The advantage of such 
technique is that synchronization is required only 
among neighboring senders and also when they 
are under high contention. These points offer an 
excellent opportunity to optimize the overhead of 
clock synchronization because synchronization is 
required only locally among neighboring senders. 
In addition, the frequency of synchronization can 
be adjusted according to the transmission rates 
of senders so that senders with higher data rates 
transmit more frequent synchronization messages. 
In this scheme, receivers synchronize passively 
their clocks to the senders’ clocks and do not have 
to send any synchronization messages.

PERFORMANCE EVALUATION

We have implemented H-MAC using the network 
simulator ns-2 (Fall and Vradhan, 1998) and 
compared its performance with the existing MAC 
protocols. In fact, we compared the performance 
of H-MAC with Z-MAC (Rhee, Warrier, Aia, and 
Min, 2005), MMAC (So and Vaidya, 2004), LCM-
MAC (Maheshwari, Gupta and Samir, 2006), and 

802.11 (IEEE 802.11 Working Group, 1997). 
The performance evaluation in our simulation 
is achieved through a set of tests which allows 
making comparison with other MAC protocols, 
and it takes the following aspects: The impact 
of the hybrid scheme and channel diversity on 
network throughput.

HYBRID SCHEME EVALUATION

In this simulation, we have chosen to make a com-
parison between H-MAC, Z-MAC, and 802.11 
MAC protocol. We have measured and compared 
the effective channel utilization of H-MAC and 
Z-MAC. For this purpose, we have repeated the 
same simulation and used the default settings of 
Z-MAC as described in (Rhee, Warrier, Aia, and 
Min, 2005). We varied the backoff window sizes 
to see the impact of window sizes on channel 
utilization. We used three scenarios in our simula-
tion: one-hop, two-hop and multi-hop scenarios.

One-hop scenario: in this scenario 21 nodes 
are placed equidistant from a receiver in a circle 
(Figure 6). Before each run, we ensured that all 
nodes are in a one-hop distance to each other so 
that there are no hidden terminals. This scenario 
is used to measure the achievable throughput of 

Figure 5. Explicit Contention Notification Scheme
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different MAC protocols for different levels of 
contention within a one-hop neighborhood. Since 
Z-MAC has the same test, we can compare its 
results to ours.

We fixed the frame size to 20 slots and varied 
the number of senders. HCL is disabled because 
the performance of HCL and LCL is the same 
when all nodes are in a one-hop distance to each 
other. Before running H-MAC, the channel al-

location algorithm RBCA and the slot allocation 
algorithm SBSA are executed by each node in the 
network. In addition, H-MAC runs TPSN (Ganeri-
wal, Kumar and Srivastava, 2003) to synchronize 
the clocks of the senders.

The Figure 7 shows simulation results and 
the throughput comparison for one-hop scenario 
involving H-MAC and Z-MAC. The H-MAC 
protocol shows good performance, but with a mar-

Figure 6. One hop network scenario

Figure 7. Throughput comparison in a one hop scenario
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gin similar to that of Z-MAC. This performance 
similarity is explained by the fact that H-MAC 
uses the same medium access scheme as Z-MAC, 
and because all nodes are within one-hop distance 
from the destination, so the senders can be easily 
synchronized with each other.

Two-hop scenario: this scenario is used to 
measure the performance of the different protocols 
when hidden terminals are present. We organized 
nodes into two clusters as illustrated in Figure 8. 
The two clusters are placed approximately 5 
meters apart. A receiver node (or routing node) 
is placed in the middle of the two clusters. We 
ensure that all senders find the receiver as a one-
hop neighbor and all nodes are reachable by two 
hop communications. We also reduced the trans-
mission power of senders to 1 dBm (1.3 mW) to 
control the number of hidden terminals.

In the tow-hop scenario, we measured the data 
throughput when hidden terminals are present. 
We varied the number of senders while fixing the 
number of neighbors. As in the one-hop bench-
mark, all senders have always data to send. Each 
additional sender is chosen from the alternating 
clusters.

For H-MAC tests, we set the frame size to 20 
slots. In this test, we run H-MAC with the local 
clock synchronization protocol in which each 

sender sends one synchronization packet in every 
100 packets transmitted. The data throughput 
reported by H-MAC includes the overhead of the 
clock synchronization and ECN.

The Figure 9 shows the two-hop tests results. 
With the ns-2 simulator, we verified that the two 
node clusters do not sense each other to maximize 
the number of hidden terminals. We noticed that 
despite using the RTS/CTS mechanism in H-MAC 
during the control period, H-MAC maintains the 
same good performance but with slightly deg-
radation in channel utilization to 73%. Z-MAC 
has suffered from performance degradation that 
undergo until 68%. This performance degradation 
is caused by the presence of the hidden terminals, 
and by the overhead of ECN messages.

Multi-hop scenario: in this scenario, we cre-
ated a network of 20 nodes, placed randomly in 
a 100*100m surface area. The maximum two-hop 
neighborhood size of all nodes is 19 and the 
maximum local frame size is set to 20 slots. We 
used fixed routing paths for all tests. The purpose 
behind this scenario is to measure the total network 
throughput in the multi-hop environment (See the 
Figure 10).

In the multi-hop scenario, each node has always 
data to send. All senders are transmitting at their 
full transmission power. The number of channels 

Figure 8. Tow-hop network scenario
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used by H-MAC is fixed to 3 channels, and the 
channel capacity is set to 1Mbps.

The Figure 11 shows the simulation results. 
We varied the number of contending node and we 
measured the aggregate data throughput. H-MAC 
obtains its highest performance in this simula-
tion. With a number of sending nodes equal to 

5, H-MAC achieves a data throughput of 2.282 
Mbps than 1.251 Mbps achieved by Z-MAC. 
The throughput increases progressively with the 
number of sending nodes, and it can reach 3.431 
Mbps with the number of sending nodes equal to 
21. However, Z-MAC does not have any improve-
ment in the data throughput, which stays stable 

Figure 10. multi-hop network scenario

Figure 9. The throughput comparison in a two-hop scenario
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when increasing the number of sending nodes; 
and it goes no further than 1.59Mbps. This result 
explains the advantage of the utilization of channel 
diversity by H-MAC compared to Z-MAC which 
uses one single channel.

CHANNEL DIVERSITY EVALUATION

In this simulation, we evaluated H-MAC and 
compared it against two known multi-channel 
protocols, LCM-MAC and MMAC. The simu-
lation scenario was performed with 100 nodes 
placed randomly in 500m × 500m area. All the 
radio parameters are being ns-2 defaults, and the 
nominal bit rate of each channel is set to 1 Mbps.

There are 50 CBR flows with randomly selected 
source-destination pairs. The shortest path routing 
is used. The data packet sizes are 1000 bytes. The 
data packet generation rate for each flow is varied 
to vary the load in the network and simulations 
are done for different number of channels. 6 and 
13 channel results are presented in Figure 12 and 
Figure 13.

We have simulated three protocols H-MAC, 
LCM-MAC, and MMAC. For MMAC, the 
specified values in (So and Vaidya, 2004) of 80ms 
for data window and 20ms for the ATIM window 
are used. Note that it is fair to compare the three 
protocols H-MAC, LCM-MAC and MMAC to-
gether as they use one interface. LCM MAC 
performs better than (or similar to) MMAC at all 
times.

We noticed that, despite using time synchro-
nization, MMAC’s performance is not improved 
at low loads. This is due to the large data window 
size. At low loads senders run out of packets 
to send to the receivers present in their current 
channel. As they cannot change channel until 
the end of data window, this results in wastage of 
bandwidth. LCM-MAC also does not give propor-
tional improvement with the increase in channels. 
Contrary to LCM-MAC and MMAC, H-MAC 
shows better performance in both simulations. 
By its dynamic adaptation to the contention level 
between CSMA and TDMA, H-MAC maintains its 
good performance, and thus the data throughput 
increases progressively with the increase in the 
number of used channels.

Figure 11. The throughput comparison in a multi-hop scenario
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To demonstrate the performance benefit of 
using multiple channels in wireless networks, we 
plotted the average throughput of H-MAC and 
LCM-MAC, with varying number of channels (m) 
and compared them against single channel 802.11. 
Single channel 802.11 is only used for baseline 

comparison. The earlier mentioned scenario with 
100 nodes in 500 × 500 m area is used for this plot.

In Figure 14 note that H-MAC’s performance 
increases almost linearly with increase in number 
of channels. This demonstrates the efficiency 
of the H-MAC scheme. It does not face control 
channel bottleneck, nor does it face any control 

Figure 13. Throughput comparison in 500×500 scenario with 13 channels

Figure 12. Throughput comparison in 500×500 scenario with 6 channels
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period inefficiencies as in LCM-MAC or MMAC. 
Also, note that H-MAC, in fact, provides k time 
the throughput relative to 802.11 while using k 
channel. This is because of using the hybrid scheme 
by H-MAC. LCM MAC also provides substantial 
improvement over 802.11, slightly less than k 
times for the 3 and 6 channel simulations. But, 
the throughput does not increase proportionately 
for 13 channels.

CONCLUSION

This article presents a new multi-channel MAC 
protocol, called H-MAC for the multi-hop wire-
less mesh networks. H-MAC can dynamically 
adjust the behavior of MAC between CSMA and 
TDMA depending on the level of contention in 
the network.

The observed simulation results show that our 
protocol provides much superior performance 

among all MAC protocols which use hybrid 
scheme and channel diversity with a single radio. 
H-MAC performs better than Z-MAC although 
their channel utilization rate is almost the same. 
In addition, the simulation results on channel 
diversity show that H-MAC provides a far supe-
rior performance compared to both LCM-MAC 
and MMAC.

Some of the issues not discussed in this article 
are the non-negligible channel switching delay and 
different data packet sizes as well as mechanisms 
for broadcasts in our protocols. Thus, we have 
not performed the simulation tests which allow 
to evaluate the QoS support and its impact on 
data throughput measurement. This is because 
of non availability of MAC protocols with QoS 
implementations during our simulation. In future 
work, we intend to study the above issues. We will 
implement and test the studied protocols in real 
wireless testbeds using different software-based 
MAC platforms.

Figure 14. Throughput Comparison according to the number of used channels
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ABSTRACT

IP telephony has long been one of the most widely used applications of the peer-to-peer paradigm. 
Hardware phones with built-in peer-to-peer stacks are used to enable IP telephony in closed networks 
at large company sites, while the wide adoption of smart phones provides the infrastructure for software 
applications enabling ubiquitous Internet-scale IP-telephony.

Decentralized peer-to-peer systems fit well as the underlying infrastructure for IP-telephony, as they 
provide the scalability for a large number of participants, and are able to handle the limited storage 
and bandwidth capabilities on the clients. We studied a commercial peer-to-peer-based decentralized 
communication platform supporting video communication, voice communication, instant messaging, et 
cetera. One of the requirements of the communication platform is the implementation of a user directory, 
allowing users to search for other participants. In this chapter, we present the Extended Prefix Hash Tree 
algorithm that enables the implementation of a user directory on top of the peer-to-peer communication 
platform in a fully decentralized way. We evaluate the performance of the algorithm with a real-world 
phone book. The results can be transferred to other scenarios where support for range queries is needed 
in combination with the decentralization, self-organization, and resilience of an underlying peer-to-peer 
infrastructure.
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INTRODUCTION

Structured peer-to-peer overlay protocols such 
as Chord (Stoica et al 2001) are increasingly 
used as part of robust and scalable decentralized 
infrastructures for communication platforms. For 
instance, users connect to an overlay network to 
publish their current IP address and port number 
using a unique user identifier as the keyword. 
In order to establish a communication channel 
to a user, the user’s identifier must be looked 
up in order to learn the TCP/IP connection data. 
Registration and lookup of addresses are realized 
using Distributed Hashtables (DHT).

However, users in such applications do not 
always know the unique identifier of the person 
to be contacted. Therefore, it must be possible to 
look up the identifier in a phone-book-like user 
directory. When looking up an identifier, the user 
might not know all data necessary to start an exact 
query. For example, the user might know the last 
name of the person to be searched, but not its first 
name or address. Moreover, people often are not 
willing to fill out all data fields, e.g. the address 
of the person to be called. Therefore, the phone 
book is required to support range queries, like 
queries for all people with a certain last name.

A challenge arises from the non-uniform dis-
tribution of people’s names. Figure 1 shows the 
frequency of last names in the city of Munich, 
Germany. Last names are Pareto-distributed, or 
Zipf-distributed, i.e., there are a few last names 
that are very common, while most last names are 
very rare.

In this article, we propose the use of Extended 
Prefix Hash Trees (EPHTs) as a scalable indexing 
infrastructure to support range queries on top of 
Distributed Hash Tables. The EPHT is evaluated 
by using real-world phone book data; experiments 
show that our approach enables efficient distrib-
uted phone book applications in a reliable way, 
without the need for centralized index servers. A 
comparison with related work shows that this has 

not been possible using techniques introduced 
before.

In the following section, we review related 
work and highlight the problems with current 
approaches. Then, we present the EPHT algo-
rithm, and compare it with the original Prefix 
Hash Tree (PHT) algorithm. Then, we evaluate its 
performance by running a series of experiments. 
Finally, we summarize our results and show our 
conclusions.

RELATED WORK

When entries are stored in a Distributed Hash 
Table, the location of an entry is defined by the hash 
value of its identifier. A common way to achieve 
a uniform distribution of the entries among the 
peers in the DHT is to require the hash function 
used to calculate the hash value to operate in the 
Random Oracle Model (Bellare et al, 1993), i.e. 
even if two identifiers differ only in a single Bit, 
the hash values of these identifiers are two inde-
pendent uniformly distributed random variables.

While this hash function allows for good bal-
ancing of the data load in a DHT, it makes range 
queries very costly. Iterating among a range of 
identifiers that are lexicographically next to each 
other means addressing nodes in a random order 

Figure 1. Frequency of last names in Munich, 
Germany
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in the peer-to-peer network. A way to accelerate 
range queries is to abandon the Random Oracle 
Model, and to store the entries in lexicographical 
order. In this section, we discuss three approaches 
relying on this idea: Skip Graphs (Aspnes et al, 
2003), Squid (Schmidt et al, 2004), and Mercury 
(Bharambe et al, 2004). We point out the difficul-
ties arising with these approaches in scenarios like 
a distributed phone book.

A comparison between EPHTs and the origi-
nal PHT algorithm (Rambhadran et al, 2004) is 
presented after we introduced the EPHT.

Skip Graphs

Figure 2 shows a linear three-Bit identifier space. 
The peers, as indicated by diamonds, are randomly 
distributed among the identifiers. Each peer is re-
sponsible for the identifiers in the range between 
itself and its predecessor or successor.

As shown in Figure 2, Skip Graphs introduce 
several levels of linked lists for traversing the 
peers. The higher the level of the list, the more 
peers are skipped, accelerating routing to spe-
cific ranges. By maintaining several independent 
lists on each level in parallel, Skip Graphs provide 
balancing of the traffic load and resilience to node 
failure.

However, the problem with Skip Graphs is 
that the entries’ identifiers are not distributed 
uniformly among the linked list, while the peers 
are randomly distributed. Entries for a last name 
starting with ‘S’ are very common in the German 
phone book, while last names starting with ‘Y’ 
are very uncommon. Therefore, the peer being 
responsible for a common entry becomes a hot 
spot in terms of network traffic and data load.

Squid

Squid (Schmidt et al, 2004) is an approach for 
combining several keywords when determining 
the position of an entry in the Distributed Hash 
Table. Squid is based on Locality-Preserving Hash-
ing (Indyk et al, 1997), in which adjacent points 
in a multi-dimensional domain are mapped to 
nearly-adjacent points in a one-dimensional range.

For example, in a distributed phone book appli-
cation, one could use a two-dimensional keyword 
domain, where one dimension is the entries’ last 
name, and the other dimension is the entries’ first 
name. Figure 3 shows how two dimensions can 
be mapped on a one-dimensional range using a 
Space Filling Curve (SFC). The SFC passes each 
combination of the two identifiers exactly once. If 
the user wants to search for all entries with a last 
name starting with ‘ST’ and a first name starting 
with ‘F’, then the user simply needs to query the 
parts of the SFC that lie on the intersection of 
these two prefixes in the two-dimensional space.

However, as with Skip Graphs, it turns out that 
the distribution of names in a phone book results 
in combinations that are very common, while 
other combinations are very rare. Again, the peers 
being responsible for common combinations 
become hot spots in terms of data storage and 

Figure 2. Skip graph Figure 3. Squid
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traffic load. This could be avoided with Squid by 
introducing many dimensions in order to distrib-
ute the entries among many different peers. But 
introducing many dimensions results in a tangled-
up SFC. As a result, many short fragments of the 
curve need to be processed for each keyword that 
is not specified in a query. We evaluated Squid 
and found that this results in a very high number 
of peers to be queried in order to find an entry.

Mercury

Like Squid, the Mercury approach (Bharambe et 
al, 2004) supports multi-dimensional keywords. 
Each dimension is handled within a separate hub, 
which is a ring-shaped formation of peers. An ex-
ample of a Mercury hub is illustrated in Figure 4.

The ID range within a hub is ordered linearly, 
which results in the same load balancing problems 
as with the other approaches. However, Mercury 
suggests that peers are moved around dynami-
cally to balance the load. Although this might be 
a reasonable approach in other scenarios, this 
raises difficulties in the distributed phone book 
scenario. First, there are a few very popular last 
names. A peer being responsible for one of these 
popular last names cannot be relieved by moving 
around other peers, and it will stay a hot spot in 
terms of data load. Second, if peers may choose 
their position in the overlay deliberately, this 
raises certain security issues, because an attacker 
who wants to make a person unreachable can 
position its peer in a way that it becomes respon-
sible for routing queries to the victim’s entry.

Fusion Dictionary

Fusion Dictionaries (Liu et al, 2004) are not a 
distributed search index, but a load balancing tech-
nique that can be combined with search indexes. 
The idea is to maintain a blacklist of names that 
are very common, and to cache blacklist entries 
in large parts of the DHT. If a user queries a last 
name that is in the blacklist, the query is inter-

rupted and the user is asked to specify the query 
more precisely, e.g. by including the first name 
in the query.

That way, peers being responsible for fre-
quent names are relieved. As the last names are 
Zipf-distributed, there are only a few names to 
be included in the blacklist in order to achieve 
significant load balancing.

However, in spite of the load balancing 
achieved with fusion dictionaries, the approaches 
introduced above still do not fulfill the scalability 
and performance requirements of large scale com-
munication platforms. In this article, we present the 
EPHT, which is a search index that does not result 
in overloaded peers. That way it is unnecessary to 
introduce additional load balancing techniques.

Summary

The brief survey of related work showed that 
there are several difficulties with previous range 
query solutions when applied in the distributed 
phone book scenario. A more detailed overview 
of search methods in peer-to-peer systems can 
be found in (Risson et al, 2006). An analysis of 
arbitrary search in structured peer-to-peer systems 
was published in (Hautakorpi et al, 2010).

Approaches supporting real multi-dimensional 
keywords like Mercury and Squid have the prob-
lem of hot spots with very popular last names. Ad-
ditionally, approaches relying on linear keywords 
instead of real hashing suffer from overloaded 
peers being responsible for popular prefixes. In 

Figure 4. Mercury hub
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Squid, the hot spots in terms of data load could be 
avoided, but as a trade-off this results in a large 
number of peers to be queried to find an entry.

In the following section, we introduce the 
Extended Prefix Hash Tree as a way of enabling 
efficient range queries, while preserving the ad-
vantages of the Random Oracle Model for hashing, 
which results in a balanced distribution of the 
entries among the peers in the DHT.

EXTENDED PREFIX HASH 
TREE ALGORITHM

Each entry in the distributed phone book is 
associated with an identifier. The identifier is 
a fixed-length string, consisting of the capital 
characters [A-Z]. Identifiers are built by concat-
enating keywords from the entry. In the example 
in Figure 5, we used the keywords last name, first 
name, and city.

The order of the keywords determines the 
relevance of these keywords for range queries. If 
identifiers are built as in Figure 5, it is possible 
to search for the last name without knowing the 
city, but it is not possible to search for the city 
without knowing the last name. This corresponds 
to the hierarchical structure of printed phone 
books, where entries are ordered by city, last name, 
first name, etc. In order to allow alternative key-
word orders, the application must maintain sev-
eral trees in parallel.

Special characters like whitespaces or the Ger-
man ä, ö, ü, ß are omitted. That way, both German 
names “Müller” and “Möller” map into the same 
string “MLLER”. It is up to the application layer 

to filter out the right results when a user searched 
for “Müller”.

The identifier length must be sufficient to en-
sure that a unique identifier can be built for each 
entry with high probability. In our evaluation, the 
identifiers were 32 characters long. Identifiers that 
are longer than that are truncated; identifiers that 
are shorter are padded with random characters.

Growing the Tree

The structure of an EPHT is shown in Figure 
6. There are two parameters that determine the 
shape of the tree:

1.  n is the number of children per node. Each 
edge is labeled with a character set, like 
[S-Z]. The partitioning of the alphabet into 
character sets is fixed and globally known, 
and cannot be changed dynamically during 
runtime. n is the number of character sets, 
which can be any number between 2 and 26. 
In the section on evaluation, we show that 
the best performance is achieved with n=26.

2.  m is the maximum load of the root node, 
i.e. the maximum number of entries that 
can be stored on the root node. If the root 
node exceeds its maximum load, it splits up 
into n child nodes and distributes all entries 
among the children. The maximum load of 
each child equals the maximum load of the 
parent node plus one. The reason for incre-
menting the maximum load is to prevent 
recursive splits, if all entries happen to be 
stored on the same child. If a child node’s 
prefix length (see below for the definition 

Figure 5. Generating a 32 char identifier for an entry
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of prefix) equals the identifier length for 
the entries, then that node cannot split any 
further, and its maximum load becomes in-
finite. In the section on evaluation we show 
that m=100 is a good value.

Each node of the tree is stored as a resource 
in a DHT, using a hash function operating in the 
Random Oracle Model. The keyword to be hashed 
is the prefix of that node in the EPHT, i.e. the 
sequence of character sets on the path from the 
root node to the node to be stored. For example, 
the keyword of the leaf node holding the entry 
‘Gerd Völksen’ in Figure 6 would be ‘[S-Z][I-
R]’. New entries are stored on the leaf node that 
has the closest matching prefix for the identifier 
of that entry.

Once a node is split, it becomes an inner node. 
Inner nodes are kept in the system to indicate the 
existence of child nodes, but they do not store 
any data. In particular, inner nodes do not need 
to store links to their children.

Maintaining the Linked Lists

In addition to the tree structure itself, two doubly 
linked lists are maintained: one for traversing the 
non-empty leaf nodes, and the other connecting 

all leaf nodes, including the empty ones. Each 
element in a list stores the prefix of its predeces-
sor and successor. The linked list is updated upon 
the following events:

1.  A leaf node splits up into child nodes. In that 
case, the old leaf node must leave the linked 
lists, the non-empty new child nodes must 
join the linked list for non-empty nodes, and 
all new leaf nodes must join the linked list 
connecting all leaf nodes. The new nodes 
learn about their initial successors and pre-
decessors from their parent node.

2.  An entry is added to a previously empty 
leaf node. In that case, that node must join 
the list for non-empty leaf nodes. The node 
finds its predecessor and successor using 
the list connecting all leaf nodes.

Performing Range Queries

Usually, tree algorithms imply that nodes are 
searched starting at the root node and traversing 
down the tree to a leaf node. This would mean that 
the peer holding the root node becomes a bottle-
neck and single point of failure in a distributed 
tree structure. EPHTs allow lookups to address 

Figure 6. Example of an extended prefix hash tree with n=3 and m=2
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arbitrary nodes directly, using the prefix of the 
node as the keyword in the DHT.

Range queries are implemented as follows: 
First, the issuer of a query finds a random, non-
empty leaf node lying somewhere in the queried 
range. Second, the issuer traverses the linked list 
of non-empty leaf nodes to the left and to the right, 
subsequently querying the predecessors and suc-
cessors, until all matching entries are retrieved.

Figure 7 shows how an initial non-empty leaf 
node is found that can be used as a starting point 
for traversing the linked list. We exemplify this 
using a search for all people with the last name 
‘Olpp’.

Make Prefix Length 5. The first step is to pad 
the search string with random characters, and to 
take the first five characters as an initial prefix to 
start with. In the example, the initial prefix would 
be OLPPD. In the section on evaluation we will 
show why 5 is a good initial prefix length.

Lookup. When this prefix is looked up in the 
DHT, there are four possible results:

1.  A node with that prefix exists and is a non-
empty leaf node. In that case, the initial node 
for traversing the linked list is found.

2.  A node with that prefix exists and is an 
empty leaf node. In that case, the issuer of 
the query starts traversing the linked list 
until a non-empty member is found. If all 
prefixes in the range queried are empty, then 
the search was unsuccessful.

3.  A node with that prefix exists but is an inner 
node. In that case, the prefix was underspeci-
fied, and it must be enlarged by one character. 
In the example, the next search string might 
be OLPPDH.

4.  There is no node with that prefix. This means 
the prefix was over-specified, and it must be 
shortened by one character. In the example, 
the shortened prefix would be OLPP.

In order to decrease latency, the search can 
be initialized with several different random pad-
dings in parallel. That way, the linked list can be 
traversed starting from different positions at the 
same time.

Removing Entries

Entries do not need to be deleted explicitly. Each 
entry is associated with a lease time. If it is not 
renewed within that time, it is deleted. That way, 
users who are no longer part of the system will 
be removed after some time.

In EPHTs, once a node has split and become 
an inner node, this node stays an inner node for 
ever, even if all entries in its sub-tree have timed-
out. That means that the EPHT can only grow, but 
never shrink. This property is in accordance with 
our use case, as shrinking the tree would only 
make sense if the service provider operating the 
distributed phone book application would perma-
nently loose a significant number of customers, or 
if the distribution of the name’s prefixes changes 
significantly. Both scenarios happen very slowly, 
and it is feasible to roll out a software update in 
that case that will built a new tree from scratch. 
The persistence of inner nodes enables us to 
implement extensive caching.

Figure 7. Addressing nodes
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Caching

As the EPHT never shrinks, inner nodes are im-
mutable. They will never be deleted or altered. 
That means that inner nodes can be cached infi-
nitely in the DHT. Whenever a peer learns about 
the existence of an inner node, it can cache that 
information and respond when that prefix is que-
ried the next time. Without caching, prefixes that 
are accessed very frequently would cause a lot of 
network traffic for the peer being responsible for 
that prefix. Using caching, this network traffic can 
be balanced in the DHT.

COMPARISON WITH THE 
ORIGINAL PREFIX HASH TREES

The Extended Prefix Hash Tree algorithm pre-
sented here derives from the Prefix Hash Tree 
(PHT) algorithm proposed in (Rambhadran et al, 
2004). However, the original PHT could not have 
been used to implement a distributed phone book 
without the changes presented in this article. The 
novelty of our work is twofold:

1.  The original PHT is a binary tree enabling 
Bit-wise processing of keywords. Its design 
does not support caching, and it handles 
multiple keywords using a Squid-like ap-
proach. This does not match the requirements 
found in the distributed phone book scenario. 
Therefore, we extended the PHT in several 
respects, as described below.

2.  The EPHT algorithm has several configu-
ration parameters, like the number of child 
nodes, and the maximum load of a node. We 
evaluated the Extended PHT with real-world 
phone book data, and showed how to gain 
the best performance.

In the rest of this section, we will show the 
major differences between the EPHT and the 
PHT algorithm.

• The original PHT is a binary tree. As shown 
in the evaluation, binary trees do not scale 
well in a distributed phone book scenario. 
Therefore, the EPHT is an n-ary tree, and 
we recommend to use n=26, i.e. the size of 
the applied alphabet.

• In the original PHT, if the number of entries 
in a subtree falls below a certain threshold, 
that subtree collapses into a single leaf 
node. The EPHT can only grow, but never 
shrink, which enables us to introduce ex-
tensive caching of inner nodes.

• Empty nodes are not handled specially in 
the PHT algorithm. In the Extended PHT, 
we introduced an additional linked list 
skipping the empty nodes to improve per-
formance. This is because we observed that 
a significant number of prefixes do never 
appear in user’s names, which results in 
empty leaf nodes for these prefixes.

• The original PHT proposes to handle mul-
tiple keywords using Locality-Preserving 
Hashing, as in Squid. In our application, 
we simply concatenate the keywords ac-
cording to their priority, and pad the result 
with random data.

EVALUATION

In this section, we present the simulation results. 
The evaluation data is taken from a German 
phone book CDROM from 1997, because newer 
electronic phone books restrict data export due to 
privacy regulations. We used the entries for the 
city of Munich, which has 620,853 entries. As each 
peer is supposed to provide only its own entry, the 
number of peers is equal to the number of entries.

Data Load

The number of entries per peer is one of our key 
performance indicators, as well-balanced data are 
the prerequisite for good balancing of the network 
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load. Figure 8 shows the number of entries per peer 
for m in 25, 50, 75, and 100, without replication.

Note that the y-scale showing the number of 
peers is logarithmic. Nearly all of the 620,853 
peers store less than 3 entries. No peer stores more 
than 150 entries. Assuming an average size of an 
entry of 128 Bytes, a peer holding 150 entries 
would store less then 19 kBytes. This is feasible 
even on embedded devices with a built-in peer-
to-peer stack, and it is easily possible to replicate 
19 kBytes through current Internet connections.

Prefix Length

In the description of the algorithm above, we 
said that the initial prefix length to start with 

when searching in an EPHT is 5 in our dataset. 
As shown in Figure 9, this is the average prefix 
length for n in 5, 13, and 26. Only binary EPHTs 
with n=2 result in a significantly larger aver-
age prefix length. If the average prefix length 
changes over time, e.g. if the number of users or 
the distribution of names is other than expected, 
then the initial prefix length needs to be adapted 
in the search operation.

Network Traffic

The network traffic is evaluated in terms of the 
number of lookup operations in the DHT that is 
needed to process a range query2. As an example, 
we queried the prefixes SCHN* which results in 

Figure 8. Entries per Peer, using n=26 (left), and n=5 (right)

Figure 9. Prefix Length for m=25 (left), and m=100 (right)
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4683 entries, and OLPP* yielding only a single 
entry. Of course querying SCHN* is an artificial 
example, as real-world applications would prob-
ably abort that query after a certain number of 
results is retrieved, and ask the user to formulate 
the query more specifically. Table 1 shows the 
number of lookup operations. We did not use 
any caching.

An increasing maximum load of the root node 
m results in less nodes to be looked up. With 
regards to the number of children n we found that 
more children per node result in a lower number 
of lookup operations. For example, if the user 
searches for OLPP* in a tree with n=5, the ap-
plication searches all entries matching the prefix 
[K-O][K-O] [P-T] [P-T]. People with a last name 
starting with Lost would match the same prefix 
as Olpp. Altogether, the number of matching 
entries in our phone book is 1801, which explains 
the overhead of 99 lookups.

These results suggest that the number of chil-
dren per node n should be as large as possible to 
reduce the number of lookup operations.

Empty Nodes

The percentage of empty nodes is shown in Table 2.
As expected, the number of empty nodes 

raises with the number of children per node. 

However, even with n=26 we got only 60% 
empty nodes, which is still justifiable in the face 
of the great reduction of traffic overhead for n=26.

Churn

In peer-to-peer terminology, the continuous ar-
rival and disappearance of peers is called churn. 
The stability of DHTs in the face of churn and the 
probability of data loss was addressed many times 
before (Stutzbach 2006, Kunzmann 2009), and we 
refer the reader to these works for experimental 
and analytical results on the topic.

The tree nodes of the EPHT are stored as re-
sources on a DHT. DHTs use replication techniques 
and stabilization protocols to keep the probability 
of data loss very low, even in typical file-sharing 
scenarios where the participating peers arrive and 
disappear very frequently.

The reliability of the EPHT depends on the 
reliability of the underlying DHT. If the node 
resources are available on the DHT layer, then 
the EPHT remains stable. Assuming that VoIP 
telephones have much longer average online times 
than file sharing peers, we expect the DHT to be 
very stable in the distributed phone book scenario.

However, in order to handle the unlikely event 
of data loss, we propose that the peers look up their 
own entry on a periodical basis, and re-publish 
the entry in case it disappeared.

CONCLUSION

In this article, we presented the Extended Prefix 
Hash Tree as an infrastructure supporting range 

Table 1. Lookup operations 

SCHN* OLPP*

N=5 n=13 n=26 n=5 n=13 n=26

M=50 1068 958 495 99 3 4

M=100 590 670 279 39 3 4

Table 2. Empty nodes 

n=5 n=13 n=26

m=50 6% of 34,821 37% of 
94,297

60% of 
193,801

m=100 2% of 18,353 29% of 
48,757

53% of 
98,501
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queries on top of Distributed Hash Tables. The 
design of the algorithm is driven by the require-
ments found in a distributed user directory for a 
commercial VoIP communication platform devel-
oped by Siemens. We evaluated the algorithm and 
showed how to choose the parameters in order to 
achieve the best performance.

While this article is focused on a specific use 
case, the methodology and results can be trans-
ferred to other scenarios. The algorithm presented 
here fits specifically in situations where keywords 
are Zipf-distributed. In the phone book scenario, 
some last names are very common while other last 
names are very rare. The EPHT adapts perfectly 
to this kind of distribution.

The concatenation of keywords provides a 
simple but powerful approach to handle multiple 
keywords that are ordered in a hierarchical way.

FUTURE RESEARCH DIRECTIONS

The Extended Prefix Hash Tree algorithm pre-
sented in this paper enables the implementation 
of a distributed user directory for a peer-to-peer-
based telephony application. However, apart from 
user directories, there are more applications that 
might benefit from a distributed search index.

The evaluation in this article is based on 
the specific requirements that we derived from 
a commercial communication platform. When 
EPHTs are to be applied in other applications, it 
is a non-trivial task to tell the implications of the 
algorithm on the specific architecture.

Future research should address this issue and 
allow for the definition of generic, re-usable com-
ponents that can be applied on top of peer-to-peer 
networks. These components are the building 
blocks fulfilling the application-specific require-
ments on the distributed infrastructures. A first 
proposal for the definitions of these components 
can be found in (Stäber, 2009).

Also, while DHT-based structured overlay 
networks have many advantages, their string-

based approach for registration and lookup carries 
intrinsic limitations as regards the expressiveness 
of search. While the extension with range queries 
and wildcard search seems appropriate for a pure 
phone book lokup, even a straightforward business 
directory will require more semantically elabo-
rate queries (e.g., SQL-based or ontology-based 
queries). One option to achieve this is to combine 
structured distributed hash tables with super-peer 
architectures, preserving the robustness and scal-
ability of the overlay while enhancing it with 
declarative semantic search capability. In (Gerdes 
et al., 2009), we propose a declarative decentral-
ized query processor and evaluate it in the energy 
domain. (Stiefel and Müller, 2010) propose the use 
of an ontology-based query language on top of a 
DHT architecture for semantic search of digital 
product models. These approaches will need to be 
validated and further developed in future work.
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centralized infrastructure providing a hash-table 
like addressing scheme

Extended Prefix Hash Tree (EPHT): Modi-
fied PHT to be used when implementing distrib-
uted user directories.
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distributed application, allowing the nodes to 
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Prefix Hash Tree (PHT): Search algorithm 
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